1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Indelicato E, Zech M, Eberl A, Boesch S. Insights on the Shared Genetic Landscape of Neurodevelopmental and Movement Disorders. Curr Neurol Neurosci Rep 2025; 25:24. [PMID: 40095113 PMCID: PMC11914236 DOI: 10.1007/s11910-025-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Large-scale studies using hypothesis-free exome sequencing have revealed the strong heritability of neurodevelopmental disorders (NDDs) and their molecular overlap with later-onset, progressive, movement disorders phenotypes. In this review, we focus on the shared genetic landscape of NDDs and movement disorders. RECENT FINDINGS Cumulative research has shown that up to 30% of cases labelled as "cerebral palsy" have a monogenic etiology. Causal pathogenic variants are particularly enriched in genes previously associated with adult-onset progressive movement disorders, such as spastic paraplegias, dystonias, and cerebellar ataxias. Biological pathways that have emerged as common culprits are transcriptional regulation, neuritogenesis, and synaptic function. Defects in the same genes can cause neurological dysfunction both during early development and later in life. We highlight the implications of the increasing number of NDD gene etiologies for genetic testing in movement disorders. Finally, we discuss gaps and opportunities in the translation of this knowledge to the bedside.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Anna Eberl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
Zhuang K, Leng L, Su X, Wang S, Su Y, Chen Y, Yuan Z, Zi L, Li J, Xie W, Yan S, Xia Y, Wang H, Li H, Chen Z, Yuan T, Zhang J. Menin Deficiency Induces Autism-Like Behaviors by Regulating Foxg1 Transcription and Participates in Foxg1-Related Encephalopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307953. [PMID: 38582517 PMCID: PMC11200012 DOI: 10.1002/advs.202307953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.
Collapse
Affiliation(s)
- Kai Zhuang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Lige Leng
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Xiao Su
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Shuzhong Wang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Yuemin Su
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Yanbing Chen
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Ziqi Yuan
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Liu Zi
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Jieyin Li
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Wenting Xie
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Sihan Yan
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Yujun Xia
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Han Wang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Huifang Li
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Zhenyi Chen
- Department of AnesthesiologyFirst Affiliated HospitalCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Tifei Yuan
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030China
| | - Jie Zhang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
- Department of AnesthesiologyFirst Affiliated HospitalCollege of MedicineXiamen UniversityXiamenFujian361105China
- The Key Laboratory of Neural and Vascular BiologyMinistry of EducationCollege of Basic MedicineHebei Medical UniversityShijiazhuang050017China
| |
Collapse
|
4
|
Keshri R, Detraux D, Phal A, McCurdy C, Jhajharia S, Chan TC, Mathieu J, Ruohola-Baker H. Next-generation direct reprogramming. Front Cell Dev Biol 2024; 12:1343106. [PMID: 38371924 PMCID: PMC10869521 DOI: 10.3389/fcell.2024.1343106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer's disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
Collapse
Affiliation(s)
- Riya Keshri
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Damien Detraux
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| | - Clara McCurdy
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Samriddhi Jhajharia
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Tung Ching Chan
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Dennison R, Usuga E, Chen H, Paul JZ, Arbelaez CA, Teng YD. Direct Cell Reprogramming and Phenotypic Conversion: An Analysis of Experimental Attempts to Transform Astrocytes into Neurons in Adult Animals. Cells 2023; 12:618. [PMID: 36831283 PMCID: PMC9954435 DOI: 10.3390/cells12040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.
Collapse
Affiliation(s)
- Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Harriet Chen
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Z. Paul
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
- Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
8
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
9
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
11
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
12
|
Aksoy A, Yayıcı Köken Ö, Ceylan AC, Toptaş Dedeoğlu Ö. KMT2B-Related Dystonia: Challenges in Diagnosis and Treatment. Mol Syndromol 2021; 13:159-164. [DOI: 10.1159/000518974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, we report the first known Turkish case of a novel nonsense mutation c.2453dupT (p.M818fs*28) in the <i>KMT2B</i> (NM_014727.2) gene diagnosed in a male patient with <i>KMT2B</i>-related dystonia (DYT-<i>KMT2B</i>, DYT-28, Dystonia*-28), which is a complex, childhood-onset, progressive, hereditary dystonia. The patient, who is followed up from 9 to 13 years of age, had dysmorphic features, developmental delay, short stature, and microcephaly, in addition to focal dystonia and hemichorea (in the right and left lower extremities). Generalized dystonia involving bulbar and cervical muscles, in addition to dystonic cramps, myoclonus, and hemiballismus, were also observed during the course of the follow-up. While he was able to perform basic functions like eating, climbing stairs, walking, and writing with the aid of levodopa and trihexyphenidyl treatment, his clinical status gradually deteriorated secondary to progressive generalized dystonia in the 4-year follow-up. Deep brain stimulation has been shown to be effective in several patients which could be the next preferred treatment for the patient.
Collapse
|
13
|
Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem 2021; 29:2399-2411. [PMID: 34749606 DOI: 10.2174/0929867328666211108105214] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic regulations play a crucial role in the expression of various genes that are important in the normal cell function. Any alteration in these epigenetic mechanisms can lead to the modification of histone and DNA resulting in the silencing or enhanced expression of some genes causing various diseases. Acetylation, methylation, ribosylation or phosphorylation of histone proteins modifies its interaction with the DNA, consequently changing the ratio of heterochromatin and euchromatin. Terminal lysine residues of histone proteins serve as potential targets of such epigenetic modifications. The current review focuses on the histone modifications, their contributing factors, role of these modifications on metabolism leading to cancer and methylation of histone in cancer affects the DNA repair mechanisms.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Nehal Rana
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN. United Kingdom
| |
Collapse
|
14
|
Ciolfi A, Foroutan A, Capuano A, Pedace L, Travaglini L, Pizzi S, Andreani M, Miele E, Invernizzi F, Reale C, Panteghini C, Iascone M, Niceta M, Gavrilova RH, Schultz-Rogers L, Agolini E, Bedeschi MF, Prontera P, Garibaldi M, Galosi S, Leuzzi V, Soliveri P, Olson RJ, Zorzi GS, Garavaglia BM, Tartaglia M, Sadikovic B. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin Epigenetics 2021; 13:157. [PMID: 34380541 PMCID: PMC8359374 DOI: 10.1186/s13148-021-01145-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. Results We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. Conclusions We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01145-y.
Collapse
Affiliation(s)
- Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Alessandro Capuano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lorena Travaglini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marco Andreani
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | | | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paolo Prontera
- Maternal-Infantile Department, University Hospital of Perugia, Perugia, Italy
| | - Matteo Garibaldi
- Department of Neuroscience, NESMOS, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Paola Soliveri
- Department of Neurology, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giovanna S Zorzi
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Barbara M Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada. .,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada. .,Molecular Diagnostics Division, London Health Sciences Centre, London, Canada.
| |
Collapse
|
15
|
Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021; 15:660748. [PMID: 33854418 PMCID: PMC8039129 DOI: 10.3389/fncel.2021.660748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Non-mammalian vertebrates can restore their auditory and vestibular hair cells naturally by triggering the regeneration of adjacent supporting cells. The transcription factor ATOH1 is a key regulator of hair cell development and regeneration in the inner ear. Following the death of hair cells, supporting cells upregulate ATOH1 and give rise to new hair cells. However, in the mature mammalian cochlea, such natural regeneration of hair cells is largely absent. Transcription factor reprogramming has been used in many tissues to convert one cell type into another, with the long-term hope of achieving tissue regeneration. Reprogramming transcription factors work by altering the transcriptomic and epigenetic landscapes in a target cell, resulting in a fate change to the desired cell type. Several studies have shown that ATOH1 is capable of reprogramming cochlear non-sensory tissue into cells resembling hair cells in young animals. However, the reprogramming ability of ATOH1 is lost with age, implying that the potency of individual hair cell-specific transcription factors may be reduced or lost over time by mechanisms that are still not clear. To circumvent this, combinations of key hair cell transcription factors have been used to promote hair cell regeneration in older animals. In this review, we summarize recent findings that have identified and studied these reprogramming factor combinations for hair cell regeneration. Finally, we discuss the important questions that emerge from these findings, particularly the feasibility of therapeutic strategies using reprogramming factors to restore human hearing in the future.
Collapse
Affiliation(s)
- Amrita A. Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 2021; 22:410-424. [PMID: 33619373 DOI: 10.1038/s41580-021-00335-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
Collapse
|
17
|
Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion. Stem Cell Reports 2021; 16:534-547. [PMID: 33577795 PMCID: PMC7940254 DOI: 10.1016/j.stemcr.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Direct neuronal reprogramming potentially provides valuable sources for cell-based therapies. Proneural gene Ascl1 converts astrocytes into induced neuronal (iN) cells efficiently both in vitro and in vivo. However, the underlying mechanisms are largely unknown. By combining RNA sequencing and chromatin immunoprecipitation followed by high-throughput sequencing, we found that the expression of 1,501 genes was markedly changed during the early stages of Ascl1-induced astrocyte-to-neuron conversion and that the regulatory regions of 107 differentially expressed genes were directly bound by ASCL1. Among Ascl1's direct targets, Klf10 regulates the neuritogenesis of iN cells at the early stage, Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells, and Neurod4 and Chd7 are required for the efficient conversion of astrocytes into neurons. Together, this study provides more insights into understanding the molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion and will be of value for the application of direct neuronal reprogramming. RNA-seq and ChIP-seq were used to study Ascl1-induced astrocyte-to-neuron conversion Early Klf10 regulates neuritogenesis and electrophysiological properties of iN cells Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells Neurod4 and Chd7 are required for efficient conversion of astrocytes to neurons
Collapse
|
18
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
20
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
21
|
Sze CC, Ozark PA, Cao K, Ugarenko M, Das S, Wang L, Marshall SA, Rendleman EJ, Ryan CA, Zha D, Douillet D, Chen FX, Shilatifard A. Coordinated regulation of cellular identity-associated H3K4me3 breadth by the COMPASS family. SCIENCE ADVANCES 2020; 6:eaaz4764. [PMID: 32637595 PMCID: PMC7314515 DOI: 10.1126/sciadv.aaz4764] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/08/2020] [Indexed: 06/01/2023]
Abstract
Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set1B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while Mll2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, Mll2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, Mll2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.
Collapse
Affiliation(s)
- Christie C. Sze
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Patrick A. Ozark
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Kaixiang Cao
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Michal Ugarenko
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Siddhartha Das
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Stacy A. Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Emily J. Rendleman
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Caila A. Ryan
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Didi Zha
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Delphine Douillet
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Fei Xavier Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| |
Collapse
|
22
|
Liu K, Min J. Structural Basis for the Recognition of Non-methylated DNA by the CXXC Domain. J Mol Biol 2020:S0022-2836(19)30591-1. [DOI: 10.1016/j.jmb.2019.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
23
|
Liu XL, Liu HQ, Li J, Mao CY, He JT, Zhao X. Role of epigenetic in leukemia: From mechanism to therapy. Chem Biol Interact 2020; 317:108963. [PMID: 31978391 DOI: 10.1016/j.cbi.2020.108963] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for the involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is anaggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. In this review, we will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that this novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China.
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
24
|
Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F, Tang B. m 6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer 2019; 18:185. [PMID: 31849331 PMCID: PMC6918584 DOI: 10.1186/s12943-019-1116-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer (CC) cells can exhibit stemness and expansion capabilities, which contribute to resistance to conventional chemotherapies. Aberrant expression of CBX8 has been identified in many types of cancer, but the cause of this aberrant CBX8 expression and whether CBX8 is associated with stemness properties in CC remain unknown. METHODS qRT-PCR and IHC were applied to examine CBX8 levels in normal and chemoresistant CC tissues. Cancer cell stemness and chemosensitivity were evaluated by spheroid formation, colony formation, Western blot and flow cytometry assays. RNA-seq combined with ChIP-seq was used to identify target genes, and ChIP, IP and dual luciferase reporter assays were applied to explore the underlying mechanisms. RESULTS CBX8 was significantly overexpressed in chemoresistant CC tissues. In addition, CBX8 could promote stemness and suppress chemosensitivity through LGR5. Mechanistic studies revealed that CBX8 activate the transcription of LGR5 in a noncanonical manner with assistance of Pol II. CBX8 recruited KMT2b to the LGR5 promoter, which maintained H3K4me3 status to promote LGR5 expression. Moreover, m6A methylation participated in the upregulation of CBX8 by maintaining CBX8 mRNA stability. CONCLUSIONS Upon m6A methylation-induced upregulation, CBX8 interacts with KMT2b and Pol II to promote LGR5 expression in a noncanonical manner, which contributes to increased cancer stemness and decreased chemosensitivity in CC. This study provides potential new therapeutic targets and valuable prognostic markers for CC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan
- Department of General Surgery, Affiliated hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Min Kang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fanchao Meng
- Department of General Surgery, Affiliated hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Song
- Department of General Surgery, Affiliated hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Hiroshi Kaneko
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan.
| | - Bo Tang
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan.
| |
Collapse
|
25
|
Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 2019; 593:3316-3337. [PMID: 31715002 PMCID: PMC6907729 DOI: 10.1002/1873-3468.13678] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Within just over a decade, human reprogramming-based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age-associated diseases. Direct cell-type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age-related and epigenetic contributions and can complement iPSC-based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro-born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming-based neuronal cell models and how iNs are relevant to disease modeling.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Frank Edenhofer
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To summarize the molecular and clinical findings of KMT2B-related dystonia (DYT-KMT2B), a newly identified genetic dystonia syndrome. RECENT FINDINGS Since first described in 2016, 66 different KMT2B-affecting variants, encompassing a set of frameshift, nonsense, splice-site, missense, and deletion mutations, have been reported in 76 patients. Most mutations are de novo and expected to mediate epigenetic dysregulation by inducing KMT2B haploinsufficiency. DYT-KMT2B is characterized phenotypically by limb-onset childhood dystonia that tends to spread progressively, resulting in generalized dystonia with cranio-cervical involvement. Co-occuring signs such as intellectual disability are frequently observed. Sustained response to deep brain stimulation (DBS), including restoration of independent ambulation, is seen in 93% (27/29) of patients. DYT-KMT2B is emerging as a prevalent monogenic dystonia. Childhood-onset dystonia presentations should prompt a search for KMT2B mutations, preferentially via next-generation-sequencing and genomic-array technologies, to enable specific counseling and treatment. Prospective multicenter studies are desirable to establish KMT2B mutational status as a DBS outcome predictor.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Munich, Neuherberg, Germany.,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniel D Lam
- Institut für Neurogenomik, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Munich, Neuherberg, Germany
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Munich, Neuherberg, Germany. .,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
27
|
Dafsari HS, Sprute R, Wunderlich G, Daimagüler HS, Karaca E, Contreras A, Becker K, Schulze-Rhonhof M, Kiening K, Karakulak T, Kloss M, Horn A, Pauls A, Nürnberg P, Altmüller J, Thiele H, Assmann B, Koy A, Cirak S. Novel mutations in KMT2B offer pathophysiological insights into childhood-onset progressive dystonia. J Hum Genet 2019; 64:803-813. [PMID: 31165786 DOI: 10.1038/s10038-019-0625-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
Rapid progress has recently been made in the elucidation of the genetic basis of childhood-onset inherited generalized dystonia (IGD) due to the implementation of genomic sequencing methodologies. We identified four patients with childhood-onset IGD harboring novel disease-causing mutations in lysine-specific histone methyltransferase 2B gene (KMT2B) by whole-exome sequencing. The main focus of this paper is to gain novel pathophysiological insights through understanding the molecular consequences of these mutations. The disease course is mostly progressive, evolving from lower limbs into generalized dystonia, which could be associated with dysarthria, dysphonia, intellectual disability, orofacial dyskinesia, and sometimes distinct dysmorphic facial features. In two patients, motor performances improved after bilateral implantation of deep brain stimulation in the globus pallidus internus (GPi-DBS). Pharmacotherapy with trihexyphenidyl reduced dystonia in two patients. We discovered three novel KMT2B mutations. Our analyses revealed that the mutation in patient 1 (c.7463A > G, p.Y2488C) is localized in the highly conserved FYRC domain of KMT2B. This mutation holds the potential to alter the inter-domain FYR interactions, which could lead to KMT2B instability. The mutations in patients 2 and 3 (c.3596_3697insC, p.M1202Dfs*22; c.4229delA, p.Q1410Rfs*12) lead to predicted unstable transcripts, likely to be subject to degradation by non-sense-mediated decay. Childhood-onset progressive dystonia with orofacial involvement is one of the main clinical manifestations of KMT2B mutations. In all, 26% (18/69) of the reported cases have T2 signal alterations of the globus pallidus internus, mostly at a younger age. Anticholinergic medication and GPi-DBS are promising treatment options and shall be considered early.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rosanne Sprute
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hülya-Sevcan Daimagüler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Adriana Contreras
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kerstin Becker
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mira Schulze-Rhonhof
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl Kiening
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Tülay Karakulak
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Manja Kloss
- Department of Neurology, University Hospital, Heidelberg, Germany
| | - Annette Horn
- Department of General Pediatrics and Neonatology, University Children's Hospital, Düsseldorf, Germany
| | - Amande Pauls
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Birgit Assmann
- Department of Neuropediatrics, University Children's Hospital, Heidelberg, Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany. .,Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|