1
|
Šardzíková S, Gajewska M, Gałka N, Štefánek M, Baláž A, Garaiová M, Holič R, Świderek W, Šoltys K. Can longer lifespan be associated with gut microbiota involvement in lipid metabolism? FEMS Microbiol Ecol 2024; 100:fiae135. [PMID: 39354675 PMCID: PMC11503954 DOI: 10.1093/femsec/fiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Biological aging is linked to altered body composition and reduced neuroactive steroid hormones like dehydroepiandrosterone sulfate (DHEAS), which can stimulate the GABA signaling pathway via gut microbiota. Our study examined the association of gut microbiota with lifespan in mice through comprehensive analysis of its composition and functional involvement in cholesterol sulfate, a precursor of DHEAS, metabolism. We used 16S rRNA and metagenomic sequencing, followed by metabolic pathway prediction and thin layer chromatography and MALDI-TOF cholesterol sulfate identification. Significant increases in bacteria such as Bacteroides, typical for long-lived and Odoribacter and Colidextribacter, specific for short-lived mice were detected. Furthermore, for males (Rikenella and Alloprevotella) and females (Lactobacillus and Bacteroides), specific bacterial groups emerged as predictors (AUC = 1), highlighting sex-specific patterns. Long-lived mice showed a strong correlation of Bacteroides (0.918) with lipid and steroid hormone metabolism, while a negative correlation of GABAergic synapse with body weight (-0.589). We found that several Bacteroides species harboring the sulfotransferase gene and gene cluster for sulfonate donor synthesis are involved in converting cholesterol to cholesterol sulfate, significantly higher in the feces of long-lived individuals. Overall, we suggest that increased involvement of gut bacteria, mainly Bacteroides spp., in cholesterol sulfate synthesis could ameliorate aging through lipid metabolism.
Collapse
Affiliation(s)
- Sára Šardzíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Marta Gajewska
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Norbert Gałka
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia
| | - Martina Garaiová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Wiesław Świderek
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
2
|
Li Z, Gong R, Chu H, Zeng J, Chen C, Xu S, Hu L, Gao W, Zhang L, Yuan H, Cheng Z, Wang C, Du M, Zhu Q, Zhang L, Rong L, Hu X, Yang L. A universal plasma metabolites-derived signature predicts cardiovascular disease risk in MAFLD. Atherosclerosis 2024; 392:117526. [PMID: 38581738 DOI: 10.1016/j.atherosclerosis.2024.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is a novel concept proposed in 2020, which is more practical for identifying patients with fatty liver disease with high risk of disease progression. Fatty liver is a driver for extrahepatic complications, particularly cardiovascular diseases (CVD). Although the risk of CVD in MAFLD could be predicted by carotid ultrasound test, a very early stage prediction method before the formation of pathological damage is still lacking. METHODS Stool microbiomes and plasma metabolites were compared across 196 well-characterized participants encompassing normal controls, simple MAFLD patients, MAFLD patients with carotid artery pathological changes, and MAFLD patients with diagnosed coronary artery disease (CAD). 16S rDNA sequencing data and untargeted metabolomic profiles were interrogatively analyzed using differential abundance analysis and random forest (RF) machine learning algorithm to identify discriminatory gut microbiomes and metabolomic. RESULTS Characteristic microbial changes in MAFLD patients with CVD risk were represented by the increase of Clostridia and Firmicutes-to-Bacteroidetes ratios. Faecalibacterium was negatively correlated with mean-intima-media thickness (IMT), TC, and TG. Megamonas, Bacteroides, Parabacteroides, and Escherichia were positively correlated with the exacerbation of pathological indexes. MAFLD patients with CVD risk were characterized by the decrease of lithocholic acid taurine conjugate, and the increase of ethylvanillin propylene glycol acetal, both of which had close relationship with Ruminococcus and Gemmiger. Biotin l-sulfoxide had positive correlation with mean-IMT, TG, and weight. The general auxin pesticide beta-naphthoxyacetic acid and the food additive glucosyl steviol were both positively correlated with the increase of mean-IMT. The model combining the metabolite signatures with 9 clinical parameters accurately distinguished MAFLD with CVD risk in the proband and validation cohort. It was found that citral was the most important discriminative metabolite marker, which was validated by both in vitro and in vivo experiments. CONCLUSIONS Simple MAFLD patients and MAFLD patients with CVD risk had divergent gut microbes and plasma metabolites. The predictive model based on metabolites and 9 clinical parameters could effectively discriminate MAFLD patients with CVD risk at a very early stage.
Collapse
Affiliation(s)
- Zhonglin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Rui Gong
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Junchao Zeng
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Sanping Xu
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Li Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Yuan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Cheng Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Meng Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Qingjing Zhu
- Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Wuhan Medical Treatment Centre, Wuhan, 430070, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lin Rong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xiaoqing Hu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
3
|
Shimizu I. Exploration of New Therapies for Heart Failure Targeting Age-Related Mechanisms. Circ J 2024; 88:626-630. [PMID: 37438143 DOI: 10.1253/circj.cj-23-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Evidence indicates a role of cellular senescence and systemic insulin resistance (hyperinsulinemia) in the pathogenesis of age-related cardiovascular-metabolic disorders, including heart failure, atherosclerotic diseases, obesity, and diabetes. "Metabolic remodeling" is one of the keywords for aging research, and studies with brown adipose tissue have shown that maintaining the homeostasis of this organ is crucial to suppressing the progression of pathologies in obesity and heart failure. The mechanisms contributing to the synchronization of aging (sync-aging) are mysterious and interesting. "Senometabolite" or "senoprotein" are defined as circulating molecules that have causal roles in sync-aging, which requires the establishment of new concepts: age-related fibrotic disorders (A-FiDs), and senometabolite-related disorders (SRDs). Globally, researchers are active in comprehensive and conclusive studies targeting age-related circulating molecules. Recently, the senolytic approach opened a new avenue for aging research. Senolysis, mediated through a genetic/pharmacologic/vaccination approach, reversed aging and pathologies in age-related diseases. Suppression of prosenescent molecules (senocules) and senolysis, the specific depletion of senescent cells, will become next-generation therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| |
Collapse
|
4
|
Xue L, Sun J, Sun Y, Wang Y, Zhang K, Fan M, Qian H, Li Y, Wang L. Maternal Brown Rice Diet during Pregnancy Promotes Adipose Tissue Browning in Offspring via Reprogramming PKA Signaling and DNA Methylation. Mol Nutr Food Res 2024:e2300861. [PMID: 38566521 DOI: 10.1002/mnfr.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
SCOPE Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Wang D, Deng Y, Zhao L, Wang K, Wu D, Hu Z, Liu X. GABA and fermented litchi juice enriched with GABA promote the beneficial effects in ameliorating obesity by regulating the gut microbiota in HFD-induced mice. Food Funct 2023; 14:8170-8185. [PMID: 37466048 DOI: 10.1039/d2fo04038g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gamma-aminobutyric acid (GABA) dietary intervention is considered to have therapeutic potential against obesity. Microbial enrichment is an effective strategy to naturally and safely enhance GABA production in food. As litchi is "the king of GABA" in fruits, the retention or enrichment of its content during processing has been a key issue in the litchi industry. This study aimed to investigate the potential of GABA and fermented litchi juice enriched with GABA (FLJ) to protect against obesity in a high-fat diet (HFD) mouse model. Supplementation of GABA and FLJ displayed an anti-obesogenic effect by attenuating body weight gain, fat accumulation, and oxidative damage, and improving the serum lipid profile and hepatic function. Sequencing (16S rRNA) of fecal samples indicated that GABA and FLJ intervention displayed different regulatory effects on HFD-induced gut microbiota dysbiosis at different taxonomic levels. The microbial diversity, the relative abundance of Firmicutes and Bacteroidetes as well as the F/B ratio of GABA and FLJ groups were reversed compared to those of the HFD-induced mice. Our finding broadens the potential mechanisms by which GABA regulates gut flora in the amelioration of obesity and provides guidance for developing FLJ as a functional food to prevent obesity.
Collapse
Affiliation(s)
- Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yani Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dongmei Wu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Cai H, Li X, Li D, Liu W, Han Y, Xu X, Yang P, Meng K. Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods 2023; 12:3034. [PMID: 37628033 PMCID: PMC10453537 DOI: 10.3390/foods12163034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a widely available non-protein amino acid whose physiological importance goes beyond its role as an inhibitory neurotransmitter in mammals. The GABA synthesis ability of ten strains of Lactiplantibacillus plantarum was screened. They produced GABA ranging from 48.19 ± 3.44 to 100.75 ± 1.63 mg/L at 24 h-cultivation. Among them, Lp. plantarum FRT7 showed the highest GABA production. Therefore, FRT7 was chosen for GABA yield optimization. A one-factor-at-a-time strategy analysis of the GABA yield of FRT7 was performed, including the culture temperature, incubation time, inoculum volume, initial pH, the initial amount of monosodium glutamate (MSG), and pyridoxal 5'-phosphate (PLP) concentration, based on which the response surface methodology (RSM) was performed. After being cultured in an MRS culture medium supplemented with 3% MSG and 2 mmol/L of PLP at 40 °C with an initial pH of 7.0 for 48 h, the GABA reached a maximum yield of 1158.6 ± 21.22 mg/L. The results showed the experimental value of the GABA yield was in good agreement with the predicted values. Furthermore, the results from the RSM also indicated that the initial MSG addition, PLP concentration, and incubation time were significant variables. These results suggest that Lp. plantarum FRT7 has the potential to be a health-beneficial probiotic with commercial capabilities.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Xuan Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Daojie Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Weiwei Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Yunsheng Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Xin Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| |
Collapse
|
7
|
Shu H, Zhang J, Cheng D, Zhao X, Ma Y, Zhang C, Zhang Y, Jia Z, Liu Z. The Role of Proton-Coupled Amino Acid Transporter 2 (SLC36A2) in Cold-Induced Thermogenesis of Mice. Nutrients 2023; 15:3552. [PMID: 37630739 PMCID: PMC10458080 DOI: 10.3390/nu15163552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Brown adipocytes mainly utilize glucose and fatty acids to produce energy, which play key roles in thermogenesis. Furthermore, brown adipocytes also utilize other substrates, such as amino acids, for energy expenditure in various conditions. Here, we report the new physiological roles of proton-coupled amino acid transporters, SLC36A2 and SLC36A3, on global energy metabolism. The relative mRNA expression levels of both Slc36a2 and Slc36a3 were all highest in brown adipose tissue. We then generated global Slc36a2 and Slc36a3 knockout mice to investigate their functions in metabolism. Neither loss of Slc36a2 nor Slc36a3 affected the body weight and body composition of the mice. Slc36a2 knockout mice exhibited increased oxygen consumption during the daytime. After cold treatment, inhibition of Slc36a2 significantly decreased the mass of brown adipose tissue compared to wildtype mice, while it lowered the expression level of Cpt1a. Moreover, the serum lipid levels and liver mass were also decreased in Slc36a2 knockout mice after cold treatment. On the contrary, Slc36a3 knockout impaired glucose tolerance and up-regulated serum LDL-cholesterol concentration. Thus, SLC36A2 and SLC36A3 play central and different roles in the energy metabolism of the mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou 215123, China; (H.S.); (J.Z.); (Y.M.); (Y.Z.)
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou 215123, China; (H.S.); (J.Z.); (Y.M.); (Y.Z.)
| |
Collapse
|
8
|
Kwon I, Talib NF, Zhu J, Yang HI, Kim KS. Effects of aging-induced obesity on the transcriptional expression of adipogenesis and thermogenic activity in the gonadal white adipose, brown adipose, and skeletal muscle tissues. Phys Act Nutr 2023; 27:39-49. [PMID: 37583071 PMCID: PMC10440178 DOI: 10.20463/pan.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Aging is closely associated with chronic metabolic diseases, such as obesity, which lead to increased adiposity, skeletal muscle wasting, and imbalanced cellular energy metabolism. However, transcriptional profiles representing energy imbalances in aging-induced obesity are not fully understood. Thus, this study aimed to investigate the candidate genes predominantly regulated in aging-related obesity in spontaneously aged mice. METHODS Male C57BL/6J mice were divided into three age groups according to age: 2- (young), 12- (middle-aged), and 24- (old) months. Body weight and body composition parameters were measured in all mice. Gonadal white adipose tissue (gWAT), brown adipose tissue (BAT), and skeletal muscle (SM) were dissected and weighed. The target tissues were assessed using biochemical and histological assays. RESULTS Aging-induced obesity increased adipose mass and decreased SM weight through processes of adipocyte hypertrophy; however, recruitment of modulating adipogenesis-inducing transcription factors did not occur. Among adipokines, leptin level was greatly increased in the gWAT during aging. Interestingly, the β2-adrenergic receptor had a higher affinity than the β3-adrenergic receptor in aging-induced obesity. For the thermogenic regulation through β-adrenergic receptors (β-ARs), a declined uncoupling protein-1 (UCP-1) in the BAT was relevant to aging-induced obesity. CONCLUSION Aging-induced obesity increases leptin levels in adipocytes and decreases UCP-1 in BAT through β-ARs, according to transcriptional gene profiling. WAT browning increases energy expenditure due to exercise training adaptations. Further research is needed to discover more effective methods, such as exercise, against aging-induced obesity.
Collapse
Affiliation(s)
- Insu Kwon
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - JunShu Zhu
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-In Yang
- Division of Rheumatology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
9
|
Rafiq T, Stearns JC, Shanmuganathan M, Azab SM, Anand SS, Thabane L, Beyene J, Williams NC, Morrison KM, Teo KK, Britz-McKibbin P, de Souza RJ. Integrative multiomics analysis of infant gut microbiome and serum metabolome reveals key molecular biomarkers of early onset childhood obesity. Heliyon 2023; 9:e16651. [PMID: 37332914 PMCID: PMC10272340 DOI: 10.1016/j.heliyon.2023.e16651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Evidence supports a complex interplay of gut microbiome and host metabolism as regulators of obesity. The metabolic phenotype and microbial metabolism of host diet may also contribute to greater obesity risk in children early in life. This study aimed to identify features that discriminated overweight/obese from normal weight infants by integrating gut microbiome and serum metabolome profiles. This prospective analysis included 50 South Asian children living in Canada, selected from the SouTh Asian biRth cohorT (START). Serum metabolites were measured by multisegment injection-capillary electrophoresis-mass spectrometry and the relative abundance of bacterial 16S rRNA gene amplicon sequence variant was evaluated at 1 year. Cumulative body mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated from birth to 3 years as the total area under the growth curve (AUC). BMIAUC and/or SSFAUC >85th percentile was used to define overweight/obesity. Data Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO) was used to identify discriminant features associated with childhood overweight/obesity. The associations between identified features and anthropometric measures were examined using logistic regression. Circulating metabolites including glutamic acid, acetylcarnitine, carnitine, and threonine were positively, whereas γ-aminobutyric acid (GABA), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were negatively associated with childhood overweight/obesity. The abundance of the Pseudobutyrivibrio and Lactobacillus genera were positively, and Clostridium sensu stricto 1 and Akkermansia were negatively associated with childhood overweight/obesity. Integrative analysis revealed that Akkermansia was positively whereas Lactobacillus was inversely correlated with GABA and SDMA, and Pseudobutyrivibrio was inversely correlated with GABA. This study provides insights into metabolic and microbial signatures which may regulate satiety, energy metabolism, inflammatory processes, and/or gut barrier function, and therefore, obesity trajectories in childhood. Understanding the functional capacity of these molecular features and potentially modifiable risk factors such as dietary exposures early in life may offer a novel approach for preventing childhood obesity.
Collapse
Affiliation(s)
- Talha Rafiq
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Jennifer C. Stearns
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sandi M. Azab
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pharmacognosy, Alexandria University, Alexandria 21521, Egypt
| | - Sonia S. Anand
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biostatistics Unit, Father Sean O’Sullivan Research Centre, The Research Institute, St Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
- Faculty of Health Sciences, University of Johannesburg, Johannesburg 524, South Africa
| | - Joseph Beyene
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | - Katherine M. Morrison
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Koon K. Teo
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Russell J. de Souza
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Di Giorgio NP, Bizzozzero-Hiriart M, Surkin PN, Repetto E, Bonaventura MM, Tabares FN, Bourguignon NS, Converti A, Gomez JMR, Bettler B, Lux-Lantos V. Deletion of GABAB receptors from Kiss1 cells affects glucose homeostasis without altering reproduction in male mice. Am J Physiol Endocrinol Metab 2023; 324:E314-E329. [PMID: 36652400 DOI: 10.1152/ajpendo.00129.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kisspeptin and γ-amino butyric acid (GABA), synthesized in the central nervous system, are critical for reproduction. Both are also expressed in peripheral organs/tissues critical to metabolic control (liver/pancreas/adipose). Many kisspeptin neurons coexpress GABAB receptors (GABABR) and GABA controls kisspeptin expression and secretion. We developed a unique mouse lacking GABABR exclusively from kisspeptin cells/neurons (Kiss1-GABAB1KO) to evaluate the impact on metabolism/reproduction. We confirmed selective deletion of GABABR from Kiss1 cells in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPV/PeN; immunofluorescence and PCR) and arcuate nucleus (ARC), medial amygdala (MeA), pituitary, liver, and testes (PCR). Young Kiss1-GABAB1KO males were fertile, with normal LH and testosterone. Kiss1 expression was similar between genotypes in AVPV/PeN, ARC, MeA, bed nucleus of the stria terminalis (BNST), and peripheral organs (testis, liver, pituitary). Kiss1-GABAB1KO males presented higher fasted glycemia and insulin levels, an impaired response to a glucose overload, reduced insulin sensitivity, and marked insulin resistance. Interestingly, when Kiss1-GABAB1KO males got older (9 mo old) their body weight (BW) increased, in part due to an increase in white adipose tissue (WAT). Old Kiss1-GABAB1KO males showed higher fasted insulin, increased pancreatic insulin content, insulin resistance, and significantly decreased pancreatic kisspeptin levels. In sum, lack of GABABR specifically in Kiss1 cells severely impacts glucose homeostasis in male mice, reinforcing kisspeptin involvement in metabolic regulation. These alterations in glucose homeostasis worsened with aging. We highlight the impact of GABA through GABABR in the regulation of the pancreas kisspeptin system in contrast to liver kisspeptin that was not affected.NEW & NOTEWORTHY We developed a unique mouse lacking GABAB receptors specifically in Kiss1 cells to evaluate the impact on reproduction and metabolism. Knockout males showed a severe impact on glucose homeostasis, which worsened with aging. These results reinforce the proposed kisspeptin involvement in metabolic regulation and highlight the impact of GABA through GABABR in the regulation of the peripheral pancreas kisspeptin system.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Pablo N Surkin
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Esteban Repetto
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María M Bonaventura
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia N Tabares
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Ayelén Converti
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Juan M Riaño Gomez
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Khudyakov JI, Allen KN, Crocker DE, Trost NS, Roberts AH, Pirard L, Debier C, Piotrowski ER, Vázquez-Medina JP. Comprehensive molecular and morphological resolution of blubber stratification in a deep-diving, fasting-adapted seal. Front Physiol 2022; 13:1057721. [PMID: 36589428 PMCID: PMC9795062 DOI: 10.3389/fphys.2022.1057721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Blubber is a modified subcutaneous adipose tissue in marine mammals that provides energy storage, thermoregulation, hydrodynamic locomotion, and buoyancy. Blubber displays vertical stratification by lipid content, fatty acid composition, and vascularization, leading to the assumption that deeper blubber layers are metabolically active, while superficial layers are mainly structural and thermoregulatory. However, few studies have examined functional stratification of marine mammal blubber directly, especially in pinnipeds. We characterized morphological and transcriptional differences across blubber layers in the northern elephant seal, a deep-diving and fasting-adapted phocid. We collected blubber from seals early in their fasting period and divided blubber cores into three similarly sized portions. We hypothesized that the innermost blubber portion would have higher 1) heterogeneity in adipocyte size, 2) microvascular density, and 3) expression of genes associated with metabolism and hormone signaling than outer blubber. We found that adipocyte area and variance increased from outermost (skin-adjacent) to innermost (muscle-adjacent) blubber layers, suggesting that inner blubber has a higher capacity for lipid storage and turnover than outer blubber. Inner blubber had a higher proportion of CD144+ endothelial cells, suggesting higher microvascular density. In contrast, outer blubber had a higher proportion of CD4+ immune cells than inner blubber, suggesting higher capacity for response to tissue injury. Transcriptome analysis identified 61 genes that were differentially expressed between inner and outer blubber layers, many of which have not been studied previously in marine mammals. Based on known functions of these genes in other mammals, we suggest that inner blubber has potentially higher 1) adipogenic capacity, 2) cellular diversity, and 3) metabolic and neuroendocrine signaling activity, while outer blubber may have higher 1) extracellular matrix synthesis activity and 2) responsiveness to pathogens and cell stressors. We further characterized expression of nine genes of interest identified by transcriptomics and two adipokines with higher precision across blubber layers using targeted assays. Our study provides functional insights into stratification of blubber in marine mammals and a molecular key, including CD144, CD4, HMGCS2, GABRG2, HCAR2, and COL1A2, for distinguishing blubber layers for physiological and functional studies in seals.
Collapse
Affiliation(s)
- J. I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States,*Correspondence: J. I. Khudyakov,
| | - K. N. Allen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - D. E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, United States
| | - N. S. Trost
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - A. H. Roberts
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - L. Pirard
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - C. Debier
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - E. R. Piotrowski
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - J. P. Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
12
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Secreted immune metabolites that mediate immune cell communication and function. Trends Immunol 2022; 43:990-1005. [PMID: 36347788 DOI: 10.1016/j.it.2022.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Metabolites are emerging as essential factors for the immune system that are involved in both metabolic circuits and signaling cascades. Accumulated evidence suggests that altered metabolic programs initiated by the activation and maturation of immune cell types are accompanied by the delivery of various metabolites into the local environment. We propose that, in addition to protein/peptide ligands, secreted immune metabolites (SIMets) are essential components of immune communication networks that fine-tune immune responses under homeostatic and pathological conditions. We summarize recent advances in our understanding of SIMets and discuss the potential mechanisms by which some metabolites engage in immunological responses through receptor-, transporter-, and post-translational-mediated regulation. These insights may contribute to understanding physiology and developing effective therapeutics for inflammatory and immune-mediated diseases.
Collapse
|
14
|
Zhao S, Guo J, Xue H, Meng J, Xie D, Liu X, Yu Q, Zhong H, Jiang P. Systematic impacts of fluoride exposure on the metabolomics of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113888. [PMID: 35872488 DOI: 10.1016/j.ecoenv.2022.113888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is widely present in the environment. Excessive fluoride exposure leads to fluorosis, which has become a global public health problem and will cause damage to various organs and tissues. Only a few studies focus on serum metabolomics, and there is still a lack of systematic metabolomics associated with fluorosis within the main organs. Therefore, in the current study, a non-targeted metabolomics method using gas chromatography-mass spectrometry (GC-MS) was used to research the effects of fluoride exposure on metabolites in different organs, to uncover potential biomarkers and study whether the affected metabolic pathways are related to the mechanism of fluorosis. Male Sprague-Dawley rats were randomly divided into two groups: a control group and a fluoride exposure group. GC-MS technology was used to identify metabolites. Multivariate statistical analysis identified 16, 24, 20, 20, 24, 13, 7, and 13 differential metabolites in the serum, liver, kidney, heart, hippocampus, cortex, kidney fat, and brown fat, respectively, in the two groups of rats. Fifteen metabolic pathways were affected, involving toxic mechanisms such as oxidative stress, mitochondrial damage, inflammation, and fatty acid, amino acid and energy metabolism disorders. This study provides a new perspective on the understanding of the mechanism of toxicity associated with sodium fluoride, contributing to the prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Shiyuan Zhao
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Jinxiu Guo
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Junjun Meng
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou 277500, China.
| | - Xi Liu
- Department of Pharmacy, Linfen People's Hospital, Linfen 041000, China.
| | - Qingqing Yu
- Department of Oncology, Jining First People's Hospital, Jining Medical University, Jining 272000, China; Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Science, Ocean University of China, Qingdao 266003, China.
| | - Haitao Zhong
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Pei Jiang
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
15
|
Choi M, Mukherjee S, Yun JW. Colchicine stimulates browning via antagonism of GABA receptor B and agonism of β3-adrenergic receptor in 3T3-L1 white adipocytes. Mol Cell Endocrinol 2022; 552:111677. [PMID: 35598717 DOI: 10.1016/j.mce.2022.111677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Colchicine has been used for therapeutic purposes and has attracted considerable attention because of its association with tubulin and the inhibition of small tubular polymerization. Although several studies have examined the possible preventive role of colchicine in metabolic diseases, its role in adipocytes is largely unknown. This study examined the novel functional role of colchicine in adipocytes demonstrating that colchicine stimulates browning in cultured white adipocytes. Colchicine stimulates browning by increasing the brown- and beige fat-specific markers in 3T3-L1 white adipocytes. Interestingly, colchicine decreased the expression of the main lipolytic proteins (ATGL, p-HSL) while it activated Ces3, suggesting a possibility for supplying essential fatty acids for inducing thermogenesis. Molecular docking analysis showed that colchicine has a strong affinity against GABA-BR and β3-AR, and its binding activity with GABA-BR (-26.52 kJ/mol) was stronger than β3-AR (-20.71 kJ/mol). Mechanistic studies were conducted by treating the cells separately with agonists and antagonists of GABA-BR and β3-AR to understand the molecular mechanism underlying the browning effect of colchicine. The results showed that colchicine stimulates browning via the antagonism of GABA-BR and the agonism of β3-AR in 3T3-L1 white adipocytes. The colchicine-mediated activation of β3-AR stimulated the PKA/p38 MAPK signaling pathway, where consequently ATF2 acted as a positive regulator, but AFT4 was a negative regulator for the induction of browning.
Collapse
Affiliation(s)
- MinJi Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Laboratory of Metabolic Signaling,Institute of Bioengineering, School of Life Sciences, EPFL, CH-1015 Lausanne, Switzerland.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
16
|
Zhang L, Yue Y, Wang X, Dai W, Piao C, Yu H. Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess Biosyst Eng 2022; 45:1111-1123. [PMID: 35179639 DOI: 10.1007/s00449-022-02702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
γ-Aminobutyric acid (GABA) is a non-protein amino acid with a variety of physiological functions. Recently, yeast Kluyveromyces marxianus strains involved in the catabolism and anabolism of GABA can be used as a microbial platform for GABA production. Okara, rich in nutrients, can be used as a low-cost fermentation substrate for the production of functional materials. This study first proved the advantages of the okara medium to produce GABA by K. marxianus C21 when L-glutamate (L-Glu) or monosodium glutamate (MSG) is the substrate. The highest production of GABA was obtained with 4.31 g/L at optimization condition of culture temperature 35 °C, fermentation time 60 h, and initial pH 4.0. Furthermore, adding peptone significantly increased the GABA production while glucose and vitamin B6 had no positive impact on GABA production. This research provided a powerful new strategy of GABA production by K. marxianus C21 fermentation and is expected to be widely utilized in the functional foods industry to increase GABA content for consumers as a daily supplement as suggested.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Yang Yue
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China.
| |
Collapse
|
17
|
Yoshida Y, Shimizu I, Hsiao YT, Suda M, Katsuumi G, Seki M, Suzuki Y, Okuda S, Soga T, Minamino T. Differing impact of phosphoglycerate mutase 1-deficiency on brown and white adipose tissue. iScience 2022; 25:104268. [PMID: 35521515 PMCID: PMC9065309 DOI: 10.1016/j.isci.2022.104268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
Brown adipose tissue (BAT) is a metabolically active organ that contributes to the thermogenic response to cold exposure. In addition, other thermogenic cells termed beige adipocytes are generated in white adipose tissue (WAT) by cold exposure. Although activation of brown/beige adipose tissue is associated with mobilization of both glucose and lipids, few studies have focused on the role of glycolytic enzymes in regulating adipose tissue function. We generated mouse models with specific deletion of the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) from adipose tissue. Deletion of Pgam1 from both BAT and WAT promoted whitening of BAT with beiging of visceral WAT, whereas deletion of Pgam1 from BAT alone led to whitening of BAT without beiging of WAT. Our results demonstrate a potential role of glycolytic enzymes in beiging of visceral WAT and suggest that PGAM1 would be a novel therapeutic target in obesity and diabetes. Pgam1 deletion leads to whitening of brown adipose tissue Pgam1 deletion promotes beiging of visceral white adipose tissue (WAT) Pgam1 deletion-induced beiging is associated with increased levels of amino acids
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yung-Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
18
|
Huang Y, Zhou JH, Zhang H, Canfran-Duque A, Singh AK, Perry RJ, Shulman GI, Fernandez-Hernando C, Min W. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. J Clin Invest 2022; 132:148852. [PMID: 35202005 PMCID: PMC9057632 DOI: 10.1172/jci148852] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/23/2022] [Indexed: 02/03/2023] Open
Abstract
Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.
Collapse
Affiliation(s)
- Yanrui Huang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology
| | - Jenny H Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology
| | - Alberto Canfran-Duque
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Comparative Medicine, and
| | - Abhishek K Singh
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Comparative Medicine, and
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernandez-Hernando
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology.,Interdepartmental Program in Vascular Biology and Therapeutics, Department of Comparative Medicine, and
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology
| |
Collapse
|
19
|
Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, Durand S, Bourgin M, Aprahamian F, Nirmalathasan N, Donne R, Desdouets C, Sola MS, Kotta K, Montégut L, Lambertucci F, Surdez D, Sandrine G, Delattre O, Maiuri MC, Bravo-San Pedro JM, Martins I, Kroemer G. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABA A receptor. Cell Death Dis 2022; 13:356. [PMID: 35436993 PMCID: PMC9016078 DOI: 10.1038/s41419-022-04834-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.
Collapse
Affiliation(s)
- Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Valentina Sica
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Romain Donne
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | | | - Konstantina Kotta
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Grossetête Sandrine
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005, Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
20
|
Manigandan S, Yun JW. Loss of cytoplasmic FMR1-interacting protein 2 (CYFIP2) induces browning in 3T3-L1 adipocytes via repression of GABA-BR and activation of mTORC1. J Cell Biochem 2022; 123:863-877. [PMID: 35233844 DOI: 10.1002/jcb.30231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/05/2022] [Accepted: 02/13/2022] [Indexed: 11/11/2022]
Abstract
Obesity and related metabolic disorders are epidemic diseases. Promoting thermogenesis and a functional increase in the browning of white adipocytes may counteract obesity. On the other hand, the molecular mechanism that regulates brown and beige fat-mediated thermogenesis is unclear. This article reports a molecular network led by cytoplasmic FMR1-interacting protein 2 (CYFIP2) that negatively regulates adipocyte browning in white adipocytes. Although the function of CYFIP2 in Fragile X Syndrome (FXS) and autism have been reported, its physiological roles in adipocytes remain elusive. Therefore, this study examined the physiological consequences of its deprivation in cultured 3T3-L1 white adipocytes using loss-of-function studies. Combined real-time quantitative reverse-transcription polymerase chain reaction and immunoblot analysis showed that the loss of CYFIP2 induces fat browning, as evidenced by the gene and protein expression levels of the brown fat-associated markers. A deficiency of CYFIP2 promoted mitochondrial biogenesis and significantly enhanced the expression of the core set beige fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmem26) and proteins (PGC-1α, PRDM16, and UCP1). In addition, a CYFIP2 deficiency promoted lipid catabolism and suppressed adipogenesis, lipogenesis, and autophagy. A mechanistic study showed that the loss of CYFIP2 induces browning in white adipocytes, independently via the activation of mTORC1 and suppression of the GABA-BR signaling pathway. The present data revealed a previously unidentified mechanism of CYFIP2 in the browning of white adipocytes and emphasized the potential of CYFIP2 as a pharmacotherapeutic target for treating obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Subramani Manigandan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
21
|
Song X, Wang L, Liu Y, Zhang X, Weng P, Liu L, Zhang R, Wu Z. The gut microbiota–brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Res Int 2022; 153:110971. [DOI: 10.1016/j.foodres.2022.110971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
|
22
|
Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases. Pharmacol Res 2021; 175:106002. [PMID: 34826599 DOI: 10.1016/j.phrs.2021.106002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Obesity, is an increasingly global public health problem associated complications. However, the proven anti-obesity agents are inefficient with adverse side effects; hence attention is being paid to novel drugs from natural resources to manage obesity and obesity-related diseases. Nuciferine (NF) is a high-quality aporphine alkaloid present in lotus leaf. Unlike the chemical drugs, NF elicits anti-obesity, anti-dyslipidemia, anti-hyperglycemic, anti-hypouricemic, anti-inflammatory, and anti-tumor effects, and affinity to neural receptors, and protection against obesity-related diseases. The underlying mechanism of NF includes the regulation of targeted molecules and pathways related to metabolism, inflammation, and cancer and modulation of Ca2+ flux, gut microbiota, and ferroptosis. Besides, the clinical application, availability, pharmacokinetics, pharmaceutics, and security of NF have been established, highlighting the potential of developing NF as an anti-obesity agent. Therefore, this review provides a comprehensive summarization, which sheds light on future research in NF.
Collapse
|
23
|
Aburahma A, Pachhain S, Choudhury SR, Rana S, Phuntumart V, Larsen R, Sprague JE. Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:256-271. [PMID: 33472193 DOI: 10.1159/000512098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α1 adrenergic receptor (α1-AR)-mediated vasoconstriction, (2) heat generation through β-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of Proteuswhich has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature.
Collapse
Affiliation(s)
- Amal Aburahma
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sudhan Pachhain
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sayantan Roy Choudhury
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Srishti Rana
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Vipa Phuntumart
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Ray Larsen
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA,
| |
Collapse
|
24
|
Lee D, Kim DW, Yoon S, Nam AR, Lee KH, Nam KH, Cho SM, Yoon Y, Cho JY. CXCL5 secreted from macrophages during cold exposure mediates white adipose tissue browning. J Lipid Res 2021; 62:100117. [PMID: 34537202 PMCID: PMC8512628 DOI: 10.1016/j.jlr.2021.100117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue affects metabolic-related diseases because it consists of various cell types involved in fat metabolism and adipokine release. CXC ligand 5 (CXCL5) is a member of the CXC chemokine family and is highly expressed by macrophages in white adipose tissue (WAT). In this study, we generated and investigated the function of CXCL5 in knockout (KO) mice using CRISPR/Cas9. The male KO mice did not show significant phenotype differences in normal conditions. However, proteomic analysis revealed that many proteins involved in fatty acid beta-oxidation and mitochondrial localization were enriched in the inguinal WAT (iWAT) of Cxcl5 KO mice. Cxcl5 KO mice also showed decreased protein and transcript expression of genes associated with thermogenesis, including uncoupling protein 1 (UCP1), a well-known thermogenic gene, and increased expression of genes associated with inflammation. The increase in UCP1 expression in cold conditions was significantly retarded in Cxcl5 KO mice. Finally, we found that CXCL5 treatment increased the expression of transcription factors that mediate Ucp1 expression and Ucp1 itself. Collectively, our data show that Ucp1 expression is induced in adipocytes by CXCL5, which is secreted upon β-adrenergic stimulation by cold stimulation in M1 macrophages. Our data indicate that CXCL5 plays a crucial role in regulating energy metabolism, particularly upon cold exposure. These results strongly suggest that targeting CXCL5 could be a potential therapeutic strategy for people suffering from disorders affecting energy metabolism.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Sanghyuk Yoon
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - A-Reum Nam
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institution of Bioscience and Biotechnology (KRIBB), Chungju, South Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institution of Bioscience and Biotechnology (KRIBB), Chungju, South Korea
| | - Yeodae Yoon
- Laboratory Animal Resource Center, Korea Research Institution of Bioscience and Biotechnology (KRIBB), Chungju, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Nakao M, Shimizu I, Katsuumi G, Yoshida Y, Suda M, Hayashi Y, Ikegami R, Hsiao YT, Okuda S, Soga T, Minamino T. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci Rep 2021; 11:18384. [PMID: 34526601 PMCID: PMC8443662 DOI: 10.1038/s41598-021-97787-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with type 2 diabetes treated with Sodium glucose transporter 2 (SGLT2) inhibitors show reduced mortality and hospitalization for heart failure (HF). SGLT2 inhibitors are considered to activate multiple cardioprotective pathways; however, underlying mechanisms are not fully described. This study aimed to elucidate the underlying mechanisms of the beneficial effects of SGLT2 inhibitors on the failing heart. We generated a left ventricular (LV) pressure overload model in C57BL/6NCrSlc mice by transverse aortic constriction (TAC) and examined the effects of empagliflozin (EMPA) in this model. We conducted metabolome and transcriptome analyses and histological and physiological examinations. EMPA administration ameliorated pressure overload-induced systolic dysfunction. Metabolomic studies showed that EMPA increased citrulline levels in cardiac tissue and reduced levels of arginine, indicating enhanced metabolism from arginine to citrulline and nitric oxide (NO). Transcriptome suggested possible involvement of the insulin/AKT pathway that could activate NO production through phosphorylation of endothelial NO synthase (eNOS). Histological examination of the mice showed capillary rarefaction and endothelial apoptosis after TAC, both of which were significantly improved by EMPA treatment. This improvement was associated with enhanced expression phospho-eNOS and NO production in cardiac endothelial cells. NOS inhibition attenuated these cardioprotective effects of EMPA. The in vitro studies showed that catecholamine-induced endothelial apoptosis was inhibited by NO, arginine, or AKT activator. EMPA activates the AKT/eNOS/NO pathway, which helps to suppress endothelial apoptosis, maintain capillarization and improve systolic dysfunction during LV pressure overload.
Collapse
Affiliation(s)
- Masaaki Nakao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
26
|
Hoang AC, Yu H, Röszer T. Transcriptional Landscaping Identifies a Beige Adipocyte Depot in the Newborn Mouse. Cells 2021; 10:2368. [PMID: 34572017 PMCID: PMC8470180 DOI: 10.3390/cells10092368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
The present study sought to identify gene networks that are hallmarks of the developing inguinal subcutaneous adipose tissue (iWAT) and the interscapular brown adipose tissue (BAT) in the mouse. RNA profiling revealed that the iWAT of postnatal (P) day 6 mice expressed thermogenic and lipid catabolism transcripts, along with the abundance of transcripts associated with the beige adipogenesis program. This was an unexpected finding, as thermogenic BAT was believed to be the only site of nonshivering thermogenesis in the young mouse. However, the transcriptional landscape of BAT in P6 mice suggests that it is still undergoing differentiation and maturation, and that the iWAT temporally adopts thermogenic and lipolytic potential. Moreover, P6 iWAT and adult (P56) BAT were similar in their expression of immune gene networks, but P6 iWAT was unique in the abundant expression of antimicrobial proteins and virus entry factors, including a possible receptor for SARS-CoV-2. In summary, postnatal iWAT development is associated with a metabolic shift from thermogenesis and lipolysis towards fat storage. However, transcripts of beige-inducing signal pathways including β-adrenergic receptors and interleukin-4 signaling were underrepresented in young iWAT, suggesting that the signals for thermogenic fat differentiation may be different in early postnatal life and in adulthood.
Collapse
MESH Headings
- Adipocytes, Beige/metabolism
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Cell Cycle/genetics
- Gene Expression Regulation, Developmental
- Gene Ontology
- Gene Regulatory Networks
- Male
- Mice, Inbred C57BL
- Models, Biological
- Muscle Development/genetics
- Neuropeptides/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
| | | | - Tamás Röszer
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany; (A.C.H.); (H.Y.)
| |
Collapse
|
27
|
Treatment with atrial natriuretic peptide induces adipose tissue browning and exerts thermogenic actions in vivo. Sci Rep 2021; 11:17466. [PMID: 34465848 PMCID: PMC8408225 DOI: 10.1038/s41598-021-96970-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence suggests natriuretic peptides (NPs) coordinate inter-organ metabolic crosstalk with adipose tissues and play a critical role in energy metabolism. We recently reported A-type NP (ANP) raises intracellular temperature in cultured adipocytes in a low-temperature-sensitive manner. We herein investigated whether exogenous ANP-treatment exerts a significant impact on adipose tissues in vivo. Mice fed a high-fat-diet (HFD) or normal-fat-diet (NFD) for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. ANP-treatment significantly ameliorated HFD-induced insulin resistance. HFD increased brown adipose tissue (BAT) cell size with the accumulation of lipid droplets (whitening), which was suppressed by ANP-treatment (re-browning). Furthermore, HFD induced enlarged lipid droplets in inguinal white adipose tissue (iWAT), crown-like structures in epididymal WAT, and hepatic steatosis, all of which were substantially attenuated by ANP-treatment. Likewise, ANP-treatment markedly increased UCP1 expression, a specific marker of BAT, in iWAT (browning). ANP also further increased UCP1 expression in BAT with NFD. Accordingly, cold tolerance test demonstrated ANP-treated mice were tolerant to cold exposure. In summary, exogenous ANP administration ameliorates HFD-induced insulin resistance by attenuating hepatic steatosis and by inducing adipose tissue browning (activation of the adipose tissue thermogenic program), leading to in vivo thermogenesis during cold exposure.
Collapse
|
28
|
Miranda CO, Hegedüs K, Wildner H, Zeilhofer HU, Antal M. Morphological and neurochemical characterization of glycinergic neurons in laminae I-IV of the mouse spinal dorsal horn. J Comp Neurol 2021; 530:607-626. [PMID: 34382691 DOI: 10.1002/cne.25232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
A growing body of experimental evidence shows that glycinergic inhibition plays vital roles in spinal pain processing. In spite of this, however, our knowledge about the morphology, neurochemical characteristics, and synaptic relations of glycinergic neurons in the spinal dorsal horn is very limited. The lack of this knowledge makes our understanding about the specific contribution of glycinergic neurons to spinal pain processing quite vague. Here we investigated the morphology and neurochemical characteristics of glycinergic neurons in laminae I-IV of the spinal dorsal horn using a GlyT2::CreERT2-tdTomato transgenic mouse line. Confirming previous reports, we show that glycinergic neurons are sparsely distributed in laminae I-II, but their densities are much higher in lamina III and especially in lamina IV. First in the literature, we provide experimental evidence indicating that in addition to neurons in which glycine colocalizes with GABA, there are glycinergic neurons in laminae I-II that do not express GABA and can thus be referred to as glycine-only neurons. According to the shape and size of cell bodies and dendritic morphology, we divided the tdTomato-labeled glycinergic neurons into three and six morphological groups in laminae I-II and laminae III-IV, respectively. We also demonstrate that most of the glycinergic neurons co-express neuronal nitric oxide synthase, parvalbumin, the receptor tyrosine kinase RET, and the retinoic acid-related orphan nuclear receptor β (RORβ), but there might be others that need further neurochemical characterization. The present findings may foster our understanding about the contribution of glycinergic inhibition to spinal pain processing.
Collapse
Affiliation(s)
- Camila Oliveira Miranda
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Hegedüs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
29
|
Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel) 2021; 14:ph14050435. [PMID: 34066399 PMCID: PMC8148206 DOI: 10.3390/ph14050435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity and overweight are associated with lethal diseases. In this context, obese and overweight individuals infected by COVID-19 are at greater risk of dying. Obesity is treated by three main pharmaceutical approaches, namely suppressing appetite, reducing energy intake by impairing absorption, and increasing energy expenditure. Most compounds used for the latter were first envisaged for other medical uses. However, several candidates are now being developed explicitly for targeting obesity by increasing energy expenditure. This review analyzes the compounds that show anti-obesity activity exerted through the energy expenditure pathway. They are classified on the basis of their development status: FDA-approved, Withdrawn, Clinical Trials, and Under Development. The chemical nature, target, mechanisms of action, and description of the current stage of development are described for each one.
Collapse
|
30
|
Hsiao YT, Shimizu I, Wakasugi T, Yoshida Y, Ikegami R, Hayashi Y, Suda M, Katsuumi G, Nakao M, Ozawa T, Izumi D, Kashimura T, Ozaki K, Soga T, Minamino T. Cardiac mitofusin-1 is reduced in non-responding patients with idiopathic dilated cardiomyopathy. Sci Rep 2021; 11:6722. [PMID: 33762690 PMCID: PMC7990924 DOI: 10.1038/s41598-021-86209-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Prognosis of severe heart failure remains poor. Urgent new therapies are required. Some heart failure patients do not respond to established multidisciplinary treatment and are classified as “non-responders”. The outcome is especially poor for non-responders, and underlying mechanisms are largely unknown. Mitofusin-1 (Mfn1), a mitochondrial fusion protein, is significantly reduced in non-responding patients. This study aimed to elucidate the role of Mfn1 in the failing heart. Twenty-two idiopathic dilated cardiomyopathy (IDCM) patients who underwent endomyocardial biopsy of intraventricular septum were included. Of the 22 patients, 8 were non-responders (left ventricular (LV) ejection fraction (LVEF) of < 10% improvement at late phase follow-up). Electron microscopy (EM), quantitative PCR, and immunofluorescence studies were performed to explore the biological processes and molecules involved in failure to respond. Studies in cardiac specific Mfn1 knockout mice (c-Mfn1 KO), and in vitro studies with neonatal rat ventricular myocytes (NRVMs) were also conducted. A significant reduction in mitochondrial size in cardiomyocytes, and Mfn1, was observed in non-responders. A LV pressure overload with thoracic aortic constriction (TAC) c-Mfn1 KO mouse model was generated. Systolic function was reduced in c-Mfn1 KO mice, while mitochondria alteration in TAC c-Mfn1 KO mice increased. In vitro studies in NRVMs indicated negative regulation of Mfn1 by the β-AR/cAMP/PKA/miR-140-5p pathway resulting in significant reduction in mitochondrial respiration of NRVMs. The level of miR140-5p was increased in cardiac tissues of non-responders. Mfn1 is a biomarker of heart failure in non-responders. Therapies targeting mitochondrial dynamics and homeostasis are next generation therapy for non-responding heart failure patients.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| | - Takayuki Wakasugi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Masaaki Nakao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Takuya Ozawa
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Daisuke Izumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Takeshi Kashimura
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan. .,Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
31
|
Jialal I, Patel A, Devaraj S, Adams-Huet B. Metabolites that activate the inflammasome in nascent metabolic syndrome. J Diabetes Complications 2021; 35:107836. [PMID: 33422385 DOI: 10.1016/j.jdiacomp.2020.107836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a cardio-metabolic cluster that increases the risk of type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD). Whilst it affects 35% of the American adult population, its pathogenesis remains to be elucidated. Both insulin resistance and increased inflammation appear to be pivotal mechanisms. The NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome, an intracellular multi-protein complex, is crucial in the activation of Caspase 1, resulting in an increase in both IL-1and IL-18. In this preliminary report we examined the relationship between metabolites from our exploratory metabolomics studies with the NLRP3 inflammasome activity in the adipose tissue of patients with nascent MetS. PATIENT AND METHODS This study comprised patients with nascent MetS matched with controls. All patients in this study had normal renal and hepatic function. Metabolites were analyzed from frozen early morning urine samples and correlated with adipose tissue Caspase 1, interleukin-1, and interleukin-18 density. RESULTS Caspase 1, a marker of NLRP3 inflammasome activity, was significantly elevated in patients with nascent MetS compared to controls. Isoleucine, GABA, Carnitine and PC34: 2 were also significantly increased in patients with MetS. Caspase1 correlated positively with Isoleucine, GABA, Carnitine, and PC34:2. CONCLUSION We make the novel observation that the NLRP3 inflammasome activity is correlated with certain metabolites (Isoleucine, GABA, Carnitine and PC34:2) and hypothesize that they could trigger increased NLRP3 Inflammasome activity in MetS. However, these preliminary ,hypothesis generating novel findings need confirmation in larger studies of the metabolome and inflammasome.
Collapse
Affiliation(s)
| | - Ajay Patel
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
32
|
Bastías-Pérez M, Serra D, Herrero L. Dietary Options for Rodents in the Study of Obesity. Nutrients 2020; 12:nu12113234. [PMID: 33105762 PMCID: PMC7690621 DOI: 10.3390/nu12113234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated metabolic diseases are currently a priority research area. The increase in global prevalence at different ages is having an enormous economic and health impact. Genetic and environmental factors play a crucial role in the development of obesity, and diet is one of the main factors that contributes directly to the obesogenic phenotype. Scientific evidence has shown that increased fat intake is associated with the increase in body weight that triggers obesity. Rodent animal models have been extremely useful in the study of obesity since weight gain can easily be induced with a high-fat diet. Here, we review the dietary patterns and physiological mechanisms involved in the dynamics of energy balance. We report the main dietary options for the study of obesity and the variables to consider in the use of a high-fat diet, and assess the progression of obesity and diet-induced thermogenesis.
Collapse
Affiliation(s)
- Marianela Bastías-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; (M.B.-P.); (D.S.)
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; (M.B.-P.); (D.S.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; (M.B.-P.); (D.S.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
33
|
Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. Int J Mol Sci 2020; 21:ijms21176241. [PMID: 32872317 PMCID: PMC7504355 DOI: 10.3390/ijms21176241] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
The ongoing obesity pandemic generates a constant need to develop new therapeutic strategies to restore the energy balance. Therefore, the concept of activating brown adipose tissue (BAT) in order to increase energy expenditure has been revived. In mammals, two developmentally distinct types of brown adipocytes exist; the classical or constitutive BAT that arises during embryogenesis, and the beige adipose tissue that is recruited postnatally within white adipose tissue (WAT) in the process called browning. Research of recent years has significantly increased our understanding of the mechanisms involved in BAT activation and WAT browning. They also allowed for the identification of critical molecules and critical steps of both processes and, therefore, many new therapeutic targets. Several non-pharmacological approaches, as well as chemical compounds aiming at the induction of WAT browning and BAT activation, have been tested in vitro as well as in animal models of genetically determined and/or diet-induced obesity. The therapeutic potential of some of these strategies has also been tested in humans. In this review, we summarize present concepts regarding potential therapeutic targets in the process of BAT activation and WAT browning and available strategies aiming at them.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-226086591; Fax: +48-226086410
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-826 Warsaw, Poland
| |
Collapse
|
34
|
Tsuboshima K, Urakawa S, Takamoto K, Taguchi T, Matsuda T, Sakai S, Mizumura K, Ono T, Nishijo H. Distinct effects of thermal treatments after lengthening contraction on mechanical hyperalgesia and exercise-induced physiological changes in rat muscle. J Appl Physiol (1985) 2020; 128:296-306. [PMID: 31999528 DOI: 10.1152/japplphysiol.00355.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Delayed-onset muscle soreness (DOMS) is a common but displeasing event induced by excessive muscle use or unaccustomed exercise and characterized by tenderness and movement-related pain in the exercised muscle. Thermal therapies, either icing or heating applied to muscles immediately after exercise, have been used as therapeutic interventions for DOMS. However, the mechanisms of their analgesic effects, and physiological and metabolic changes in the muscle during thermal therapy, remain unclear. In the present study, we investigated the effects of both thermal treatments on mechanical hyperalgesia of DOMS and physiological and muscle metabolite changes using the rat DOMS model induced by lengthening contraction (LC) to the gastrocnemius muscle. Heating treatment just after LC induced analgesic effects, while rats with icing treatment showed mechanical hyperalgesia similar to that of the LC group. Furthermore, increased physiological responses (e.g., muscle temperature and blood flow) following the LC were significantly kept high only in the rats with heating treatment. In addition, heating treatment increased metabolites involved in the improvement of blood flow and oxidative metabolisms in the exercised muscle. The results indicated that heating treatment just after LC has analgesic effects on DOMS, which might be mediated partly through the improvement of muscle oxidative metabolisms by changes in metabolites and elevated physiological responses.NEW & NOTEWORTHY Physiological effects of thermal therapy in the muscle and its mechanisms of analgesic effects remain unclear. The results indicated that heating, but not icing, treatment just after lengthening contractions induced analgesic effects in the rat muscle. Increases in hemodynamics, muscle temperature, and metabolites such as nicotinamide were more prominent in heating treatment, consistent with improvement of muscle oxidative metabolisms, which might reduce chemical factors to induce mechanical hyperalgesia.
Collapse
Affiliation(s)
- Katsuyuki Tsuboshima
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Susumu Urakawa
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Takamoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toru Taguchi
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Teru Matsuda
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Shigekazu Sakai
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Taketoshi Ono
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
35
|
GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. Proc Natl Acad Sci U S A 2019; 116:11936-11945. [PMID: 31160440 DOI: 10.1073/pnas.1822067116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.
Collapse
|
36
|
Shim K, Gulhar R, Jialal I. Exploratory metabolomics of nascent metabolic syndrome. J Diabetes Complications 2019; 33:212-216. [PMID: 30611573 DOI: 10.1016/j.jdiacomp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a disorder defined by having three of five features: increased waist circumference (WC), hypertriglyceridemia, decreased high-density lipoprotein-cholesterol, hypertension and an elevated blood glucose (BG). Metabolic Syndrome ( MetS) affects 35% of American adults and significantly increases risk for Atherosclerotic cardiovascular disease (ASCVD) and type-2 diabetes (T2DM). An understanding of the metabolome will help elucidate the pathogenesis of MetS and lead to better management. We hypothesize that the metabolites, gamma-aminobutyric acid (GABA), d-pyroglutamic acid (PGA) and N-acetyl-d-tryptophan (NAT) will be altered in nascent MetS patients without the confounding of ASCVD or T2DM. We also correlated these metabolites with biomarkers of inflammation. PATIENTS AND METHODS This was an exploratory study of 30 patients with nascent MetS and 20 matched controls undertaken in 2018. Metabolites were evaluated from patient's frozen early morning urine samples and were correlated with biomarkers of inflammation and adipokines. They were assayed by the NIH Western Metabolomics Center using liquid chromatography/mass spectrometry and standardized to urinary creatinine. All patients had normal hepatic and renal function. RESULTS GABA and PGA levels were significantly increased in MetS patients compared to controls: 2.8-fold and 2.9-fold median increases respectively with p < 0.0001 and p = 0.004, possibly deriving from glutamate. NAT was significantly decreased by 90% in MetS patients compared to controls, p < 0.001. GABA correlates significantly with cardio-metabolic (CM) features including WC, blood pressure systolic (BP-S) while NAT correlated inversely with WC, BP-S, blood glucose (BG) and triglycerides (TG). GABA correlated positively with chemerin, leptin, Fetuin A and endotoxin. NAT correlated inversely with WC, BP-S, BG, TG, high sensitivity C - reactive protein (hsCRP), toll-like receptor-4 (TLR-4), lipopolysaccharide binding protein (LBP), chemerin and retinol binding protein-4 (RBP-4). CONCLUSIONS We make the novel observation of increased GABA and PGA with decreased NAT in patients with MetS. While GABA and PGA correlates positively with CM features and biomediators of inflammation, the metabolite NAT correlated inversely. Thus, GABA and PGA could contribute to the pro-inflammatory state of MetS while NAT could mitigate this pro-inflammatory response.
Collapse
Affiliation(s)
- Kyumin Shim
- California North-state University College of Medicine, United States of America
| | - Radhika Gulhar
- California North-state University College of Medicine, United States of America
| | - Ishwarlal Jialal
- California North-state University College of Medicine, United States of America.
| |
Collapse
|
37
|
Blaszkiewicz M, Willows JW, Johnson CP, Townsend KL. The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. BIOLOGY 2019; 8:E10. [PMID: 30759876 PMCID: PMC6466238 DOI: 10.3390/biology8010010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
Abstract
Brown and white adipose tissues are essential for maintenance of proper energy balance and metabolic health. In order to function efficiently, these tissues require both endocrine and neural communication with the brain. Brown adipose tissue (BAT), as well as the inducible brown adipocytes that appear in white adipose tissue (WAT) after simulation, are thermogenic and energy expending. This uncoupling protein 1 (UCP1)-mediated process requires input from sympathetic nerves releasing norepinephrine. In addition to sympathetic noradrenergic signaling, adipose tissue contains sensory nerves that may be important for relaying fuel status to the brain. Chemical and surgical denervation studies of both WAT and BAT have clearly demonstrated the role of peripheral nerves in browning, thermogenesis, lipolysis, and adipogenesis. However, much is still unknown about which subtypes of nerves are present in BAT versus WAT, what nerve products are released from adipose nerves and how they act to mediate metabolic homeostasis, as well as which cell types in adipose are receiving synaptic input. Recent advances in whole-depot imaging and quantification of adipose nerve fibers, as well as other new research findings, have reinvigorated this field of research. This review summarizes the history of research into adipose innervation and brain⁻adipose communication, and also covers landmark and recent research on this topic to outline what we currently know and do not know about adipose tissue nerve supply and communication with the brain.
Collapse
Affiliation(s)
- Magdalena Blaszkiewicz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| | - Jake W Willows
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Cory P Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|