1
|
Zhao H, Zhang X, Zhang N, Zhu L, Lian H. The interplay between Salmonella and host: Mechanisms and strategies for bacterial survival. CELL INSIGHT 2025; 4:100237. [PMID: 40177681 PMCID: PMC11964643 DOI: 10.1016/j.cellin.2025.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025]
Abstract
Salmonella, an intracellular pathogen, infects both humans and animals, causing diverse diseases such as gastroenteritis and enteric fever. The Salmonella type III secretion system (T3SS), encoded within its pathogenicity islands (SPIs), is critical for bacterial virulence by directly delivering multiple effectors into eukaryotic host cells. Salmonella utilizes these effectors to facilitate its survival and replication within the host through modulating cytoskeletal dynamics, inflammatory responses, the biogenesis of Salmonella-containing vacuole (SCV), and host cell survival. Moreover, these effectors also interfere with immune responses via inhibiting innate immunity or antigen presentation. In this review, we summarize the current progress in the survival strategies employed by Salmonella and the molecular mechanisms underlying its interactions with the host. Understanding the interplay between Salmonella and host can enhance our knowledge of the bacterium's pathogenic processes and provide new insights into how it manipulates host cellular physiological activities to ensure its survival.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Xinyue Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Ningning Zhang
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, 12208, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Huan Lian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
2
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Schmidt MJ, Naghdloo A, Prabakar RK, Kamal M, Cadaneanu R, Garraway IP, Lewis M, Aparicio A, Zurita-Saavedra A, Corn P, Kuhn P, Pienta KJ, Amend SR, Hicks J. Polyploid cancer cells reveal signatures of chemotherapy resistance. Oncogene 2025; 44:439-449. [PMID: 39578659 PMCID: PMC11810791 DOI: 10.1038/s41388-024-03212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and are associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and the expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Michael J Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Rishvanth K Prabakar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Radu Cadaneanu
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isla P Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Lewis
- VA Greater Los Angeles Medical Center, Los Angeles, CA, USA
- Departments of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Mei W, Faraj Tabrizi S, Godina C, Lovisa AF, Isaksson K, Jernström H, Tavazoie SF. A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor. Cell 2025; 188:371-389.e28. [PMID: 39657676 PMCID: PMC11770377 DOI: 10.1016/j.cell.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/12/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Identifying patients at risk for metastatic relapse is a critical medical need. We identified a common missense germline variant in proprotein convertase subtilisin/kexin type 9 (PCSK9) (rs562556, V474I) that is associated with reduced survival in multiple breast cancer patient cohorts. Genetic modeling of this gain-of-function single-nucleotide variant in mice revealed that it causally promotes breast cancer metastasis. Conversely, host PCSK9 deletion reduced metastatic colonization in multiple breast cancer models. Host PCSK9 promoted metastatic initiation events in lung and enhanced metastatic proliferative competence by targeting tumoral low-density lipoprotein receptor related protein 1 (LRP1) receptors, which repressed metastasis-promoting genes XAF1 and USP18. Antibody-mediated therapeutic inhibition of PCSK9 suppressed breast cancer metastasis in multiple models. In a large Swedish early-stage breast cancer cohort, rs562556 homozygotes had a 22% risk of distant metastatic relapse at 15 years, whereas non-homozygotes had a 2% risk. Our findings reveal that a commonly inherited genetic alteration governs breast cancer metastasis and predicts survival-uncovering a hereditary basis underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | | | - Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Anthea F Lovisa
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University and Department of Surgery Kristianstad Hospital, Lund, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Hicks J, Schmidt M, Nahgdloo A, Prabakar R, Kamal M, Cadaneanu R, Garraway I, Lewis M, Aparicio A, Zurita A, Corn P, Kuhn P, Pienta K, Amend S. Polyploid cancer cells reveal signatures of chemotherapy resistance. RESEARCH SQUARE 2024:rs.3.rs-4921634. [PMID: 39483900 PMCID: PMC11527255 DOI: 10.21203/rs.3.rs-4921634/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of CTC-IGC was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Aparicio
- The University of Texas M.D. Anderson Cancer Cetner
| | | | | | | | | | | |
Collapse
|
6
|
Schmidt MJ, Naghdloo A, Prabakar RK, Kamal M, Cadaneanu R, Garraway IP, Lewis M, Aparicio A, Zurita-Saavedra A, Corn P, Kuhn P, Pienta KJ, Amend SR, Hicks J. Polyploid cancer cells reveal signatures of chemotherapy resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608632. [PMID: 39229204 PMCID: PMC11370377 DOI: 10.1101/2024.08.19.608632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rishvanth K. Prabakar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Currently at: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Radu Cadaneanu
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, California, USA
| | - Isla P. Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael Lewis
- VA Greater Los Angeles Medical Center, Los Angeles, CA, USA
- Departments of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Guan X, Guan X, Zhao Z, Yan H. NETs: Important players in cancer progression and therapeutic resistance. Exp Cell Res 2024; 441:114191. [PMID: 39094902 DOI: 10.1016/j.yexcr.2024.114191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures composed of cytoplasmic contents, DNA chromatin and various granular proteins released by neutrophils in response to viruses, bacteria, immune complexes and cytokines. Studies have shown that NETs can promote the occurrence, development and metastasis of tumors. In this paper, the mechanism underlying the formation and degradation of NETs and the malignant biological behaviors of NETs, such as the promotion of tumor cell proliferation, epithelial mesenchymal transition, extracellular matrix remodeling, angiogenesis, immune evasion and tumor-related thrombosis, are described in detail. NETs are being increasingly studied as therapeutic targets for tumors. We have summarized strategies for targeting NETs or interfering with NET-cancer cell interactions and explored the potential application value of NETs as biomarkers in cancer diagnosis and treatment, as well as the relationship between NETs and therapeutic resistance.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Zhiqiang Zhao
- Pathology Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hong Yan
- Pathology Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
8
|
Yin X, Wang J, Ge M, Feng X, Zhang G. Designing Small Molecule PI3Kγ Inhibitors: A Review of Structure-Based Methods and Computational Approaches. J Med Chem 2024; 67:10530-10547. [PMID: 38988222 DOI: 10.1021/acs.jmedchem.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.
Collapse
Affiliation(s)
- Xiaoming Yin
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Jiaying Wang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Minghao Ge
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Xue Feng
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
| | - Guogang Zhang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| |
Collapse
|
9
|
Martellucci S, Flütsch A, Carter M, Norimoto M, Pizzo D, Mantuano E, Sadri M, Wang Z, Chillin-Fuentes D, Rosenthal SB, Azmoon P, Gonias SL, Campana WM. Axon-derived PACSIN1 binds to the Schwann cell survival receptor, LRP1, and transactivates TrkC to promote gliatrophic activities. Glia 2024; 72:916-937. [PMID: 38372375 DOI: 10.1002/glia.24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Andreas Flütsch
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Mark Carter
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Masaki Norimoto
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Mahrou Sadri
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Zixuan Wang
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Daisy Chillin-Fuentes
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California San Diego, La Jolla, California, USA
- Division of Research, San Diego VA Health Care System, San Diego, California, USA
| |
Collapse
|
10
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
11
|
Worley MJ. Salmonella Bloodstream Infections. Trop Med Infect Dis 2023; 8:487. [PMID: 37999606 PMCID: PMC10675298 DOI: 10.3390/tropicalmed8110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is a major foodborne pathogen of both animals and humans. This bacterium is responsible for considerable morbidity and mortality world-wide. Different serovars of this genus cause diseases ranging from self-limiting gastroenteritis to a potentially fatal systemic disease known as enteric fever. Gastrointestinal infections with Salmonella are usually self-limiting and rarely require medical intervention. Bloodstream infections, on the other hand, are often fatal even with hospitalization. This review describes the routes and underlying mechanisms of the extraintestinal dissemination of Salmonella and the chronic infections that sometimes result. It includes information on the pathogenicity islands and individual virulence factors involved in systemic dissemination as well as a discussion of the host factors that mediate susceptibility. Also, the major outbreaks of invasive Salmonella disease in the tropics are described.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
12
|
Gao DL, Johal MS. LRP-1 Binds Fibrinogen in a Sialylation-Dependent Manner: A Quartz Crystal Microbalance Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10375-10382. [PMID: 37459110 DOI: 10.1021/acs.langmuir.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in the United States. Atherosclerosis, the dominant condition leading to CVD, is characterized by fibrofatty plaque formation. Fibrinogen, an important clotting factor, has been known to promote atherogenesis as it retains the ability to trigger smooth muscle cell proliferation, localize in areas crucial to plaque progression, and bind both platelets and leukocytes. Yet, these consequences can be suppressed through anti-inflammatory receptors like LRP-1─an endocytic receptor part of the LDLR family responsible for the endocytosis of cell debris and protein degradation products. However, the continual progression of atherosclerosis in many patients indicates that such clearance mechanisms, deemed efferocytosis, are impaired during atherosclerosis. Using the quartz crystal microbalance with dissipation monitoring (QCM-D) as a platform to investigate receptor-ligand interactions, we identify fibrinogen to be a ligand of LRP-1 and characterize its binding with LRP-1. By examining a key player in atherosclerosis development─the effect of sialidase on receptor efficacy─we found that the desialylation of LRP-1 reduces its ability to bind fibrinogen. Protein docking simulations highlighted the N-terminus portion of fibrinogen's α domain as the LRP-1 docking site. The sialylated O-linked glycans at T894 and T935 have the potential to mediate direct binding of LRP-1 to fibrinogen and support the tertiary structure of LRP-1. These phenomena are important in showing a probable cause of defective efferocytosis that occurs readily during atherosclerosis.
Collapse
Affiliation(s)
- Daniel L Gao
- Department of Chemistry, Pomona College, 645 N College Avenue, Claremont, California 91711 United States
| | - Malkiat S Johal
- Department of Chemistry, Pomona College, 645 N College Avenue, Claremont, California 91711 United States
| |
Collapse
|
13
|
Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MAH, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheeky E, Hansen SD, Yip CK, Burke JE. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. eLife 2023; 12:RP88058. [PMID: 37417733 PMCID: PMC10392983 DOI: 10.7554/elife.88058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCβ activated by the IgE receptor, and Gβγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here, using a combination of cryo electron microscopy, HDX-MS, and biochemical assays, we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gβγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCβ helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCβ phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCβ-mediated phosphorylation. Overall, this work shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.
Collapse
Affiliation(s)
- Noah J Harris
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Sung-Eun Nam
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Harish Ranga-Prasad
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Eleanor Sheeky
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| |
Collapse
|
14
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Palam LR, Ramdas B, Pickerell K, Pasupuleti SK, Kanumuri R, Cesarano A, Szymanski M, Selman B, Dave UP, Sandusky G, Perna F, Paczesny S, Kapur R. Loss of Dnmt3a impairs hematopoietic homeostasis and myeloid cell skewing via the PI3Kinase pathway. JCI Insight 2023; 8:e163864. [PMID: 36976647 PMCID: PMC10243813 DOI: 10.1172/jci.insight.163864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Loss-of-function mutations in the DNA methyltransferase 3A (DNMT3A) are seen in a large number of patients with acute myeloid leukemia (AML) with normal cytogenetics and are frequently associated with poor prognosis. DNMT3A mutations are an early preleukemic event, which - when combined with other genetic lesions - result in full-blown leukemia. Here, we show that loss of Dnmt3a in hematopoietic stem and progenitor cells (HSC/Ps) results in myeloproliferation, which is associated with hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway. PI3Kα/β or the PI3Kα/δ inhibitor treatment partially corrects myeloproliferation, although the partial rescue is more efficient in response to the PI3Kα/β inhibitor treatment. In vivo RNA-Seq analysis on drug-treated Dnmt3a-/- HSC/Ps showed a reduction in the expression of genes associated with chemokines, inflammation, cell attachment, and extracellular matrix compared with controls. Remarkably, drug-treated leukemic mice showed a reversal in the enhanced fetal liver HSC-like gene signature observed in vehicle-treated Dnmt3a-/- LSK cells as well as a reduction in the expression of genes involved in regulating actin cytoskeleton-based functions, including the RHO/RAC GTPases. In a human PDX model bearing DNMT3A mutant AML, PI3Kα/β inhibitor treatment prolonged their survival and rescued the leukemic burden. Our results identify a potentially new target for treating DNMT3A mutation-driven myeloid malignancies.
Collapse
Affiliation(s)
| | - Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Katelyn Pickerell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | | | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | | | | | - Bryce Selman
- Department of Pathology and Laboratory Medicine, and
| | - Utpal P. Dave
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charlestown, South Carolina, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| |
Collapse
|
16
|
Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MA, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheekey E, Hansen SD, Yip CK, Burke JE. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536585. [PMID: 37090531 PMCID: PMC10120615 DOI: 10.1101/2023.04.12.536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCβ activated by the IgE receptor, and Gβγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here using a combination of Cryo electron microscopy, HDX-MS, and biochemical assays we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gβγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCβ helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCβ phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCβ mediated phosphorylation. Overall, this works shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101, and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.
Collapse
|
17
|
Nguyen HLT, Peng G, Trujillo-Paez JV, Yue H, Ikutama R, Takahashi M, Umehara Y, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. The Antimicrobial Peptide AMP-IBP5 Suppresses Dermatitis-like Lesions in a Mouse Model of Atopic Dermatitis through the Low-Density Lipoprotein Receptor-Related Protein-1 Receptor. Int J Mol Sci 2023; 24:ijms24065200. [PMID: 36982275 PMCID: PMC10049508 DOI: 10.3390/ijms24065200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) exhibits antimicrobial activities and immunomodulatory functions in keratinocytes and fibroblasts. However, its role in regulating skin barrier function remains unclear. Here, we investigated the effects of AMP-IBP5 on the skin barrier and its role in the pathogenesis of atopic dermatitis (AD). 2,4-Dinitrochlorobenzene was used to induce AD-like skin inflammation. Transepithelial electrical resistance and permeability assays were used to investigate tight junction (TJ) barrier function in normal human epidermal keratinocytes and mice. AMP-IBP5 increased the expression of TJ-related proteins and their distribution along the intercellular borders. AMP-IBP5 also improved TJ barrier function through activation of the atypical protein kinase C and Rac1 pathways. In AD mice, AMP-IBP5 ameliorated dermatitis-like symptoms restored the expression of TJ-related proteins, suppressed the expression of inflammatory and pruritic cytokines, and improved skin barrier function. Interestingly, the ability of AMP-IBP5 to alleviate inflammation and improve skin barrier function in AD mice was abolished in mice treated with an antagonist of the low-density lipoprotein receptor-related protein-1 (LRP1) receptor. Collectively, these findings indicate that AMP-IBP5 may ameliorate AD-like inflammation and enhance skin barrier function through LRP1, suggesting a possible role for AMP-IBP5 in the treatment of AD.
Collapse
Affiliation(s)
- Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Risa Ikutama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
18
|
Molecular Mechanisms of Neutrophil Extracellular Trap (NETs) Degradation. Int J Mol Sci 2023; 24:ijms24054896. [PMID: 36902325 PMCID: PMC10002918 DOI: 10.3390/ijms24054896] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Although many studies have been exploring the mechanisms driving NETs formation, much less attention has been paid to the degradation and elimination of these structures. The NETs clearance and the effective removal of extracellular DNA, enzymatic proteins (neutrophil elastase, proteinase 3, myeloperoxidase) or histones are necessary to maintain tissue homeostasis, to prevent inflammation and to avoid the presentation of self-antigens. The persistence and overabundance of DNA fibers in the circulation and tissues may have dramatic consequences for a host leading to the development of various systemic and local damage. NETs are cleaved by a concerted action of extracellular and secreted deoxyribonucleases (DNases) followed by intracellular degradation by macrophages. NETs accumulation depends on the ability of DNase I and DNAse II to hydrolyze DNA. Furthermore, the macrophages actively engulf NETs and this event is facilitated by the preprocessing of NETs by DNase I. The purpose of this review is to present and discuss the current knowledge about the mechanisms of NETs degradation and its role in the pathogenesis of thrombosis, autoimmune diseases, cancer and severe infections, as well as to discuss the possibilities for potential therapeutic interventions. Several anti-NETs approaches had therapeutic effects in animal models of cancer and autoimmune diseases; nevertheless, the development of new drugs for patients needs further study for an effective development of clinical compounds that are able to target NETs.
Collapse
|
19
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Sizova O, John LS, Ma Q, Molldrem JJ. Multi-faceted role of LRP1 in the immune system. Front Immunol 2023; 14:1166189. [PMID: 37020553 PMCID: PMC10069629 DOI: 10.3389/fimmu.2023.1166189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Graft versus host disease (GVHD) represents the major complication after allogeneic hematopoietic stem cell transplantation (Allo-SCT). GVHD-prone patients rely on GVHD prophylaxis (e.g. methotrexate) and generalized anti-GVHD medical regimen (glucocorticoids). New anti-GVHD therapy strategies are being constantly explored, however there is an urgent need to improve current treatment, since GVHD-related mortality reaches 22% within 5 years in patients with chronic GVHD. This review is an attempt to describe a very well-known receptor in lipoprotein studies - the low-density lipoprotein receptor related protein 1 (LRP1) - in a new light, as a potential therapeutic target for GVHD prevention and treatment. Our preliminary studies demonstrated that LRP1 deletion in donor murine T cells results in significantly lower GVHD-related mortality in recipient mice with MHC (major histocompatibility complex) -mismatched HSCT. Given the importance of T cells in the development of GVHD, there is a significant gap in scientific literature regarding LRP1's role in T cell biology. Furthermore, there is limited research interest and publications on this classical receptor molecule in other immune cell types. Herein, we endeavor to summarize existing knowledge about LRP1's role in various immune cells to demonstrate the possibility of this receptor to serve as a novel target for anti-GVHD treatment.
Collapse
Affiliation(s)
- Olga Sizova
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St. John
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- ECLIPSE, Therapeutic Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jeffrey J. Molldrem,
| |
Collapse
|
21
|
Xu X, Liu X, Dong X, Yang Y, Liu L. MiR-199a-3p-regulated alveolar macrophage-derived secretory autophagosomes exacerbate lipopolysaccharide-induced acute respiratory distress syndrome. Front Cell Infect Microbiol 2022; 12:1061790. [PMID: 36523634 PMCID: PMC9745060 DOI: 10.3389/fcimb.2022.1061790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Acute respiratory distress syndrome (ARDS) is a prevalent illness in intensive care units. Extracellular vesicles and particles released from activated alveolar macrophages (AMs) assist in ARDS lung injury and the inflammatory process through mechanisms that are unclear. This study investigated the role of AM-derived secretory autophagosomes (SAPs) in lung injury and microRNA (MiR)-199a-3p-regulated inflammation associated with ARDS in vitro and in a murine model. Methods The ARDS model in mouse was established by intratracheal LPS lipopolysaccharide (LPS) injection. The agomirs or antagomirs of MiR-199a-3p were injected into the caudal vein to figure out whether MiR-199a-3p could influence ARDS inflammation and lung injury, whereas the mimics or inhibitors of MiR-199a-3p, siRNA of Rab8a, or PAK4 inhibitor were transfected or applied to RAW264.7 cells to evaluate the mechanism of SAP release. Culture supernatants of RAW264.7 cells treated with LPS or bronchoalveolar lavage fluid from mice were collected for the isolation of SAPs. Results We found that MiR-199a-3p was over-expressed in the lungs of ARDS mice. The MiR-199a-3p antagomir alleviated, whereas the MiR-199a-3p agomir exacerbated LPS-induced inflammation in mice by promoting AM-derived SAP secretion. In addition, MiR-199a-3p over-expression exacerbated LPS-induced ARDS via activating Rab8a, and Rab8a silencing significantly suppressed the promoting influence of the MiR-199a-3p mimic on SAP secretion. Furthermore, MiR-199a-3p mimic activated Rab8a by directly inhibiting PAK4 expression. Conclusion The novel finding of this study is that MiR-199a-3p participated in the regulation of SAP secretion and the inflammatory process via targeting of PAK4/Rab8a, and is a potential therapeutic candidate for ARDS treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Yang
- *Correspondence: Yi Yang, ; Ling Liu,
| | - Ling Liu
- *Correspondence: Yi Yang, ; Ling Liu,
| |
Collapse
|
22
|
Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 2022; 22:687-700. [PMID: 35322259 PMCID: PMC9922156 DOI: 10.1038/s41577-022-00701-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Sanchez MC, Chiabrando GA. Multitarget Activities of Müller Glial Cells and Low-Density Lipoprotein Receptor-Related Protein 1 in Proliferative Retinopathies. ASN Neuro 2022; 14:17590914221136365. [PMID: 36317314 PMCID: PMC9629547 DOI: 10.1177/17590914221136365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Müller glial cells (MGCs), the main glial component of the retina, play an active role in retinal homeostasis during development and pathological processes. They strongly monitor retinal environment and, in response to retinal imbalance, activate neuroprotective mechanisms mainly characterized by the increase of glial fibrillary acidic protein (GFAP). Under these circumstances, if homeostasis is not reestablished, the retina can be severely injured and GFAP contributes to neuronal degeneration, as they occur in several proliferative retinopathies such as diabetic retinopathy, sickle cell retinopathy and retinopathy of prematurity. In addition, MGCs have an active participation in inflammatory responses releasing proinflammatory mediators and metalloproteinases to the extracellular space and vitreous cavity. MGCs are also involved in the retinal neovascularization and matrix extracellular remodeling during the proliferative stage of retinopathies. Interestingly, low-density lipoprotein receptor-related protein 1 (LRP1) and its ligand α2-macroglobulin (α2M) are highly expressed in MGCs and they have been established to participate in multiple cellular and molecular activities with relevance in retinopathies. However, the exact mechanism of regulation of retinal LRP1 in MGCs is still unclear. Thus, the active participation of MGCs and LRP1 in these diseases, strongly supports the potential interest of them for the design of novel therapeutic approaches. In this review, we discuss the role of LRP1 in the multiple MGCs activities involved in the development and progression of proliferative retinopathies, identifying opportunities in the field that beg further research in this topic area.Summary StatementMGCs and LRP1 are active players in injured retinas, participating in key features such as gliosis and neurotoxicity, neovascularization, inflammation, and glucose control homeostasis during the progression of ischemic diseases, such as proliferative retinopathies.
Collapse
Affiliation(s)
- María C. Sanchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Gustavo A. Chiabrando
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA), G.V. al Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina,María C. Sanchez Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina.
.
Gustavo A. Chiabrando Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA). Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ – Córdoba, Argentina.
| |
Collapse
|
24
|
Albertini RA, Nicolas JC, Actis Dato V, Ferrer DG, Tinti ME, Capra RH, Chiabrando GA. Decreased low-density lipoprotein receptor-related protein 1 expression in pro-inflammatory monocytes is associated with subclinical atherosclerosis. Front Cardiovasc Med 2022; 9:949778. [PMID: 35958411 PMCID: PMC9360420 DOI: 10.3389/fcvm.2022.949778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Subclinical atherosclerosis (SCA) occurs in asymptomatic individuals. Blood peripheral monocytes are involved in the development of atherosclerosis. Circulating monocytes acquire pro-inflammatory profiles, and they are involved in the early stages of atherosclerosis development. Low-density lipoprotein Receptor-related Protein 1 (LRP1) is expressed in monocytes, mainly in classical and intermediate subsets. Although LRP1 is highly expressed in macrophages and vascular smooth muscle cells (VSMCs) in atherosclerotic plaque formation, its expression in circulating monocytes has not been studied in SCA. The aim of this study was to characterize the LRP1 expression level in circulating monocytes of individuals with SCA and compared with individuals with low (LR) and intermediate (IR) risk of cardiovascular diseases, both without evidence of atherosclerotic lesions in carotid and coronary arteries. LRP1 and additional markers (CD11b, CD11c, and CD36) at cell surface of monocytes were analyzed by flow cytometry assays, whereas LRP1 and pro-inflammatory factors gene expressions were measured in isolated monocytes by quantitative RT-PCRs. Both LRP1 protein and LRP1 mRNA were significantly reduced in monocytes in SCA and IR respect to LR. Conversely, CD36, CD11b, and CD11c monocytic markers showed no significant changes between the different study groups. Finally, increased gene expressions of TNF-α and IL-1β were detected in monocytes of SCA, which were associated with decreased LRP1 expression at the cell surface in total monocytes. In summary, we propose that the decreased LRP1 expression at cell surface in total monocytes with pro-inflammatory profile is associated with the development of atherosclerosis in asymptomatic individuals.
Collapse
Affiliation(s)
- Ricardo A. Albertini
- Servicio de Clínica Médica, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Juan C. Nicolas
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Darío G. Ferrer
- Servicio de Laboratorios, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - María E. Tinti
- Servicio de Diagnóstico por Imágenes, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Raúl H. Capra
- Servicio de Laboratorios, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Gustavo A. Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigación en Medicina Traslacional Severo Amuchástegui (CIMETSA), Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, Argentina
- *Correspondence: Gustavo A. Chiabrando,
| |
Collapse
|
25
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Wang Y, Zhang W, Xu Y, Wu D, Gao Z, Zhou J, Qian H, He B, Wang G. Extracellular HMGB1 Impairs Macrophage-Mediated Efferocytosis by Suppressing the Rab43-Controlled Cell Surface Transport of CD91. Front Immunol 2022; 13:767630. [PMID: 35392093 PMCID: PMC8980266 DOI: 10.3389/fimmu.2022.767630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein can impair phagocyte function by suppressing the macrophage-mediated clearance of apoptotic cells (ACs), thereby delaying inflammation resolution in the lungs and allowing the progression of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the precise mechanism underlying this HMGB1-mediated inhibition of efferocytosis remains unknown. The aim of this study was to determine the effect of HMGB1 on macrophage-mediated efferocytosis. We discovered that HMGB1 prevented efferocytosis by bone marrow-derived macrophages (BMDMs) and suppressed the expression of Ras-related GTP-binding protein 43 (Rab43), a member of the Ras-associated binding (Rab) family. The downregulation of Rab43 expression resulted in impaired clearance of apoptotic thymocytes by BMDMs. Subsequent analysis of HMGB1-treated and Rab43-deficient BMDMs revealed the inhibited transport of cluster of differentiation 91 (CD91), a phagocyte recognition receptor, from the cytoplasm to the cell surface. Notably, Rab43 directly interacted with CD91 to mediate its intercellular trafficking. Furthermore, Rab43 knockout delayed the inflammation resolution and aggravated the lung tissue damage in mice with ALI. Therefore, our results provide evidence that HMGB1 impairs macrophage-mediated efferocytosis and delays inflammation resolution by suppressing the Rab43-regulated anterograde transport of CD91, suggesting that the restoration of Rab43 levels is a promising strategy for attenuating ALI and ARDS in humans.
Collapse
Affiliation(s)
- Yao Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wen Zhang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jianchun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Binfeng He
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Luo J, Li L, Chang B, Zhu Z, Deng F, Hu M, Yu Y, Lu X, Chen Z, Zuo D, Zhou J. Mannan-Binding Lectin via Interaction With Cell Surface Calreticulin Promotes Senescence of Activated Hepatic Stellate Cells to Limit Liver Fibrosis Progression. Cell Mol Gastroenterol Hepatol 2022; 14:75-99. [PMID: 35381393 PMCID: PMC9117817 DOI: 10.1016/j.jcmgh.2022.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis represents a hallmark of most chronic liver diseases (CLD) triggered by recurrent liver injury and subsequent myofibroblast transdifferentiations of resident hepatic stellate cells (HSCs). Mannan-binding lectin (MBL) is potentially involved in hepatic fibrosis in CLD through unclear mechanisms. Therefore, we investigated the crosstalk between MBL and HSCs, and the consequent effects on fibrosis progression. METHODS Samples from patients with liver cirrhosis were collected. MBL deficiency (MBL-/-) and wild-type (WT) C57BL/6J mice were used to construct a CCl4-induced liver fibrosis model. Administration of MBL-expressing, liver-specific, adeno-associated virus was performed to restore hepatic MBL expression in MBL-/- mice. The human HSC line LX-2 was used for in vitro experiments. RESULTS MBL levels in patients with liver cirrhosis were correlated with disease severity. In the CCl4-induced liver fibrosis model, MBL-/- mice showed severer liver fibrosis accompanied by reduced senescent activated HSCs in liver tissue compared with WT mice, which could be inhibited by administering MBL-expressing, liver-specific, adeno-associated virus. Moreover, depleting senescent cells with senolytic treatment could abrogate these differences owing to MBL absence. Furthermore, MBL could interact directly with calreticulin associated with low-density lipoprotein receptor-related protein 1 on the cell surface of HSCs, which further promotes senescence in HSCs by up-regulating the mammalian target of rapamycin/p53/p21 signaling pathway. CONCLUSIONS MBL as a newfound senescence-promoting modulator and its crosstalk with HSCs in the liver microenvironment is essential for the control of hepatic fibrosis progression, suggesting its potential therapeutic use in treating CLD associated with liver fibrosis.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Qian H, Zhou T, Fu Y, Guo M, Yang W, Zhang D, Fang W, Yao M, Shi H, Chai C, Cheng W, Ding S, Chen T. Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:763-773. [PMID: 35116188 PMCID: PMC8783116 DOI: 10.1016/j.omtn.2021.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in depleting or repolarizing tumor-associated macrophages (TAMs) to generate a proinflammatory effect. However, TAMs usually display an immunosuppressive M2-like phenotype in the tumor microenvironment. Apparently, developing a macrophage-targeting delivery system with immunomodulatory agents is urgent. In this study, an efficient siRNA and CpG ODNs delivery system (CpG-siRNA-tFNA) was prepared with nucleic acid stepwise self-assembled. The tFNA composed of CpG ODNs and siRNA showed a higher stability and an enhanced cellular uptake efficiency. Moreover, the CpG-siRNA-tFNA effectively reprogrammed TAMs toward M1 phenotype polarization with increased proinflammatory cytokine secretion and NF-κB signal pathway activation, which triggers dramatic antitumor immune responses. Additionally, the CpG-siRNA-tFNA exhibited superior antitumor efficacy in a breast cancer xenograft mouse model without obvious systemic side effects. Taken together, CpG-siRNA-tFNA displayed greatly antitumor effect by facilitating TAM polarization toward M1 phenotypes in favor of immunotherapy. Hence, we have developed an efficient therapeutic strategy with immunomodulatory agents for clinical applications.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yixin Fu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Minkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Dias BT, Goundry A, Vivarini AC, Costa TFR, Mottram JC, Lopes UG, Lima APCA. Toll-Like Receptor- and Protein Kinase R-Induced Type I Interferon Sustains Infection of Leishmania donovani in Macrophages. Front Immunol 2022; 13:801182. [PMID: 35154115 PMCID: PMC8831251 DOI: 10.3389/fimmu.2022.801182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-β). Here, we show that the gene expression of IFN-β by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-β gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-β, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.
Collapse
Affiliation(s)
- Bruna T. Dias
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amy Goundry
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aislan C. Vivarini
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana F. R. Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Ulisses G. Lopes
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Ana Paula C. A. Lima,
| |
Collapse
|
30
|
Xu X, Liu X, Dong X, Qiu H, Yang Y, Liu L. Secretory Autophagosomes from Alveolar Macrophages Exacerbate Acute Respiratory Distress Syndrome by Releasing IL-1β. J Inflamm Res 2022; 15:127-140. [PMID: 35027836 PMCID: PMC8752069 DOI: 10.2147/jir.s344857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Activated alveolar macrophages (AMs) secrete extracellular vesicles and particles to mediate the inflammatory response in the acute respiratory distress syndrome (ARDS) although the underlying mechanisms are poorly understood. This study investigated whether secretory autophagosomes (SAPs) from AMs contribute to the inflammation-mediated lung injury of ARDS. Methods We first isolated SAPs from cell culture supernatants of RAW264.7 cells and AMs and quantified Interleukin (IL)-1β levels in SAPs. Next, we employed a lipopolysaccharide (LPS)-induced ARDS model to investigate whether SAP-derived IL-1β could exacerbate lung injury. Finally, we used siRNA to knockdown Rab8a, both in vitro and in vivo, to investigate the effect of Rab8a on SAP secretion and lung injury in ARDS. Results We found that AMs play an important role in ARDS by releasing a novel type of proinflammatory vesicles called SAPs that could exacerbate lung injury. SAPs are characterized as double-membrane vesicles (diameter ~200 nm) with the expression of light chain 3 (LC3). IL-1β in SAPs is the key factor that contributes to the inflammation and lung injury in ARDS. We found that Rab8a is necessary for AMs to release SAPs with IL-1β, and Rab8a knockdown alleviated lung injury in ARDS. Conclusion This study showed the novel finding that SAPs released from AMs play a vital role in ARDS by promoting an inflammatory response and the underlying mechanism was associated with IL-1β secretion.
Collapse
Affiliation(s)
- Xinyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xuecheng Dong
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
31
|
Cevey ÁC, Mascolo PD, Penas FN, Pieralisi AV, Sequeyra AS, Mirkin GA, Goren NB. Benznidazole Anti-Inflammatory Effects in Murine Cardiomyocytes and Macrophages Are Mediated by Class I PI3Kδ. Front Immunol 2021; 12:782891. [PMID: 34925364 PMCID: PMC8675942 DOI: 10.3389/fimmu.2021.782891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-β, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.
Collapse
Affiliation(s)
- Ágata C Cevey
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Paula D Mascolo
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Federico N Penas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Azul V Pieralisi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Aldana S Sequeyra
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Nora B Goren
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
32
|
Zhang W, Wang Y, Li C, Xu Y, Wang X, Wu D, Gao Z, Qian H, You Z, Zhang Z, He B, Wang G. Extracellular CIRP-Impaired Rab26 Restrains EPOR-Mediated Macrophage Polarization in Acute Lung Injury. Front Immunol 2021; 12:768435. [PMID: 34925338 PMCID: PMC8671298 DOI: 10.3389/fimmu.2021.768435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a condition with an imbalanced inflammatory response and delayed resolution of inflammation. Macrophage polarization plays an important role in inflammation and resolution. However, the mechanism of macrophage polarization in ALI/ARDS is not fully understood. We found that mice with lipopolysaccharide administration developed lung injury with the accumulation of extracellular cold-inducible RNA-binding protein (eCIRP) in the lungs. eCIRP, as a damage-associated molecular pattern (DAMP), inhibited M2 macrophage polarization, thereby tipping the balance toward inflammation rather than resolution. Anti-CIRP antibodies reversed such phenotypes. The levels of macrophage erythropoietin (EPO) receptor (EPOR) were reduced after eCIRP treatment. Myeloid-specific EPOR-deficient mice displayed restrained M2 macrophage polarization and impaired inflammation resolution. Mechanistically, eCIRP impaired Rab26, a member of Ras superfamilies of small G proteins, and reduced the transportation of surface EPOR, which resulted in macrophage polarization toward the M1 phenotype. Moreover, EPO treatment hardly promotes M2 polarization in Rab26 knockout (KO) macrophages through EPOR. Collectively, macrophage EPOR signaling is impaired by eCIRP through Rab26 during ALI/ARDS, leading to the restrained M2 macrophage polarization and delayed inflammation resolution. These findings identify a mechanism of persistent inflammation and a potential therapy during ALI/ARDS.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yao Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chuanwei Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Binfeng He
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol 2021; 19:716-725. [PMID: 34012042 PMCID: PMC9350856 DOI: 10.1038/s41579-021-00561-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Microbial infections are controlled by host inflammatory responses that are initiated by innate immune receptors after recognition of conserved microbial products. As inflammation can also lead to disease, tissues that are exposed to microbial products such as the intestinal epithelium are subject to stringent regulatory mechanisms to prevent indiscriminate signalling through innate immune receptors. The enteric pathogen Salmonella enterica subsp. enterica serovar Typhimurium, which requires intestinal inflammation to sustain its replication in the intestinal tract, uses effector proteins of its type III secretion systems to trigger an inflammatory response without the engagement of innate immune receptors. Furthermore, S. Typhimurium uses a different set of effectors to restrict the inflammatory response to preserve host homeostasis. The S. Typhimurium-host interface is a remarkable example of the unique balance that emerges from the co-evolution of a pathogen and its host.
Collapse
|
34
|
Barmada A, Ramaswamy A, Lucas CL. Maximizing insights from monogenic immune disorders. Curr Opin Immunol 2021; 73:50-57. [PMID: 34695727 DOI: 10.1016/j.coi.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Monogenic immune disorders provide unprecedented insights into the consequences of disrupting single genes in humans, thereby informing our understanding of fundamental immune function and disease. Genomics has accelerated monogenic disease discovery while also revealing the complexity of human disease, where several factors beyond the genome can govern pathogenesis. At this juncture, the optimal path forward will focus on maximizing basic and translational immunology insights from these disorders. This pursuit will be most direct and impactful if human disease gene discovery is paired with mechanistic studies employing integrative omics and mouse modeling to leverage their unique strengths.
Collapse
Affiliation(s)
- Anis Barmada
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT, USA
| | - Anjali Ramaswamy
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT, USA
| | - Carrie L Lucas
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW LDL receptor-related protein 1 (LRP1) is a multifunctional protein with endocytic and signal transduction properties due to its interaction with numerous extracellular ligands and intracellular proteins. This brief review highlights key developments in identifying novel functions of LRP1 in liver, lung, and the central nervous system in disease pathogenesis. RECENT FINDINGS In hepatocytes, LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase-1 and its related protein to maintain intracellular levels of phosphatidylinositol (4,5) bisphosphate and preserve lysosome and mitochondria integrity. In contrast, in smooth muscle cells, macrophages, and endothelial cells, LRP1 interacts with various different extracellular ligands and intracellular proteins in a tissue-dependent and microenvironment-dependent manner to either enhance or suppress inflammation, disease progression or resolution. Similarly, LRP1 expression in astrocytes and oligodendrocyte progenitor cells regulates cell differentiation and maturation in a developmental-dependent manner to modulate neurogenesis, gliogenesis, and white matter repair after injury. SUMMARY LRP1 modulates metabolic disease manifestation, inflammation, and differentiation in a cell-dependent, time-dependent, and tissue-dependent manner. Whether LRP1 expression is protective or pathogenic is dependent on its interaction with specific ligands and intracellular proteins, which in turn is dependent on the cell type and the microenvironment where these cells reside.
Collapse
Affiliation(s)
- Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
36
|
Gonias SL. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol 2021; 321:C721-C734. [PMID: 34406905 DOI: 10.1152/ajpcell.00269.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are serine proteases and major activators of fibrinolysis in mammalian systems. Because fibrinolysis is an essential component of the response to tissue injury, diverse cells, including cells that participate in the response to injury, have evolved receptor systems to detect tPA and uPA and initiate appropriate cell-signaling responses. Formation of functional receptor systems for the plasminogen activators requires assembly of diverse plasma membrane proteins, including but not limited to: the urokinase receptor (uPAR); integrins; N-formyl peptide receptor-2 (FPR2), receptor tyrosine kinases (RTKs), the N-methyl-d-aspartate receptor (NMDA-R), and low-density lipoprotein receptor-related protein-1 (LRP1). The cell-signaling responses elicited by tPA and uPA impact diverse aspects of cell physiology. This review describes rapidly evolving knowledge regarding the structure and function of plasminogen activator receptor assemblies. How these receptor assemblies regulate innate immunity and inflammation is then considered.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
37
|
Hasan MM, Gazi MA, Das S, Fahim SM, Hossaini F, Alam MA, Mahfuz M, Ahmed T. Association of lipocalin-2 and low-density lipoprotein receptor-related protein-1 (LRP1) with biomarkers of environmental enteric dysfunction (EED) among under 2 children in Bangladesh: results from a community-based intervention study. BMJ Paediatr Open 2021; 5:e001138. [PMID: 34423140 PMCID: PMC8340289 DOI: 10.1136/bmjpo-2021-001138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/17/2021] [Indexed: 11/03/2022] Open
Abstract
Background Environmental enteric dysfunction (EED) is thought to occur from persistent intestinal inflammation. Studies also revealed the association of lipocalin-2 (LCN2) and low-density lipoprotein receptor-related protein-1 (LRP1) with intestinal inflammation. Therefore, we intended to explore the relationship of LCN2 and LRP1 with gut inflammation and biomarkers of EED in Bangladeshi malnourished children. Methods A total of 222 children (length-for-age z-score (LAZ) <-1) aged 12-18 months were enrolled in this study in a cross-sectional manner. Among the participants, 115 were stunted (LAZ <-2) and 107 were at risk of being stunted (LAZ -1 to -2) children. Plasma and faecal biomarkers were measured using ELISA. Spearman's rank correlation was done to see the correlation among LCN2, LRP1 and biological biomarkers. Results LCN2 correlates positively with myeloperoxidase (r=0.19, p=0.005), neopterin (r=0.20, p=0.004), calprotectin (r=0.3, p=0.0001), Reg1B (r=0.20, p=0.003) and EED score (r=0.20, p=0.003). Whereas, LRP1 correlates negatively with myeloperoxidase (r = -0.18, p=0.006), neopterin (r = -0.30, p=0.0001), alpha-1-antitrypsin (r = -0.18, p=0.006), Reg1B (r=-0.2, p=0.003) and EED score (r = -0.29, p=0.0001). Conclusions Our findings imply that LCN2 might be a promising biomarker to predict gut inflammation and EED. Whereas, increased level of LRP1 may contribute to alleviating intestinal inflammation.
Collapse
Affiliation(s)
- Md. Mehedi Hasan
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Amran Gazi
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Subhasish Das
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Shah Mohammad Fahim
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Farzana Hossaini
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Ashraful Alam
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. SCIENCE ADVANCES 2021; 7:7/35/eabj4282. [PMID: 34452907 PMCID: PMC8397274 DOI: 10.1126/sciadv.abj4282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/06/2021] [Indexed: 05/04/2023]
Abstract
The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gβγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gβγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gβγ activation. A nanobody that specifically binds to the p101-Gβγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Carson Adams
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Rathinaswamy MK, Fleming KD, Dalwadi U, Pardon E, Harris NJ, Yip CK, Steyaert J, Burke JE. HDX-MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Structure 2021; 29:1371-1381.e6. [PMID: 34348129 DOI: 10.1016/j.str.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is considerable interest in developing antibodies as modulators of signaling pathways. One of the most important signaling pathways in higher eukaryotes is the phosphoinositide 3-kinase (PI3K) pathway, which plays fundamental roles in growth, metabolism, and immunity. The class IB PI3K, PI3Kγ, is a heterodimeric complex composed of a catalytic p110γ subunit bound to a p101 or p84 regulatory subunit. PI3Kγ is a critical component in multiple immune signaling processes and is dependent on activation by Ras and G protein-coupled receptors (GPCRs) to mediate its cellular roles. Here we describe the rapid and efficient characterization of multiple PI3Kγ binding single-chain camelid nanobodies using hydrogen-deuterium exchange (HDX) mass spectrometry (MS) for structural and biochemical studies. We identify nanobodies that stimulated lipid kinase activity, block Ras activation, and specifically inhibited p101-mediated GPCR activation. Overall, our work reveals insight into PI3Kγ regulation and identifies sites that may be exploited for therapeutic development.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
40
|
Yiu JHC, Cheung SWM, Cai J, Chan KS, Chen J, Cheong LY, Chau HT, Xu A, Li RHW, Woo CW. TLR5 Supports Development of Placental Labyrinthine Zone in Mice. Front Cell Dev Biol 2021; 9:711253. [PMID: 34395439 PMCID: PMC8356041 DOI: 10.3389/fcell.2021.711253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Toll plays an important role in innate immunity and embryonic development in lower-ranked animals, but in mammals, the homolog toll-like receptors (TLR) are reported to facilitate postnatal development of immunity only. Here, we discovered a role of TLR5 in placental development. Tlr5 was highly transcribed during the placenta-forming and functional phases. TLR5 deletion led to a smaller placental labyrinthine zone and lower embryo weight, and the smaller size of embryo was overcorrected, resulting in a higher postnatal body weight. Examination of TLR5-deficient conceptus revealed a decrease in nuclear cAMP-response element-binding protein (CREB), mechanistic target of rapamycin (mTOR) and insulin growth factor-1 receptor (IGF1R) abundances in the placenta-forming phase. Non-flagellin-based TLR5 ligands were detected in serum of female mice and the overexpression of TLR5 alone was sufficient to induce CREB nuclear translocation and mTOR transcriptional activation in trophoblasts. Taken together, we uncovered the participation of TLR5 in the early placental formation in mice, unveiling a role of TLR in embryonic development in higher-ranked animals.
Collapse
Affiliation(s)
- Jensen H C Yiu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Samson W M Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jieling Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam-Suen Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hau-Tak Chau
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond H W Li
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Connie W Woo
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Seclì L, Avalle L, Poggio P, Fragale G, Cannata C, Conti L, Iannucci A, Carrà G, Rubinetto C, Miniscalco B, Hirsch E, Poli V, Morotti A, De Andrea M, Turco E, Cavallo F, Fusella F, Brancaccio M. Targeting the extracellular HSP90 co-chaperone Morgana inhibits cancer cell migration and promotes anti-cancer immunity. Cancer Res 2021; 81:4794-4807. [PMID: 34193441 DOI: 10.1158/0008-5472.can-20-3150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (HSP90) is secreted by cancer cells into the extracellular milieu, where it exerts pro-tumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a monoclonal antibody targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, this data defines Morgana as a new player in the HSP90 extracellular interactome and suggests that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Laura Seclì
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Lidia Avalle
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Pietro Poggio
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Giuseppe Fragale
- Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences - Molecular Biotechnology Center, University of Turin
| | - Andrea Iannucci
- CAAD-Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin
| | | | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Marco De Andrea
- Public Health and Pediatric Sciences, University of Turin, Medical School
| | - Emilia Turco
- Molecular Biotechnology and Health Sciences, University of Torino, Molecular Biotechnology Center
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Federica Fusella
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Mara Brancaccio
- Molecular Biotechnology and Health Sciences, University of Turin
| |
Collapse
|
42
|
Activated Alpha-2 Macroglobulin Improves Insulin Response via LRP1 in Lipid-Loaded HL-1 Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22136915. [PMID: 34203120 PMCID: PMC8268138 DOI: 10.3390/ijms22136915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Activated alpha-2 Macroglobulin (α2M*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that α2M* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PI3K/Akt and MAPK/ERK signaling activation. Moreover, α2M* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, α2M* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, α2M* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia.
Collapse
|
43
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
44
|
The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nat Microbiol 2021; 6:658-671. [PMID: 33603205 PMCID: PMC8085087 DOI: 10.1038/s41564-021-00866-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The food-borne bacterial pathogen Salmonella Typhimurium uses a type III protein secretion system to deliver multiple proteins into host cells. These secreted effectors modulate the functions of host cells and activate specific signalling cascades that result in the production of pro-inflammatory cytokines and intestinal inflammation. Some of the Salmonella-encoded effectors counteract this inflammatory response and help to preserve host homeostasis. Here, we demonstrate that the Salmonella effector protein SopD, which is required for pathogenesis, functions to both activate and inhibit the inflammatory response by targeting the Rab8 GTPase, which is a negative regulator of inflammation. We show that SopD has GTPase-activating protein activity for Rab8 and, therefore, inhibits this GTPase and stimulates inflammation. We also show that SopD activates Rab8 by displacing it from its cognate guanosine dissociation inhibitor, resulting in the stimulation of a signalling cascade that suppresses inflammation. We solved the crystal structure of SopD in association with Rab8 to a resolution of 2.3 Å, which reveals a unique contact interface that underlies these complex interactions. These findings show the remarkable evolution of a bacterial effector protein to exert both agonistic and antagonistic activities towards the same host cellular target to modulate the inflammatory response.
Collapse
|
45
|
Carnevalli LS, Taylor MA, King M, Coenen-Stass AML, Hughes AM, Bell S, Proia TA, Wang Y, Ramos-Montoya A, Wali N, Carroll D, Singh M, Moschetta M, Gutierrez PM, Gardelli C, Critchlow SE, Klinowska T, Fawell SE, Barry ST. Macrophage Activation Status Rather than Repolarization Is Associated with Enhanced Checkpoint Activity in Combination with PI3Kγ Inhibition. Mol Cancer Ther 2021; 20:1080-1091. [PMID: 33785652 DOI: 10.1158/1535-7163.mct-20-0961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Suppressive myeloid cells mediate resistance to immune checkpoint blockade. PI3Kγ inhibition can target suppressive macrophages, and enhance efficacy of immune checkpoint inhibitors. However, how PI3Kγ inhibitors function in different tumor microenvironments (TME) to activate specific immune cells is underexplored. The effect of the novel PI3Kγ inhibitor AZD3458 was assessed in preclinical models. AZD3458 enhanced antitumor activity of immune checkpoint inhibitors in 4T1, CT26, and MC38 syngeneic models, increasing CD8+ T-cell activation status. Immune and TME biomarker analysis of MC38 tumors revealed that AZD3458 monotherapy or combination treatment did not repolarize the phenotype of tumor-associated macrophage cells but induced gene signatures associated with LPS and type II INF activation. The activation biomarkers were present across tumor macrophages that appear phenotypically heterogenous. AZD3458 alone or in combination with PD-1-blocking antibodies promoted an increase in antigen-presenting (MHCII+) and cytotoxic (iNOS+)-activated macrophages, as well as dendritic cell activation. AZD3458 reduced IL-10 secretion and signaling in primary human macrophages and murine tumor-associated macrophages, but did not strongly regulate IL-12 as observed in other studies. Therefore, rather than polarizing tumor macrophages, PI3Kγ inhibition with AZD3458 promotes a cytotoxic switch of macrophages into antigen-presenting activated macrophages, resulting in CD8 T-cell-mediated antitumor activity with immune checkpoint inhibitors associated with tumor and peripheral immune activation.
Collapse
Affiliation(s)
| | - Molly A Taylor
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Matthew King
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Adina M Hughes
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sigourney Bell
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Theresa A Proia
- Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Yanjun Wang
- Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Neha Wali
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Danielle Carroll
- Translational Medicine, Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Maneesh Singh
- Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michele Moschetta
- Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Cristina Gardelli
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden
| | - Susan E Critchlow
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Teresa Klinowska
- Late Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Simon T Barry
- Bioscience, Early Oncology, R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
46
|
Nacke M, Sandilands E, Nikolatou K, Román-Fernández Á, Mason S, Patel R, Lilla S, Yelland T, Galbraith LCA, Freckmann EC, McGarry L, Morton JP, Shanks E, Leung HY, Markert E, Ismail S, Zanivan S, Blyth K, Bryant DM. An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nat Commun 2021; 12:1623. [PMID: 33712589 PMCID: PMC7955138 DOI: 10.1038/s41467-021-21847-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.
Collapse
Affiliation(s)
- Marisa Nacke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Konstantina Nikolatou
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Álvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | - Eva C Freckmann
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Shehab Ismail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
- Department of Chemistry, KU Leuven, Celestijnenlaan, Belgium
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The CRUK Beatson Institute, Glasgow, UK.
| |
Collapse
|
47
|
Sala V, Della Sala A, Ghigo A, Hirsch E. Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress 2021; 5:40-51. [PMID: 33821232 PMCID: PMC8012884 DOI: 10.15698/cst2021.04.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| |
Collapse
|
48
|
Rathinaswamy MK, Gaieb Z, Fleming KD, Borsari C, Harris NJ, Moeller BE, Wymann MP, Amaro RE, Burke JE. Disease-related mutations in PI3Kγ disrupt regulatory C-terminal dynamics and reveal a path to selective inhibitors. eLife 2021; 10:e64691. [PMID: 33661099 PMCID: PMC7955810 DOI: 10.7554/elife.64691] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the class IB PI3K catalytic subunit (p110γ) playing key roles in immune signalling. p110γ is a key factor in inflammatory diseases and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the C-terminus can inactivate or activate enzyme activity. Screening of inhibitors using HDX-MS revealed that activation loop-binding inhibitors induce allosteric conformational changes that mimic those in the R1021C mutant. Structural analysis of advanced PI3K inhibitors in clinical development revealed novel binding pockets that can be exploited for further therapeutic development. Overall, this work provides unique insights into regulatory mechanisms that control PI3Kγ kinase activity and shows a framework for the design of PI3K isoform and mutant selective inhibitors.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San DiegoSan DiegoUnited States
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Chiara Borsari
- University of Basel, Department of BiomedicineBaselSwitzerland
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | | | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San DiegoSan DiegoUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| |
Collapse
|
49
|
When Rab GTPases meet innate immune signaling pathways. Cytokine Growth Factor Rev 2021; 59:95-100. [PMID: 33608190 DOI: 10.1016/j.cytogfr.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.
Collapse
|
50
|
Hepatic LDL receptor-related protein-1 deficiency alters mitochondrial dynamics through phosphatidylinositol 4,5-bisphosphate reduction. J Biol Chem 2021; 296:100370. [PMID: 33548224 PMCID: PMC7949165 DOI: 10.1016/j.jbc.2021.100370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
The LDL receptor-related protein 1 (LRP1) is a multifunctional transmembrane protein with endocytosis and signal transduction functions. Previous studies have shown that hepatic LRP1 deficiency exacerbates diet-induced steatohepatitis and insulin resistance via mechanisms related to increased lysosome and mitochondria permeability and dysfunction. The current study examined the impact of LRP1 deficiency on mitochondrial function in the liver. Hepatocytes isolated from liver-specific LRP1 knockout (hLrp1−/−) mice showed reduced oxygen consumption compared with control mouse hepatocytes. The mitochondria in hLrp1−/− mouse livers have an abnormal morphology and their membranes contain significantly less anionic phospholipids, including lower levels of phosphatidylethanolamine and cardiolipin that increase mitochondrial fission and impair fusion. Additional studies showed that LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase like protein-1 (PIP5KL1) and phosphatidylinositol 4-phosphate 5-kinase-1β (PIP5K1β). The absence of LRP1 reduces the levels of both PIP5KL1 and PIP5K1β in the plasma membrane and also lowers phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) levels in hepatocytes. These data indicate that LRP1 recruits PIP5KL1 and PIP5K1β to the plasma membrane for PI(4,5)P2 biosynthesis. The lack of LRP1 reduces lipid kinase expression, leading to lower PI(4,5)P2 levels, thereby decreasing the availability of this lipid metabolite in the cardiolipin biosynthesis pathway to cause cardiolipin reduction and the impairment in mitochondria homeostasis. Taken together, the current study identifies another signaling mechanism by which LRP1 regulates cell functions: binding and recruitment of PIP5KL1 and PIP5K1β to the membrane for PI(4,5)P2 synthesis. In addition, it highlights the importance of this mechanism for maintaining the integrity and functions of intracellular organelles.
Collapse
|