1
|
Fernkorn M, Schröter C. Med12 cooperates with multiple differentiation signals to facilitate efficient lineage transitions in embryonic stem cells. J Cell Sci 2025; 138:jcs263794. [PMID: 40237177 PMCID: PMC12079664 DOI: 10.1242/jcs.263794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Cell differentiation results from coordinated changes in gene transcription in response to combinations of signals. Fibroblast growth factor (FGF), Wnt and mammalian target of rapamycin (mTOR) signals regulate the differentiation of pluripotent mammalian cells towards embryonic and extraembryonic lineages, but how these signals cooperate with general transcriptional regulators is not fully resolved. Here, we report a genome-wide CRISPR screen that reveals both signaling components and general transcriptional regulators for differentiation-associated gene expression in mouse embryonic stem cells (mESCs). Focusing on the Mediator subunit-encoding Med12 gene as one of the strongest hits in the screen, we show that it regulates gene expression in parallel to FGF and mTOR signals. Loss of Med12 is compatible with differentiation along both the embryonic epiblast and the extraembryonic primitive endoderm lineage but impairs pluripotency gene expression and slows down transitions between pluripotency states. These findings suggest that Med12 helps pluripotent cells to efficiently execute transcriptional changes during differentiation, thereby modulating the effects of a broad range of signals.
Collapse
Affiliation(s)
- Max Fernkorn
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Chang H, Li M, Zhang L, Li M, Ong SH, Zhang Z, Zheng J, Xu X, Zhang Y, Wang J, Liu X, Li K, Luo Y, Wang H, Miao Z, Chen X, Zha J, Yu Y. Loss of histone deubiquitinase Bap1 triggers anti-tumor immunity. Cell Oncol (Dordr) 2025; 48:183-203. [PMID: 39141316 PMCID: PMC11850471 DOI: 10.1007/s13402-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Immunotherapy using PD-L1 blockade is effective in only a small group of cancer patients, and resistance is common. This emphasizes the importance of understanding the mechanisms of cancer immune evasion and resistance. METHODS A genome-scale CRISPR-Cas9 screen identified Bap1 as a regulator of PD-L1 expression. To measure tumor size and survival, tumor cells were subcutaneously injected into both syngeneic WT mice and immunocompromised mice. The phenotypic and transcriptional characteristics of Bap1-deleted tumors were examined using flow cytometry, RNA-seq, and CUT&Tag-seq analysis. RESULTS We found that loss of histone deubiquitinase Bap1 in cancer cells activates a cDC1-CD8+ T cell-dependent anti-tumor immunity. The absence of Bap1 leads to an increase in genes associated with anti-tumor immune response and a decrease in genes related to immune evasion. As a result, the tumor microenvironment becomes inflamed, with more cDC1 cells and effector CD8+ T cells, but fewer neutrophils and regulatory T cells. We also found that the elimination of Bap1-deleted tumors depends on the tumor MHCI molecule and Fas-mediated CD8+ T cell cytotoxicity. Our analysis of TCGA data further supports these findings, showing a reverse correlation between BAP1 expression and mRNA signatures of activated DCs and T-cell cytotoxicity in various human cancers. CONCLUSION The histone deubiquitinase Bap1 could be used as a biomarker for tumor stratification and as a potential therapeutic target for cancer immunotherapies.
Collapse
Affiliation(s)
- Hong Chang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingxia Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Meng Li
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Zhiwei Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zheng
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjie Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kairui Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yao Luo
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haiyun Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Kim T, Iseri E, Peng MG, Medvidovic S, Silliman T, Pahlavan P, Niu G, Huang C, Simonyan A, Pahnahad J, Yao P, Lam P, Garimella V, Shahidi M, Bienkowski MS, Lee DJ, Thomas B, Lazzi G, Gokoffski KK. Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury. PLoS One 2025; 20:e0315562. [PMID: 39787061 PMCID: PMC11717274 DOI: 10.1371/journal.pone.0315562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon. Stimulation was performed with asymmetric charged-balanced (ACB) waveforms that are safer than direct current and more effective than traditional, symmetric biphasic waveforms. In addition to partial anatomical restoration, ACB waveforms conferred partial restoration of visual function as measured by pattern electroretinogram recordings and local field potential recordings in the superior colliculus-and did so without the need for genetic manipulation. Our work suggests that exogenous electric field application can override cell-intrinsic and cell-extrinsic barriers to axon regeneration, and that electrical stimulation performed with specific ACB waveforms may be an effective strategy for directing anatomical and functional restoration after CNS injury.
Collapse
Affiliation(s)
- Timothy Kim
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Ege Iseri
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Micalla G. Peng
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Sasha Medvidovic
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Timothy Silliman
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pooyan Pahlavan
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Gengle Niu
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Connie Huang
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Anahit Simonyan
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Javad Pahnahad
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Boston Scientific Neuromodulation, Valencia, California, United States of America
| | - Petcy Yao
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Phillip Lam
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Johnson & Johnson, Irvine, California, United States of America
| | - Vahini Garimella
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Mahnaz Shahidi
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Michael S. Bienkowski
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Darrin J. Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Biju Thomas
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Gianluca Lazzi
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly K. Gokoffski
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
5
|
Santini L, Kowald S, Cerron-Alvan LM, Huth M, Fabing AP, Sestini G, Rivron N, Leeb M. FoxO transcription factors actuate the formative pluripotency specific gene expression programme. Nat Commun 2024; 15:7879. [PMID: 39251582 PMCID: PMC11384738 DOI: 10.1038/s41467-024-51794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.
Collapse
Affiliation(s)
- Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Saskia Kowald
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Luis Miguel Cerron-Alvan
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Anna Philina Fabing
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Giovanni Sestini
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria.
| |
Collapse
|
6
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
7
|
Zhou H, Ye P, Xiong W, Duan X, Jing S, He Y, Zeng Z, Wei Y, Ye Q. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther 2024; 15:218. [PMID: 39026343 PMCID: PMC11264826 DOI: 10.1186/s13287-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Xiong
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Shuili Jing
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
8
|
Lando D, Ma X, Cao Y, Jartseva A, Stevens TJ, Boucher W, Reynolds N, Montibus B, Hall D, Lackner A, Ragheb R, Leeb M, Hendrich BD, Laue ED. Enhancer-promoter interactions are reconfigured through the formation of long-range multiway hubs as mouse ES cells exit pluripotency. Mol Cell 2024; 84:1406-1421.e8. [PMID: 38490199 PMCID: PMC7616059 DOI: 10.1016/j.molcel.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.
Collapse
Affiliation(s)
- David Lando
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yang Cao
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicola Reynolds
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Bertille Montibus
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Dominic Hall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Ramy Ragheb
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Brian D Hendrich
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
9
|
Mistretta M, Fiorito V, Allocco AL, Ammirata G, Hsu MY, Digiovanni S, Belicchi M, Napoli L, Ripolone M, Trombetta E, Mauri P, Farini A, Meregalli M, Villa C, Porporato PE, Miniscalco B, Crich SG, Riganti C, Torrente Y, Tolosano E. Flvcr1a deficiency promotes heme-based energy metabolism dysfunction in skeletal muscle. Cell Rep 2024; 43:113854. [PMID: 38412099 DOI: 10.1016/j.celrep.2024.113854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The definition of cell metabolic profile is essential to ensure skeletal muscle fiber heterogeneity and to achieve a proper equilibrium between the self-renewal and commitment of satellite stem cells. Heme sustains several biological functions, including processes profoundly implicated with cell metabolism. The skeletal muscle is a significant heme-producing body compartment, but the consequences of impaired heme homeostasis on this tissue have been poorly investigated. Here, we generate a skeletal-muscle-specific feline leukemia virus subgroup C receptor 1a (FLVCR1a) knockout mouse model and show that, by sustaining heme synthesis, FLVCR1a contributes to determine the energy phenotype in skeletal muscle cells and to modulate satellite cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Miriam Mistretta
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Lucia Allocco
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Giorgia Ammirata
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Myriam Y Hsu
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sabrina Digiovanni
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - PierLuigi Mauri
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, 20054 Segrate, Milan, Italy; Clinical Proteomics Laboratory c/o ITB-CNR, CNR.Biomics Infrastructure, ElixirNextGenIT, 20054 Segrate, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Barbara Miniscalco
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Torino, Italy
| | - Simonetta Geninatti Crich
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
10
|
Yang C, Lei Y, Ren T, Yao M. The Current Situation and Development Prospect of Whole-Genome Screening. Int J Mol Sci 2024; 25:658. [PMID: 38203828 PMCID: PMC10779205 DOI: 10.3390/ijms25010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
High-throughput genetic screening is useful for discovering critical genes or gene sequences that trigger specific cell functions and/or phenotypes. Loss-of-function genetic screening is mainly achieved through RNA interference (RNAi), CRISPR knock-out (CRISPRko), and CRISPR interference (CRISPRi) technologies. Gain-of-function genetic screening mainly depends on the overexpression of a cDNA library and CRISPR activation (CRISPRa). Base editing can perform both gain- and loss-of-function genetic screening. This review discusses genetic screening techniques based on Cas9 nuclease, including Cas9-mediated genome knock-out and dCas9-based gene activation and interference. We compare these methods with previous genetic screening techniques based on RNAi and cDNA library overexpression and propose future prospects and applications for CRISPR screening.
Collapse
Affiliation(s)
| | | | | | - Mingze Yao
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (C.Y.); (Y.L.); (T.R.)
| |
Collapse
|
11
|
Yakhou L, Azogui A, Gupta N, Richard Albert J, Miura F, Ferry L, Yamaguchi K, Battault S, Therizols P, Bonhomme F, Bethuel E, Sarkar A, Greenberg MC, Arimondo P, Cristofari G, Kirsh O, Ito T, Defossez PA. A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation. Nucleic Acids Res 2023; 51:10292-10308. [PMID: 37650637 PMCID: PMC10602864 DOI: 10.1093/nar/gkad719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.
Collapse
Affiliation(s)
- Lounis Yakhou
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anaelle Azogui
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Sarah Battault
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Pierre Therizols
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Elouan Bethuel
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Arpita Sarkar
- Université Côte d’Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | | | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
12
|
Belliveau NM, Footer MJ, Akdoǧan E, van Loon AP, Collins SR, Theriot JA. Whole-genome screens reveal regulators of differentiation state and context-dependent migration in human neutrophils. Nat Commun 2023; 14:5770. [PMID: 37723145 PMCID: PMC10507112 DOI: 10.1038/s41467-023-41452-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and provide a critical early line of defense as part of our innate immune system. We perform a comprehensive, genome-wide assessment of the molecular factors critical to proliferation, differentiation, and cell migration in a neutrophil-like cell line. Through the development of multiple migration screen strategies, we specifically probe directed (chemotaxis), undirected (chemokinesis), and 3D amoeboid cell migration in these fast-moving cells. We identify a role for mTORC1 signaling in cell differentiation, which influences neutrophil abundance, survival, and migratory behavior. Across our individual migration screens, we identify genes involved in adhesion-dependent and adhesion-independent cell migration, protein trafficking, and regulation of the actomyosin cytoskeleton. This genome-wide screening strategy, therefore, provides an invaluable approach to the study of neutrophils and provides a resource that will inform future studies of cell migration in these and other rapidly migrating cells.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Matthew J Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Emel Akdoǧan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Aaron P van Loon
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Gupta N, Yakhou L, Albert JR, Azogui A, Ferry L, Kirsh O, Miura F, Battault S, Yamaguchi K, Laisné M, Domrane C, Bonhomme F, Sarkar A, Delagrange M, Ducos B, Cristofari G, Ito T, Greenberg MVC, Defossez PA. A genome-wide screen reveals new regulators of the 2-cell-like cell state. Nat Struct Mol Biol 2023; 30:1105-1118. [PMID: 37488355 DOI: 10.1038/s41594-023-01038-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.
Collapse
Affiliation(s)
- Nikhil Gupta
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France.
- Joint AZ CRUK Functional Genomics Centre, The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Lounis Yakhou
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | | | - Anaelle Azogui
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Laure Ferry
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Olivier Kirsh
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | - Sarah Battault
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Kosuke Yamaguchi
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Marthe Laisné
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Cécilia Domrane
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology, UMR3523, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Arpita Sarkar
- IRCAN, Université Côte d'Azur, Inserm, CNRS, Nice, France
| | - Marine Delagrange
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | | | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | | | | |
Collapse
|
14
|
Wang J, Zhang C, Huang Y, Ruan Y, Hu Y, Wang J, Wang F, Yu M, Xu Y, Liu L, Cheng Y, Yang R, Dong Y, Wang J, Yang Y, Xiong J, Tian Y, Gao Q, Zhang J, Jian R. Parallel Genome-Wide CRISPR Screens to Identify State-Dependent Self-Renewal Regulators of Mouse Embryonic Stem Cells. Stem Cells Dev 2023; 32:450-464. [PMID: 37166379 DOI: 10.1089/scd.2023.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The pluripotency of embryonic stem cells (ESCs) is more accurately viewed as a continuous developmental process rather than a fixed state. However, the factors that play general or state-specific roles in regulating self-renewal in different pluripotency states remain poorly defined. In this study, parallel genome-wide CRISPR/Cas9 knockout (KO) screens were applied in ESCs cultured in the serum plus LIF (SL) and in the 2i plus LIF (2iL) conditions. The candidate genes were classified into seven groups based on their positive or negative effects on self-renewal, and whether this effect was general or state-specific for ESCs under SL and 2iL culture conditions. We characterized the expression and function of genes in these seven groups. The loss of function of novel pluripotent candidate genes Usp28, Zfp598, and Zfp296 was further evaluated in mouse ESCs. Consistent with our screen, the knockout of Usp28 promotes the proliferation of SL-ESCs and 2iL-ESCs, whereas Zfp598 is indispensable for the self-renewal of ESCs under both culture conditions. The cell phenotypes of Zfp296 KO ESCs under SL and 2iL culture conditions were different. Our work provided a valuable resource for dissecting the molecular regulation of ESC self-renewal in different pluripotency states.
Collapse
Affiliation(s)
- Jiangjun Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Cell Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Chen Zhang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yan Ruan
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yan Hu
- Department of Military Basic Training and Army Management, Army Health Service Training Base, Army Medical University, Chongqing, China
| | - Jiaqi Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Fengsheng Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Meng Yu
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Joint Surgery, Southwest Hospital, the First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Yixiao Xu
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Lianlian Liu
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yuda Cheng
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Ran Yang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Yutong Dong
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Military Basic Training and Army Management, Army Health Service Training Base, Army Medical University, Chongqing, China
| | - Jiali Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yanping Tian
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Junlei Zhang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Rui Jian
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Science, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Detraux D, Caruso M, Feller L, Fransolet M, Meurant S, Mathieu J, Arnould T, Renard P. A critical role for heme synthesis and succinate in the regulation of pluripotent states transitions. eLife 2023; 12:e78546. [PMID: 37428012 PMCID: PMC10425175 DOI: 10.7554/elife.78546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2023] [Indexed: 07/11/2023] Open
Abstract
Using embryonic stem cells (ESCs) in regenerative medicine or in disease modeling requires a complete understanding of these cells. Two main distinct developmental states of ESCs have been stabilized in vitro, a naïve pre-implantation stage and a primed post-implantation stage. Based on two recently published CRISPR-Cas9 knockout functional screens, we show here that the exit of the naïve state is impaired upon heme biosynthesis pathway blockade, linked in mESCs to the incapacity to activate MAPK- and TGFβ-dependent signaling pathways after succinate accumulation. In addition, heme synthesis inhibition promotes the acquisition of 2 cell-like cells in a heme-independent manner caused by a mitochondrial succinate accumulation and leakage out of the cell. We further demonstrate that extracellular succinate acts as a paracrine/autocrine signal, able to trigger the 2C-like reprogramming through the activation of its plasma membrane receptor, SUCNR1. Overall, this study unveils a new mechanism underlying the maintenance of pluripotency under the control of heme synthesis.
Collapse
Affiliation(s)
- Damien Detraux
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Marino Caruso
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Louise Feller
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Sébastien Meurant
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
- Department of Comparative Medicine, University of WashingtonSeattleUnited States
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| |
Collapse
|
16
|
Ruan Y, Wang J, Yu M, Wang F, Wang J, Xu Y, Liu L, Cheng Y, Yang R, Zhang C, Yang Y, Wang J, Wu W, Huang Y, Tian Y, Chen G, Zhang J, Jian R. A multi-omics integrative analysis based on CRISPR screens re-defines the pluripotency regulatory network in ESCs. Commun Biol 2023; 6:410. [PMID: 37059858 PMCID: PMC10104827 DOI: 10.1038/s42003-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
A comprehensive and precise definition of the pluripotency gene regulatory network (PGRN) is crucial for clarifying the regulatory mechanisms in embryonic stem cells (ESCs). Here, after a CRISPR/Cas9-based functional genomics screen and integrative analysis with other functional genomes, transcriptomes, proteomes and epigenome data, an expanded pluripotency-associated gene set is obtained, and a new PGRN with nine sub-classes is constructed. By integrating the DNA binding, epigenetic modification, chromatin conformation, and RNA expression profiles, the PGRN is resolved to six functionally independent transcriptional modules (CORE, MYC, PAF, PRC, PCGF and TBX). Spatiotemporal transcriptomics reveal activated CORE/MYC/PAF module activity and repressed PRC/PCGF/TBX module activity in both mouse ESCs (mESCs) and pluripotent cells of early embryos. Moreover, this module activity pattern is found to be shared by human ESCs (hESCs) and cancers. Thus, our results provide novel insights into elucidating the molecular basis of ESC pluripotency.
Collapse
Affiliation(s)
- Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Fengsheng Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ran Yang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Chen Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Guangxing Chen
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
18
|
Lin R, Zhai Z, Kuang J, Wu C, Yao Y, Shi R, He J, Xu S, Li P, Fan Y, Li W, Wu Z, Li X, Ming J, Guo J, Wang B, Li D, Cao S, Zhang X, Li Y, Pei D, Liu J. H3K27ac mediated SS18/BAFs relocation regulates JUN induced pluripotent-somatic transition. Cell Biosci 2022; 12:89. [PMID: 35710570 PMCID: PMC9204951 DOI: 10.1186/s13578-022-00827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background The exit from pluripotency or pluripotent-somatic transition (PST) landmarks an event of early mammalian embryonic development, representing a model for cell fate transition. Results In this study, using a robust JUN-induced PST within 8 h as a model, we investigate the chromatin accessibility dynamics (CAD) as well as the behaviors of corresponding chromatin remodeling complex SS18/BAFs, to probe the key events at the early stage of PST. Here, we report that, JUN triggers the open of 34661 chromatin sites within 4 h, accomplished with the activation of somatic genes, such as Anxa1, Fosl1. ChIP-seq data reveal a rapid relocation of SS18/BAFs from pluripotent loci to AP-1 associated ones. Consistently, the knockdown of Brg1, core component of BAF complexes, leads to failure in chromatin opening but not closing, resulting in delay for JUN induced PST. Notably, the direct interaction between SS18/BAFs and JUN-centric protein complexes is undetectable by IP-MS. Instead, we show that H3K27ac deposited by cJUN dependent process regulates SS18/BAFs complex to AP1-containing loci and facilitate chromatin opening and gene activation. Conclusions These results reveal a rapid transfer of chromatin remodeling complexes BAF from pluripotent to somatic loci during PST, revealing a simple mechanistic aspect of cell fate control. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00827-1.
Collapse
|
19
|
Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, Cureton N, Staniszewska A, McEwen R, Fox M, Pilling J, Hopcroft P, Coker EA, Jaaks P, Garnett MJ, Isherwood B, Serra V, Davies BR, Barry ST, Lynch JT, Yusa K. AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 2022; 41:5046-5060. [PMID: 36241868 PMCID: PMC9652152 DOI: 10.1038/s41388-022-02482-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kβ inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kβi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kβi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kβi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kβi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kβ/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kβi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kβi/AKTi sensitive and resistant breast tumours.
Collapse
Affiliation(s)
- Shanade Dunn
- Wellcome Sanger Institute, Cambridge, UK
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | - Jason Yu
- Wellcome Sanger Institute, Cambridge, UK
- Molecular Biology of Metabolism Lab, The Francis Crick Institute, London, UK
| | | | | | - Urs Yelland
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Robert McEwen
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Millie Fox
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Cambridge, UK.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
21
|
Romeike M, Spach S, Huber M, Feng S, Vainorius G, Elling U, Versteeg GA, Buecker C. Transient upregulation of IRF1 during exit from naive pluripotency confers viral protection. EMBO Rep 2022; 23:e55375. [PMID: 35852463 PMCID: PMC9442322 DOI: 10.15252/embr.202255375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Stem cells intrinsically express a subset of genes which are normally associated with interferon stimulation and the innate immune response. However, the expression of these interferon-stimulated genes (ISG) in stem cells is independent from external stimuli such as viral infection. Here, we show that the interferon regulatory factor 1, Irf1, is directly controlled by the murine formative pluripotency gene regulatory network and transiently upregulated during the transition from naive to formative pluripotency. IRF1 binds to regulatory regions of a conserved set of ISGs and is required for their faithful expression upon exit from naive pluripotency. We show that in the absence of IRF1, cells exiting the naive pluripotent stem cell state are more susceptible to viral infection. Irf1 therefore acts as a link between the formative pluripotency network, regulation of innate immunity genes, and defense against viral infections during formative pluripotency.
Collapse
Affiliation(s)
- Merrit Romeike
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Stephanie Spach
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Marie Huber
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Songjie Feng
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Gintautas Vainorius
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Gjis A Versteeg
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Christa Buecker
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| |
Collapse
|
22
|
Gao C, Qi X, Gao X, Li J, Qin Y, Yin Y, Gao F, Feng T, Wu S, Du X. A Genome-Wide CRISPR Screen Identifies Factors Regulating Pluripotency Exit in Mouse Embryonic Stem Cells. Cells 2022; 11:cells11152289. [PMID: 35892587 PMCID: PMC9331787 DOI: 10.3390/cells11152289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Pluripotency maintenance and exit in embryonic stem cells is a focal topic in stem cell biology. However, the effects of screening under very stringent culture conditions (e.g., differentiation medium, no leukemia inhibitory factor, no chemical inhibitors such as PD0325901 and CHIR99021, and no feeder cells) and of prolonging culture for key factors that regulate pluripotency exit, have not yet been reported. Here, we used a genome-wide CRISPR library to perform such a screen in mouse embryonic stem cells. Naïve NANOG-GFP mESCs were first transfected with a mouse genome-wide CRISPR knockout library to obtain a mutant mESCs library, followed by screening for two months in a strict N2B27 differentiation medium. The clones that survived our stringent screening were analyzed to identify the inserted sgRNAs. In addition to identifying the enriched genes that were reported in previous studies (Socs3, Tsc1, Trp53, Nf2, Tcf7l1, Csnk1a1, and Dhx30), we found 17 unreported genes, among which Zfp771 and Olfr769 appeared to be involved in pluripotency exit. Furthermore, Zfp771 knockout ESCs showed a differentiation delay in embryonic chimera experiments, indicating Zfp771 played an important role in pluripotency exit. Our results show that stringent screening with the CRISPR library can reveal key regulators of pluripotency exit.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
| | - Xiaolan Qi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Xin Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
| | - Jin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
| | - Yumin Qin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
| | - Yunjun Yin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
| | - Fei Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
| | - Tao Feng
- Sanya Institute of China Agricultural University, Sanya 572000, China;
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
- Sanya Institute of China Agricultural University, Sanya 572000, China;
- Correspondence: (S.W.); (X.D.); Tel.: +86-10-62733075 (S.W.)
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (C.G.); (X.G.); (J.L.); (Y.Q.); (Y.Y.); (F.G.)
- Sanya Institute of China Agricultural University, Sanya 572000, China;
- Correspondence: (S.W.); (X.D.); Tel.: +86-10-62733075 (S.W.)
| |
Collapse
|
23
|
Kim SM, Kwon EJ, Kim YJ, Go YH, Oh JY, Park S, Do JT, Kim KT, Cha HJ. Dichotomous role of Shp2 for naïve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Res Ther 2022; 13:329. [PMID: 35850773 PMCID: PMC9290224 DOI: 10.1186/s13287-022-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background The requirement of the Mek1 inhibitor (iMek1) during naïve pluripotency maintenance results from the activation of the Mek1-Erk1/2 (Mek/Erk) signaling pathway upon leukemia inhibitory factor (LIF) stimulation. Methods Through a meta-analysis of previous genome-wide screening for negative regulators of naïve pluripotency, Ptpn11 (encoding the Shp2 protein, which serves both as a tyrosine phosphatase and putative adapter), was predicted as one of the key factors for the negative modulation of naïve pluripotency through LIF-dependent Jak/Stat3 signaling. Using an isogenic pair of naïve and primed mouse embryonic stem cells (mESCs), we demonstrated the differential role of Shp2 in naïve and primed pluripotency. Results Loss of Shp2 increased naïve pluripotency by promoting Jak/Stat3 signaling and disturbed in vivo differentiation potential. In sharp contrast, Shp2 depletion significantly impeded the self-renewal of ESCs under primed culture conditions, which was concurrent with a reduction in Mek/Erk signaling. Similarly, upon treatment with an allosteric Shp2 inhibitor (iShp2), the cells sustained Stat3 phosphorylation and decoupled Mek/Erk signaling, thus iShp2 can replace the use of iMek1 for maintenance of naïve ESCs. Conclusions Taken together, our findings highlight the differential roles of Shp2 in naïve and primed pluripotency and propose the usage of iShp2 instead of iMek1 for the efficient maintenance and establishment of naïve pluripotency. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02976-z.
Collapse
Affiliation(s)
- Seong-Min Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Sharf T, Kalakuntla T, J Lee D, Gokoffski KK. Electrical devices for visual restoration. Surv Ophthalmol 2022; 67:793-800. [PMID: 34487742 PMCID: PMC9241872 DOI: 10.1016/j.survophthal.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022]
Abstract
Given the rising number of patients with blindness from macular, optic nerve, and visual pathway disease, there is considerable interest in the potential of electrical stimulation devices to restore vision. Electrical devices for restoration of visual function can be grouped into three categories: (1) visual prostheses whose goal is to bypass damaged areas and directly activate downstream intact portions of the visual pathway; (2) electric field stimulation whose goal is to activate endogenous transcriptional and molecular signaling pathways to promote neuroprotection and neuro-regeneration; and (3) neuromodulation whose stimulation would resuscitate neural circuits vital to coordinating responses to visual input. In this review, we discuss these three approaches, describe advances made in the different fields, and comment on limitations and potential future directions.
Collapse
Affiliation(s)
- Tamara Sharf
- Keck School of Medicine, University of Southern California, CA, USA
| | - Tej Kalakuntla
- Keck School of Medicine, University of Southern California, CA, USA
| | - Darrin J Lee
- Department of Neurological Surgery, University of Southern California, CA, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, CA, USA.
| |
Collapse
|
25
|
Rushton MD, Saunderson EA, Patani H, Green MR, Ficz G. An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics 2022; 17:1590-1607. [PMID: 35324392 DOI: 10.1080/15592294.2022.2044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Propagation of DNA methylation through cell division relies on the recognition of methylated cytosines by UHRF1. In reprogramming of mouse embryonic stem cells to naive pluripotency (also known as ground state), despite high levels of Uhrf1 transcript, the protein is targeted for degradation by the proteasome, leading to DNA methylation loss. We have undertaken an shRNA screen to identify the signalling pathways that converge upon UHRF1 and control its degradation, using UHRF1-GFP fluorescence as readout. Many candidates we identified are key enzymes in regulation of glucose metabolism, nucleotide metabolism and Pi3K/AKT/mTOR pathway. Unexpectedly, while downregulation of all candidates we selected for validation rescued UHRF1 protein levels, we found that in some of the cases this was not sufficient to maintain DNA methylation. This has implications for development, ageing and diseased conditions. Our study demonstrates two separate processes that regulate UHRF1 protein abundance and activity.
Collapse
Affiliation(s)
- Michael D Rushton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Horizon Discovery, Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL
| | - Emily A Saunderson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemalvi Patani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Research And Development, CS Genetics Ltd, Cambridge, UK
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Huth M, Santini L, Galimberti E, Ramesmayer J, Titz-Teixeira F, Sehlke R, Oberhuemer M, Stummer S, Herzog V, Garmhausen M, Romeike M, Chugunova A, Leesch F, Holcik L, Weipoltshammer K, Lackner A, Schoefer C, von Haeseler A, Buecker C, Pauli A, Ameres SL, Smith A, Beyer A, Leeb M. NMD is required for timely cell fate transitions by fine-tuning gene expression and regulating translation. Genes Dev 2022; 36:348-367. [PMID: 35241478 PMCID: PMC8973849 DOI: 10.1101/gad.347690.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor Eif4a2 and its premature termination codon-encoding isoform (Eif4a2PTC ). NMD deficiency leads to translation of the truncated eIF4A2PTC protein. eIF4A2PTC elicits increased mTORC1 activity and translation rates and causes differentiation delays. This establishes a previously unknown feedback loop between NMD and translation initiation. Furthermore, our results show a clear hierarchy in the severity of target deregulation and differentiation phenotypes between NMD effector KOs (Smg5 KO > Smg6 KO > Smg7 KO), which highlights heterodimer-independent functions for SMG5 and SMG7. Together, our findings expose an intricate link between mRNA homeostasis and mTORC1 activity that must be maintained for normal dynamics of cell state transitions.
Collapse
Affiliation(s)
- Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Fabian Titz-Teixeira
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Robert Sehlke
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Oberhuemer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Sarah Stummer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Veronika Herzog
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Marius Garmhausen
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Merrit Romeike
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Friederike Leesch
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Laurenz Holcik
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Christian Schoefer
- Department for Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Arndt von Haeseler
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria
| | - Christa Buecker
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Stefan L Ameres
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Andreas Beyer
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| |
Collapse
|
27
|
Matsumoto K, Yoshida M. Mammalian Chemical Genomics towards Identifying Targets and Elucidating Modes-of-Action of Bioactive Compounds. Chembiochem 2021; 23:e202100561. [PMID: 34813140 DOI: 10.1002/cbic.202100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
The step of identifying target molecules and elucidating the mode of action of bioactive compounds is a major bottleneck for drug discovery from phenotypic screening. Genetic screening for genes that affect drug sensitivity or phenotypes of mammalian cultured cells is a powerful tool to obtain clues to their modes of action. Chemical genomic screening systems for comprehensively identifying such genes or genetic pathways have been established using shRNA libraries for RNA interference-mediated mRNA knockdown or sgRNA libraries for CRISPR/Cas9-mediated gene knockout. The combination of chemical genomic screening in mammalian cells with other approaches such as biochemical searches for target molecules, phenotypic profiling, and yeast genetics provides a systematic way to elucidate the mode of action by converging various pieces of information regarding target molecules, target pathways, and synthetic lethal pathways.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, 113-8657, Japan
| |
Collapse
|
28
|
Alhasan BA, Gordeev SA, Knyazeva AR, Aleksandrova KV, Margulis BA, Guzhova IV, Suvorova II. The mTOR Pathway in Pluripotent Stem Cells: Lessons for Understanding Cancer Cell Dormancy. MEMBRANES 2021; 11:858. [PMID: 34832087 PMCID: PMC8620939 DOI: 10.3390/membranes11110858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Currently, the success of targeted anticancer therapies largely depends on the correct understanding of the dormant state of cancer cells, since it is increasingly regarded to fuel tumor recurrence. The concept of cancer cell dormancy is often considered as an adaptive response of cancer cells to stress, and, therefore, is limited. It is possible that the cancer dormant state is not a privilege of cancer cells but the same reproductive survival strategy as diapause used by embryonic stem cells (ESCs). Recent advances reveal that high autophagy and mTOR pathway reduction are key mechanisms contributing to dormancy and diapause. ESCs, sharing their main features with cancer stem cells, have a delicate balance between the mTOR pathway and autophagy activity permissive for diapause induction. In this review, we discuss the functioning of the mTOR signaling and autophagy in ESCs in detail that allows us to deepen our understanding of the biology of cancer cell dormancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irina I. Suvorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (B.A.A.); (S.A.G.); (A.R.K.); (K.V.A.); (B.A.M.); (I.V.G.)
| |
Collapse
|
29
|
Doumpas N, Söderholm S, Narula S, Moreira S, Doble BW, Cantù C, Basler K. TCF/LEF regulation of the topologically associated domain ADI promotes mESCs to exit the pluripotent ground state. Cell Rep 2021; 36:109705. [PMID: 34525377 DOI: 10.1016/j.celrep.2021.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can be maintained in vitro in defined N2B27 medium supplemented with two chemical inhibitors for GSK3 and MEK (2i) and the cytokine leukemia inhibitory factor (LIF), which act synergistically to promote self-renewal and pluripotency. Here, we find that genetic deletion of the four genes encoding the TCF/LEF transcription factors confers mESCs with the ability to self-renew in N2B27 medium alone. TCF/LEF quadruple knockout (qKO) mESCs display dysregulation of several genes, including Aire, Dnmt3l, and IcosL, located adjacent to each other within a topologically associated domain (TAD). Aire, Dnmt3l, and IcosL appear to be regulated by TCF/LEF in a β-catenin independent manner. Moreover, downregulation of Aire and Dnmt3l in wild-type mESCs mimics the loss of TCF/LEF and increases mESC survival in the absence of 2iL. Hence, this study identifies TCF/LEF effectors that mediate exit from the pluripotent state.
Collapse
Affiliation(s)
- Nikolaos Doumpas
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Smarth Narula
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Steven Moreira
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Bradley W Doble
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Departments of Biochemistry and Medical Genetics & Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
SS18 regulates pluripotent-somatic transition through phase separation. Nat Commun 2021; 12:4090. [PMID: 34215745 PMCID: PMC8253816 DOI: 10.1038/s41467-021-24373-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
The transition from pluripotent to somatic states marks a critical event in mammalian development, but remains largely unresolved. Here we report the identification of SS18 as a regulator for pluripotent to somatic transition or PST by CRISPR-based whole genome screens. Mechanistically, SS18 forms microscopic condensates in nuclei through a C-terminal intrinsically disordered region (IDR) rich in tyrosine, which, once mutated, no longer form condensates nor rescue SS18−/− defect in PST. Yet, the IDR alone is not sufficient to rescue the defect even though it can form condensates indistinguishable from the wild type protein. We further show that its N-terminal 70aa is required for PST by interacting with the Brg/Brahma-associated factor (BAF) complex, and remains functional even swapped onto unrelated IDRs or even an artificial 24 tyrosine polypeptide. Finally, we show that SS18 mediates BAF assembly through phase separation to regulate PST. These studies suggest that SS18 plays a role in the pluripotent to somatic interface and undergoes liquid-liquid phase separation through a unique tyrosine-based mechanism. Emerging evidence suggests that exit from pluripotency is a regulated, rather than passive process. Here the authors identify a requirement for SS18-mediated Brg/Brahma-associated factors (BAF) chromatin remodeling complex assembly during exit from pluripotency, and that SS18 promotes BAF assembly through liquidliquid phase separation.
Collapse
|
31
|
Abstract
BACKGROUND Restoration of vision in patients blinded by advanced optic neuropathies requires technologies that can either 1) salvage damaged and prevent further degeneration of retinal ganglion cells (RGCs), or 2) replace lost RGCs. EVIDENCE ACQUISITION Review of scientific literature. RESULTS In this article, we discuss the different barriers to cell-replacement based strategies for optic nerve regeneration and provide an update regarding what progress that has been made to overcome them. We also provide an update on current stem cell-based therapies for optic nerve regeneration. CONCLUSIONS As neuro-regenerative and cell-transplantation based strategies for optic nerve regeneration continue to be refined, researchers and clinicians will need to work together to determine who will be a good candidate for such therapies.
Collapse
|
32
|
MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nat Commun 2021; 12:3034. [PMID: 34031396 PMCID: PMC8144423 DOI: 10.1038/s41467-021-23308-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Deciphering the mechanisms that control the pluripotent ground state is key for understanding embryonic development. Nonetheless, the epigenetic regulation of ground-state mouse embryonic stem cells (mESCs) is not fully understood. Here, we identify the epigenetic protein MPP8 as being essential for ground-state pluripotency. Its depletion leads to cell cycle arrest and spontaneous differentiation. MPP8 has been suggested to repress LINE1 elements by recruiting the human silencing hub (HUSH) complex to H3K9me3-rich regions. Unexpectedly, we find that LINE1 elements are efficiently repressed by MPP8 lacking the chromodomain, while the unannotated C-terminus is essential for its function. Moreover, we show that SETDB1 recruits MPP8 to its genomic target loci, whereas transcriptional repression of LINE1 elements is maintained without retaining H3K9me3 levels. Taken together, our findings demonstrate that MPP8 protects the DNA-hypomethylated pluripotent ground state through its association with the HUSH core complex, however, independently of detectable chromatin binding and maintenance of H3K9me3.
Collapse
|
33
|
Akinci E, Hamilton MC, Khowpinitchai B, Sherwood RI. Using CRISPR to understand and manipulate gene regulation. Development 2021; 148:dev182667. [PMID: 33913466 PMCID: PMC8126405 DOI: 10.1242/dev.182667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding how genes are expressed in the correct cell types and at the correct level is a key goal of developmental biology research. Gene regulation has traditionally been approached largely through observational methods, whereas perturbational approaches have lacked precision. CRISPR-Cas9 has begun to transform the study of gene regulation, allowing for precise manipulation of genomic sequences, epigenetic functionalization and gene expression. CRISPR-Cas9 technology has already led to the discovery of new paradigms in gene regulation and, as new CRISPR-based tools and methods continue to be developed, promises to transform our knowledge of the gene regulatory code and our ability to manipulate cell fate. Here, we discuss the current and future application of the emerging CRISPR toolbox toward predicting gene regulatory network behavior, improving stem cell disease modeling, dissecting the epigenetic code, reprogramming cell fate and treating diseases of gene dysregulation.
Collapse
Affiliation(s)
- Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, 07070, Turkey
| | - Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
34
|
Lackner A, Sehlke R, Garmhausen M, Giuseppe Stirparo G, Huth M, Titz-Teixeira F, van der Lelij P, Ramesmayer J, Thomas HF, Ralser M, Santini L, Galimberti E, Sarov M, Stewart AF, Smith A, Beyer A, Leeb M. Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency. EMBO J 2021; 40:e105776. [PMID: 33687089 PMCID: PMC8047444 DOI: 10.15252/embj.2020105776] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large‐scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre‐ to post‐implantation epiblast in utero. We identified 496 naïve state‐associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
Collapse
Affiliation(s)
- Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Robert Sehlke
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius Garmhausen
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giuliano Giuseppe Stirparo
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Fabian Titz-Teixeira
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Petra van der Lelij
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Henry F Thomas
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Meryem Ralser
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - A Francis Stewart
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Austin Smith
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Andreas Beyer
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
35
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
36
|
Carlini V, Gretarsson KH, Hackett JA. Genome-Scale CRISPR Screening for Regulators of Cell Fate Transitions. Methods Mol Biol 2021; 2214:91-108. [PMID: 32944905 DOI: 10.1007/978-1-0716-0958-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Knockout CRISPR screening enables the unbiased discovery of genes with a functional role in almost any cellular or molecular process of interest. The approach couples a genome-scale library of guide RNA (gRNA), the Cas9 endonuclease, and a faithful phenotypic read-out to systematically identify candidate genes via their loss-of-function effect. Here we provide a detailed description of the CRISPR screen protocol and outline how to apply it to decipher the gene networks that underlie developmental cell fate decisions. As a paradigm we use the in vitro model of cell state transition(s) from naive pluripotency to primordial germ cell (PGC) fate, exploiting the Stella-GFP:Esg1-tdTomato (SGET) mouse ESC line. The principles in this protocol can be readily adapted to characterize lineage regulators for other cell fate models and/or for other species.
Collapse
Affiliation(s)
- Valentina Carlini
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kristjan H Gretarsson
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.
| |
Collapse
|
37
|
Pryzhkova MV, Xu MJ, Jordan PW. Adaptation of the AID system for stem cell and transgenic mouse research. Stem Cell Res 2020; 49:102078. [PMID: 33202307 PMCID: PMC7784532 DOI: 10.1016/j.scr.2020.102078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The auxin-inducible degron (AID) system is becoming a widely used method for rapid and reversible degradation of target proteins. This system has been successfully used to study gene and protein functions in eukaryotic cells and common model organisms, such as nematode and fruit fly. To date, applications of the AID system in mammalian stem cell research are limited. Furthermore, standard mouse models harboring the AID system have not been established. Here we have explored the utility of the H11 safe-harbor locus for integration of the TIR1 transgene, an essential component of auxin-based protein degradation system. We have shown that the H11 locus can support constitutive and conditional TIR1 expression in mouse and human embryonic stem cells, as well as in mice. We demonstrate that the AID system can be successfully employed for rapid degradation of stable proteins in embryonic stem cells, which is crucial for investigation of protein functions in quickly changing environments, such as stem cell proliferation and differentiation. As embryonic stem cells possess unlimited proliferative capacity, differentiation potential, and can mimic organ development, we believe that these research tools will be an applicable resource to a broad scientific audience.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
De Zan E, van Stiphout R, Gapp BV, Blomen VA, Brummelkamp TR, Nijman SMB. Quantitative genetic screening reveals a Ragulator-FLCN feedback loop that regulates the mTORC1 pathway. Sci Signal 2020; 13:13/649/eaba5665. [PMID: 32934076 DOI: 10.1126/scisignal.aba5665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forward genetic screens in mammalian cell lines, such as RNAi and CRISPR-Cas9 screens, have made major contributions to the elucidation of diverse signaling pathways. Here, we exploited human haploid cells as a robust comparative screening platform and report a set of quantitative forward genetic screens for identifying regulatory mechanisms of mTORC1 signaling, a key growth control pathway that senses diverse metabolic states. Selected chemical and genetic perturbations in this screening platform, including rapamycin treatment and genetic ablation of the Ragulator subunit LAMTOR4, revealed the known core mTORC1 regulatory signaling complexes and the intimate interplay of the mTORC1 pathway with lysosomal function, validating the approach. In addition, we identified a differential requirement for LAMTOR4 and LAMTOR5 in regulating the mTORC1 pathway under fed and starved conditions. Furthermore, we uncovered a previously unknown "synthetic-sick" interaction between the tumor suppressor folliculin and LAMTOR4, which may have therapeutic implications in cancer treatment. Together, our study demonstrates the use of iterative "perturb and observe" genetic screens to uncover regulatory mechanisms driving complex mammalian signaling networks.
Collapse
Affiliation(s)
- Erica De Zan
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Ruud van Stiphout
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Bianca V Gapp
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | | | | | - Sebastian M B Nijman
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK.
| |
Collapse
|
39
|
Klofas LK, Short BP, Snow JP, Sinnaeve J, Rushing GV, Westlake G, Weinstein W, Ihrie RA, Ess KC, Carson RP. DEPDC5 haploinsufficiency drives increased mTORC1 signaling and abnormal morphology in human iPSC-derived cortical neurons. Neurobiol Dis 2020; 143:104975. [PMID: 32574724 PMCID: PMC7462127 DOI: 10.1016/j.nbd.2020.104975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 01/21/2023] Open
Abstract
Mutations in the DEPDC5 gene can cause epilepsy, including forms with and without brain malformations. The goal of this study was to investigate the contribution of DEPDC5 gene dosage to the underlying neuropathology of DEPDC5-related epilepsies. We generated induced pluripotent stem cells (iPSCs) from epilepsy patients harboring heterozygous loss of function mutations in DEPDC5. Patient iPSCs displayed increases in both phosphorylation of ribosomal protein S6 and proliferation rate, consistent with elevated mTORC1 activation. In line with these findings, we observed increased soma size in patient iPSC-derived cortical neurons that was rescued with rapamycin treatment. These data indicate that human cells heterozygous for DEPDC5 loss-of-function mutations are haploinsufficient for control of mTORC1 signaling. Our findings suggest that human pathology differs from mouse models of DEPDC5-related epilepsies, which do not show consistent phenotypic differences in heterozygous neurons, and support the need for human-based models to affirm and augment the findings from animal models of DEPDC5-related epilepsy.
Collapse
Affiliation(s)
- Lindsay K Klofas
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Brittany P Short
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P Snow
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Justine Sinnaeve
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Grant Westlake
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Will Weinstein
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin C Ess
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert P Carson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
40
|
Abstract
Human pluripotent stem cells harbor the capacity to differentiate into cells from the three embryonic germ layers, and this ability grants them a central role in modeling human disorders and in the field of regenerative medicine. Here, we review pluripotency in human cells with respect to four different aspects: (1) embryonic development, (2) transcriptomes of pluripotent cell stages, (3) genes and pathways that reprogram somatic cells into pluripotent stem cells, and finally (4) the recent identification of the human pluripotent stem cell essentialome. These four aspects of pluripotency collectively culminate in a broader understanding of what makes a cell pluripotent.
Collapse
|
41
|
Liu Q, Garcia M, Wang S, Chen CW. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells 2020; 9:cells9081888. [PMID: 32806592 PMCID: PMC7465943 DOI: 10.3390/cells9081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The development of high-throughput gene manipulating tools such as short hairpin RNA (shRNA) and CRISPR/Cas9 libraries has enabled robust characterization of novel functional genes contributing to the pathological states of the diseases. In acute myeloid leukemia (AML), these genetic screen approaches have been used to identify effector genes with previously unknown roles in AML. These AML-related genes centralize alongside the cellular pathways mediating epigenetics, signaling transduction, transcriptional regulation, and energy metabolism. The shRNA/CRISPR genetic screens also realized an array of candidate genes amenable to pharmaceutical targeting. This review aims to summarize genes, mechanisms, and potential therapeutic strategies found via high-throughput genetic screens in AML. We also discuss the potential of these findings to instruct novel AML therapies for combating drug resistance in this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Qiao Liu
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Michelle Garcia
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Pomona College, Claremont, CA 91711, USA
| | - Shaoyuan Wang
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
42
|
Zhang W, Tian Y, Gao Q, Li X, Li Y, Zhang J, Yao C, Wang Y, Wang H, Zhao Y, Zhang Q, Li L, Yu Y, Fan Y, Shuai L. Inhibition of Apoptosis Reduces Diploidization of Haploid Mouse Embryonic Stem Cells during Differentiation. Stem Cell Reports 2020; 15:185-197. [PMID: 32502463 PMCID: PMC7363743 DOI: 10.1016/j.stemcr.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Phenotypes of haploid embryonic stem cells (haESCs) are dominant for recessive traits in mice. However, one major obstacle to their use is self-diploidization in daily culture. Although haESCs maintain haploidy well by deleting p53, whether they can sustain haploidy in differentiated status and the mechanism behind it remain unknown. To address this, we induced p53-deficient haESCs into multiple differentiated lineages maintain haploid status in vitro. Haploid cells also remained in chimeric embryos and teratomas arising from p53-null haESCs. Transcriptome analysis revealed that apoptosis genes were downregulated in p53-null haESCs compared with that in wild-type haESCs. Finally, we knocked out p73, another apoptosis-related gene, and observed stabilization of haploidy in haESCs. These results indicated that the main mechanism of diploidization was apoptosis-related gene-triggered cell death in haploid cell cultures. Thus, we can derive haploid somatic cells by manipulating the apoptosis gene, facilitating genetic screens of lineage-specific development. haEpiLCs and haNSCLCs differentiated from p53-null haESCs in vitro p53-null haESCs contributed to chimeric embryos and teratoma Downregulation of apoptosis genes resulted in haploidy stabilization Deletion of p73 was also of benefit for haploidy sustenance
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Reproductive Medical Center, Department of Gynecology and Obstetrics, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yang Yu
- Reproductive Medical Center, Department of Gynecology and Obstetrics, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China.
| |
Collapse
|
43
|
Romero R, Sánchez-Rivera FJ, Westcott PMK, Mercer KL, Bhutkar A, Muir A, González Robles TJ, Lamboy Rodríguez S, Liao LZ, Ng SR, Li L, Colón CI, Naranjo S, Beytagh MC, Lewis CA, Hsu PP, Bronson RT, Vander Heiden MG, Jacks T. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. NATURE CANCER 2020; 1:589-602. [PMID: 34414377 PMCID: PMC8373048 DOI: 10.1038/s43018-020-0071-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Approximately 20-30% of human lung adenocarcinomas (LUAD) harbor loss-of-function (LOF) mutations in Kelch-like ECH Associated-Protein 1 (KEAP1), which lead to hyperactivation of the nuclear factor, erythroid 2-like 2 (NRF2) antioxidant pathway and correlate with poor prognosis1-3. We previously showed that Keap1 mutation accelerates KRAS-driven LUAD and produces a marked dependency on glutaminolysis4. To extend the investigation of genetic dependencies in the context of Keap1 mutation, we performed a druggable genome CRISPR-Cas9 screen in Keap1-mutant cells. This analysis uncovered a profound Keap1 mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), an endomembrane-associated protein with roles in autophagy regulation5, as well as a series of functionally-related genes implicated in the unfolded protein response. Targeted genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically-engineered mouse models (GEMMs) of LUAD, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a strong rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with GEMMs to identify and validate genotype-specific therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Romero
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Francisco J Sánchez-Rivera
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kim L Mercer
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Z Liao
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Sheng Rong Ng
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Leanne Li
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Caterina I Colón
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Santiago Naranjo
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Mary Clare Beytagh
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Caroline A Lewis
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Tufts University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
44
|
Michels BE, Mosa MH, Streibl BI, Zhan T, Menche C, Abou-El-Ardat K, Darvishi T, Członka E, Wagner S, Winter J, Medyouf H, Boutros M, Farin HF. Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids. Cell Stem Cell 2020; 26:782-792.e7. [PMID: 32348727 DOI: 10.1016/j.stem.2020.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is characterized by prominent genetic and phenotypic heterogeneity between patients. To facilitate high-throughput genetic testing and functional identification of tumor drivers, we developed a platform for pooled CRISPR-Cas9 screening in human colon organoids. Using transforming growth factor β (TGF-β) resistance as a paradigm to establish sensitivity and scalability in vitro, we identified optimal conditions and strict guide RNA (gRNA) requirements for screening in 3D organoids. We then screened a pan-cancer tumor suppressor gene (TSG) library in pre-malignant organoids with APC-/-;KRASG12D mutations, which were xenografted to study clonal advantages in context of a complex tumor microenvironment. We identified TGFBR2 as the most prevalent TSG, followed by known and previously uncharacterized mediators of CRC growth. gRNAs were validated in a secondary screen using unique molecular identifiers (UMIs) to adjust for clonal drift and to distinguish clone size and abundance. Together, these findings highlight a powerful organoid-based platform for pooled CRISPR-Cas9 screening for patient-specific functional genomics.
Collapse
Affiliation(s)
- Birgitta E Michels
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Faculty of Biological Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Mohammed H Mosa
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Barbara I Streibl
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tianzuo Zhan
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, 69120 Heidelberg, Germany; Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Khalil Abou-El-Ardat
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tahmineh Darvishi
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ewelina Członka
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sebastian Wagner
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jan Winter
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, 69120 Heidelberg, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, 69120 Heidelberg, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Zhu Y, Zhang J. Calcium: A New Guardian of Naive Pluripotency. Cell Stem Cell 2020; 25:169-170. [PMID: 31374195 DOI: 10.1016/j.stem.2019.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Cell Stem Cell, MacDougall et al. (2019) utilized a CRISPR mutagenesis screen to identify factors for mESC self-renewal and found that intracellular calcium and nuclear export act in naive pluripotency exit. Combined knockout of Tcf7l1 and the calcium transporter Atp2b1 enabled mESCs to self-renew in the absence of LIF and 2i.
Collapse
Affiliation(s)
- Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences & Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences & The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
46
|
Ehnes DD, Hussein AM, Ware CB, Mathieu J, Ruohola-Baker H. Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape. Exp Cell Res 2020; 389:111913. [PMID: 32084392 DOI: 10.1016/j.yexcr.2020.111913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Since epigenetic modifications are a key driver for cellular differentiation, the regulation of these modifications is tightly controlled. Interestingly, recent studies have revealed metabolic regulation for epigenetic modifications in pluripotent cells. As metabolic differences are prominent between naive (pre-implantation) and primed (post-implantation) pluripotent cells, the epigenetic changes regulated by metabolites has become an interesting topic of analysis. In this review we discuss how combinatorial metabolic activities drive the developmental progression through early pluripotent stages.
Collapse
Affiliation(s)
- D D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - A M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - C B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - J Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA.
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
47
|
Screening Genes Promoting Exit from Naive Pluripotency Based on Genome-Scale CRISPR-Cas9 Knockout. Stem Cells Int 2020; 2020:8483035. [PMID: 32089710 PMCID: PMC7023212 DOI: 10.1155/2020/8483035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Two of the main problems of stem cell and regenerative medicine are the exit of pluripotency and differentiation to functional cells or tissues. The answer to these two problems holds great value in the clinical translation of stem cell as well as regenerative medicine research. Although piling researches have revealed the truth about pluripotency maintenance, the mechanisms underlying pluripotent cell self-renewal, proliferation, and differentiation into specific cell lineages or tissues are yet to be defined. To this end, we took full advantage of a novel technology, namely, the genome-scale CRISPR-Cas9 knockout (GeCKO). As an effective way of introducing targeted loss-of-function mutations at specific sites in the genome, GeCKO is able to screen in an unbiased manner for key genes that promote exit from pluripotency in mouse embryonic stem cells (mESCs) for the first time. In this study, we successfully established a model based on GeCKO to screen the key genes in pluripotency withdrawal. Our strategies included lentiviral package and infection technology, lenti-Cas9 gene knockout technology, shRNA gene knockdown technology, next-generation sequencing, model-based analysis of genome-scale CRISPR-Cas9 knockout (MAGeCK analysis), GO analysis, and other methods. Our findings provide a novel approach for large-scale screening of genes involved in pluripotency exit and offer an entry point for cell fate regulation research.
Collapse
|
48
|
Gokoffski KK, Peng M, Alas B, Lam P. Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions. Curr Opin Neurol 2020; 33:93-105. [PMID: 31809331 PMCID: PMC8153234 DOI: 10.1097/wco.0000000000000777] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Optic neuropathies refer to a collection of diseases in which retinal ganglion cells (RGCs), the specialized neuron of the retina whose axons make up the optic nerve, are selectively damaged. Blindness secondary to optic neuropathies is irreversible as RGCs do not have the capacity for self-renewal and have a limited capacity for self-repair. Numerous strategies are being developed to either prevent further RGC degeneration or replace the cells that have degenerated. In this review, we aim to discuss known limitations to regeneration in central nervous system (CNS), followed by a discussion of previous, current, and future strategies for optic nerve neuroprotection as well as approaches for neuro-regeneration, with an emphasis on developments in the past two years. RECENT FINDINGS Neuro-regeneration in the CNS is limited by both intrinsic and extrinsic factors. Environmental barriers to axon regeneration can be divided into two major categories: failure to clear myelin and formation of glial scar. Although inflammatory scars block axon growth past the site of injury, inflammation also provides important signals that activate reparative and regenerative pathways in RGCs. Neuroprotection with neurotrophins as monotherapy is not effective at preventing RGC degeneration likely secondary to rapid clearance of growth factors. Novel approaches involve exploiting different technologies to provide sustained delivery of neurotrophins. Other approaches include application of anti-apoptosis molecules and anti-axon retraction molecules. Although stem cells are becoming a viable option for generating RGCs for cell-replacement-based strategies, there are still many critical barriers to overcome before they can be used in clinical practice. Adjuvant treatments, such as application of electrical fields, scaffolds, and magnetic field stimulation, may be useful in helping transplanted RGCs extend axons in the proper orientation and assist with new synapse formation. SUMMARY Different optic neuropathies will benefit from neuro-protective versus neuro-regenerative approaches. Developing clinically effective treatments for optic nerve disease will require a collaborative approach that not only employs neurotrophic factors but also incorporates signals that promote axonogenesis, direct axon growth towards intended targets, and promote appropriate synaptogenesis.
Collapse
Affiliation(s)
- Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
49
|
Yang L, Zhu Y, Yu H, Cheng X, Chen S, Chu Y, Huang H, Zhang J, Li W. scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol 2020; 21:19. [PMID: 31980032 PMCID: PMC6979386 DOI: 10.1186/s13059-020-1928-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
We present scMAGeCK, a computational framework to identify genomic elements associated with multiple expression-based phenotypes in CRISPR/Cas9 functional screening that uses single-cell RNA-seq as readout. scMAGeCK outperforms existing methods, identifies genes and enhancers with known and novel functions in cell proliferation, and enables an unbiased construction of genotype-phenotype network. Single-cell CRISPR screening on mouse embryonic stem cells identifies key genes associated with different pluripotency states. Applying scMAGeCK on multiple datasets, we identify key factors that improve the power of single-cell CRISPR screening. Collectively, scMAGeCK is a novel tool to study genotype-phenotype relationships at a single-cell level.
Collapse
Affiliation(s)
- Lin Yang
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Biochemistry & Molecular Medicine, George Washington University, 2300 Eye St., NW, Washington, DC, 20037, USA
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, Zhejiang, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Sitong Chen
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Biochemistry & Molecular Medicine, George Washington University, 2300 Eye St., NW, Washington, DC, 20037, USA
| | - Yulan Chu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - He Huang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA. .,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
50
|
de Dieuleveult M, Miotto B. Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives. Bioessays 2020; 42:e1900129. [PMID: 31967345 DOI: 10.1002/bies.201900129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Indexed: 11/09/2022]
Abstract
Ubiquitination plays a central role in the regulation of stem cell self-renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra-cellular trafficking; and how it affects cell metabolism, the micro-environment, and chromatin organization is discussed. Finally, unsolved issues in the field are emphasized and will need to be tackled in order to fully understand the contribution of ubiquitin dynamics to stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| | - Benoit Miotto
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| |
Collapse
|