1
|
Chaudhary N, Choudhary BS, Shivashankar A, Manna S, Ved K, Shaikh S, Khanna S, Baar J, Dani J, Sahoo S, Soundharya R, Jolly MK, Verma N. EGFR-to-Src family tyrosine kinase switching in proliferating-DTP TNBC cells creates a hyperphosphorylation-dependent vulnerability to EGFR TKI. Cancer Cell Int 2025; 25:55. [PMID: 39972345 PMCID: PMC11841279 DOI: 10.1186/s12935-025-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive type of breast malignancy, with chemotherapy as the only mainstay treatment. TNBC patients have the worst prognoses as a large fraction of them do not achieve complete pathological response post-treatment and develop drug-resistant residual disease. Molecular mechanisms that trigger proliferation in drug-resistant chemo-residual TNBC cells are poorly understood due to the lack of investigations using clinically relevant cellular models. In this study, we have established TNBC subtype-specific cellular models of proliferating drug-tolerant persister (PDTP) cells using different classes of chemotherapeutic agents that recapitulate clinical residual disease with molecular heterogeneity. Analysis of total phospho-tyrosine signals in TNBC PDTPs showed an enhanced phospho-tyrosine content compared to the parental cells (PC). Interestingly, using mass-spectrometry analysis, we identified a dramatic decrease in epidermal growth factor receptor (EGFR) expression in the PDTPs, while the presence of hyper-activated tyrosine phosphorylation of EGFR compared to PC. Further, we show that EGFR has enhanced lysosomal trafficking in PDTPs with a concomitant increase in N-Myc Downstream Regulated-1 (NDRG1) expression that co-localizes with EGFR to mediate receptor degradation. More surprisingly, we found that reduced protein levels of EGFR are coupled with a robust increase in Src family kinases, including Lyn and Fyn kinases, that creates a hyper-phosphorylation state of EGFR-Src tyrosine kinases axis in PDTPs and mediates downstream over-activation of STAT3, AKT and MAP kinases. Moreover, paclitaxel-derived PDTPs show increased sensitivity to EGFR TKI Gefitinib and its combination with paclitaxel selectively induced cell death in Paclitaxel-derived PDTP (PDTP-P) TNBC cells and 3D spheroids by strongly downregulating phosphorylation of EGFR-Src with concomitant downregulation of Lyn and Fyn tyrosine kinases. Collectively, this study identifies a unique hyper-phosphorylation cellular state of TNBC PDTPs established by switching of EGFR-Src family tyrosine kinases, creating a vulnerability to EGFR TKI.
Collapse
Affiliation(s)
- Nazia Chaudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Bhagya Shree Choudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Anusha Shivashankar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Subhakankha Manna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Khyati Ved
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Shagufa Shaikh
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Sonal Khanna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jeetnet Baar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jagruti Dani
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - R Soundharya
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India.
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Reeves AE, Vilen Z, Fuentecilla TR, Parker CG, Huang ML. Charting the Dynamic Trophoblast Plasma Membrane Identifies LYN As a Functional Regulator of Syncytialization. ACS Chem Biol 2024; 19:2220-2231. [PMID: 39289808 PMCID: PMC11863573 DOI: 10.1021/acschembio.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The differentiation of placental cytotrophoblasts (CTBs) into the syncytiotrophoblast (STB) layer results in a significant remodeling of the plasma membrane proteome. Here, we use a peroxidase-catalyzed proximity labeling strategy to map the dynamic plasma membrane proteomes of CTBs and STBs. Coupled with mass-spectrometry-based proteomics, we identify hundreds of plasma membrane proteins and observe relative changes in protein abundance throughout differentiation, including the upregulation of the plasma-membrane-localized nonreceptor tyrosine kinase LYN. We show that both siRNA-mediated knockdown and small molecule inhibition of LYN kinase function impairs CTB fusion and reduces the expression of syncytialization markers, presenting a function for LYN outside of its canonical role in immunological signaling. Our results demonstrate the use of the proximity labeling platform to discover functional regulators within the plasma membrane and provide new avenues to regulate trophoblast differentiation.
Collapse
Affiliation(s)
- Abigail E Reeves
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Trinity R Fuentecilla
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Christopher G Parker
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
3
|
Doddi S, Hamoud AR, Eby HM, Zhang X, Imami AS, Shedroff E, Schiefer I, Moreno-Lopez J, Gamm D, Meller J, McCullumsmith RE. Transcriptomic Analysis of Metastatic Uveal Melanoma and Differences in Male and Female Patients. Cancer Genomics Proteomics 2024; 21:350-360. [PMID: 38944422 PMCID: PMC11215432 DOI: 10.21873/cgp.20452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND/AIM Uveal melanoma is an ocular malignancy whose prognosis severely worsens following metastasis. In order to improve the understanding of molecular physiology of metastatic uveal melanoma, we identified genes and pathways implicated in metastatic vs non-metastatic uveal melanoma. PATIENTS AND METHODS A previously published dataset from Gene Expression Omnibus (GEO) was used to identify differentially expressed genes between metastatic and non-metastatic samples as well as to conduct pathway and perturbagen analyses using Gene Set Enrichment Analysis (GSEA), EnrichR, and iLINCS. RESULTS In male metastatic uveal melanoma samples, the gene LOC401052 is significantly down-regulated and FHDC1 is significantly up-regulated compared to non-metastatic male samples. In female samples, no significant differently expressed genes were found. Additionally, we identified many significant up-regulated immune response pathways in male metastatic uveal melanoma, including "T cell activation in immune response". In contrast, many top up-regulated female pathways involve iron metabolism, including "heme biosynthetic process". iLINCS perturbagen analysis identified that both male and female samples have similar discordant activity with growth factor receptors, but only female samples have discordant activity with progesterone receptor agonists. CONCLUSION Our results from analyzing genes, pathways, and perturbagens demonstrate differences in metastatic processes between sexes.
Collapse
Affiliation(s)
- Sishir Doddi
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A
| | - Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A
| | - Hunter M Eby
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A
| | - Elizabeth Shedroff
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A
| | - Isaac Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, U.S.A
| | - Jose Moreno-Lopez
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, U.S.A
| | - David Gamm
- McPherson Eye Research Institute and Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, U.S.A
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, U.S.A.;
- Neurosciences Institute, ProMedica, Toledo, OH, U.S.A
| |
Collapse
|
4
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Aminu M, Hong L, Vokes N, Schmidt ST, Saad M, Zhu B, Le X, Tina C, Sheshadri A, Wang B, Jaffray D, Futreal A, Lee JJ, Byers LA, Gibbons D, Heymach J, Chen K, Cheng C, Zhang J, Wu J. Joint multi-omics discriminant analysis with consistent representation learning using PANDA. RESEARCH SQUARE 2024:rs.3.rs-4353037. [PMID: 38798352 PMCID: PMC11118856 DOI: 10.21203/rs.3.rs-4353037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Integrative multi-omics analysis provides deeper insight and enables better and more realistic modeling of the underlying biology and causes of diseases than does single omics analysis. Although several integrative multi-omics analysis methods have been proposed and demonstrated promising results in integrating distinct omics datasets, inconsistent distribution of the different omics data, which is caused by technology variations, poses a challenge for paired integrative multi-omics methods. In addition, the existing discriminant analysis-based integrative methods do not effectively exploit correlation and consistent discriminant structures, necessitating a compromise between correlation and discrimination in using these methods. Herein we present PAN-omics Discriminant Analysis (PANDA), a joint discriminant analysis method that seeks omics-specific discriminant common spaces by jointly learning consistent discriminant latent representations for each omics. PANDA jointly maximizes between-class and minimizes within-class omics variations in a common space and simultaneously models the relationships among omics at the consistency representation and cross-omics correlation levels, overcoming the need for compromise between discrimination and correlation as with the existing integrative multi-omics methods. Because of the consistency representation learning incorporated into the objective function of PANDA, this method seeks a common discriminant space to minimize the differences in distributions among omics, can lead to a more robust latent representations than other methods, and is against the inconsistency of the different omics. We compared PANDA to 10 other state-of-the-art multi-omics data integration methods using both simulated and real-world multi-omics datasets and found that PANDA consistently outperformed them while providing meaningful discriminant latent representations. PANDA is implemented using both R and MATLAB, with codes available at https://github.com/WuLabMDA/PANDA.
Collapse
Affiliation(s)
- Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T. Schmidt
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maliazurina Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Zhu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cascone Tina
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Wang
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Institution of Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Kaller M, Forné I, Imhof A, Hermeking H. LINC01021 Attenuates Expression and Affects Alternative Splicing of a Subset of p53-Regulated Genes. Cancers (Basel) 2024; 16:1639. [PMID: 38730591 PMCID: PMC11083319 DOI: 10.3390/cancers16091639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Loss of the p53-inducible LINC01021 in p53-proficient CRC cell lines results in increased sensitivity to DNA-damaging chemotherapeutics. Here, we comprehensively analyze how LINC01021 affects the p53-induced transcriptional program. METHODS Using a CRISPR/Cas9-approach, we deleted the p53 binding site in the LINC01021 promoter of SW480 colorectal cancer cells and subjected them to RNA-Seq analysis after the activation of ectopic p53. RNA affinity purification followed by mass spectrometry was used to identify proteins associated with LINC01021. RESULTS Loss of the p53-inducibility of LINC01021 resulted in an ~1.8-fold increase in the number of significantly regulated mRNAs compared to LINC01021 wild-type cells after ectopic activation of p53. A subset of direct p53 target genes, such as NOXA and FAS, displayed significantly stronger induction when the p53-inducibility of LINC01021 was abrogated. Loss of the p53-inducibility of LINC01021 resulted in alternative splicing of a small number of mRNAs, such as ARHGAP12, HSF2, and LYN. Several RNA binding proteins involved in pre-mRNA splicing were identified as interaction partners of LINC01021 by mass spectrometry. CONCLUSIONS Our results suggest that LINC01021 may restrict the extent and strength of p53-mediated transcriptional changes via context-dependent regulation of the expression and splicing of a subset of p53-regulated genes.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | - Ignasi Forné
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, D-82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, D-82152 Planegg-Martinsried, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Helmy SWA, Abdel-Aziz AK, Dokla EME, Ahmed TE, Hatem Y, Abdel Rahman EA, Sharaky M, Shahin MI, Elrazaz EZ, Serya RAT, Henary M, Ali SS, Abou El Ella DA. Novel sulfonamide-indolinone hybrids targeting mitochondrial respiration of breast cancer cells. Eur J Med Chem 2024; 268:116255. [PMID: 38401190 DOI: 10.1016/j.ejmech.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 μM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.
Collapse
Affiliation(s)
- Sama W A Helmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Tarek E Ahmed
- Department of Chemistry and Center of Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303, USA
| | - Yasmin Hatem
- Research Department, 57357 Children's Cancer Hospital Egypt, Cairo, 4260102, Egypt
| | - Engy A Abdel Rahman
- Research Department, 57357 Children's Cancer Hospital Egypt, Cairo, 4260102, Egypt; Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, 11796, Egypt
| | - Mai I Shahin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Maged Henary
- Department of Chemistry and Center of Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303, USA
| | - Sameh S Ali
- Research Department, 57357 Children's Cancer Hospital Egypt, Cairo, 4260102, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Sidgwick GP, Weston R, Mahmoud AM, Schiro A, Serracino-Inglott F, Tandel SM, Skeoch S, Bruce IN, Jones AM, Alexander MY, Wilkinson FL. Novel Glycomimetics Protect against Glycated Low-Density Lipoprotein-Induced Vascular Calcification In Vitro via Attenuation of the RAGE/ERK/CREB Pathway. Cells 2024; 13:312. [PMID: 38391925 PMCID: PMC10887290 DOI: 10.3390/cells13040312] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.
Collapse
Affiliation(s)
- Gary P. Sidgwick
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ria Weston
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ayman M. Mahmoud
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Andrew Schiro
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Ferdinand Serracino-Inglott
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Shikha M. Tandel
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Sarah Skeoch
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Royal National Hospital for Rheumatic Diseases, Bath BA1 1RL, UK
| | - Ian N. Bruce
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Alan M. Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK
| | - M. Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Fiona L. Wilkinson
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| |
Collapse
|
9
|
Tornillo G, Warrington L, Kendrick H, Higgins AT, Hay T, Beck S, Smalley MJ. Conditional in vivo deletion of LYN kinase has little effect on a BRCA1 loss-of-function-associated mammary tumour model. Dis Model Mech 2024; 17:dmm050211. [PMID: 38149669 PMCID: PMC10846530 DOI: 10.1242/dmm.050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lauren Warrington
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Adam T. Higgins
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Hay
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sam Beck
- Independent Anatomic Pathology Ltd, Calyx House, South Road, Taunton TA1 3DU, UK
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
10
|
Shimpi AA, Williams ED, Ling L, Tamir T, White FM, Fischbach C. Phosphoproteomic Changes Induced by Cell-Derived Matrix and Their Effect on Tumor Cell Migration and Cytoskeleton Remodeling. ACS Biomater Sci Eng 2023; 9:6835-6848. [PMID: 38015076 DOI: 10.1021/acsbiomaterials.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increased fibrotic extracellular matrix (ECM) deposition promotes tumor invasion, which is the first step of the metastatic cascade. Yet, the underlying mechanisms are poorly understood as conventional studies of tumor cell migration are often performed in 2D cultures lacking the compositional and structural complexity of native ECM. Moreover, these studies frequently focus on select candidate pathways potentially overlooking other relevant changes in cell signaling. Here, we combine a cell-derived matrix (CDM) model with phosphotyrosine phosphoproteomic analysis to investigate tumor cell migration on fibrotic ECM relative to standard tissue culture plastic (TCP). Our results suggest that tumor cells cultured on CDMs migrate faster and in a more directional manner than their counterparts on TCP. These changes in migration correlate with decreased cell spreading and increased cell elongation. While the formation of phosphorylated focal adhesion kinase (pFAK)+ adhesion complexes did not vary between TCP and CDMs, time-dependent phosphoproteomic analysis identified that the SRC family kinase LYN may be differentially regulated. Pharmacological inhibition of LYN decreased tumor cell migration and cytoskeletal rearrangement on CDMs and also on TCP, suggesting that LYN regulates tumor cell migration on CDMs in combination with other mechanisms. These data highlight how the combination of physicochemically complex in vitro systems with phosphoproteomics can help identify signaling mechanisms by which the fibrotic ECM regulates tumor cell migration.
Collapse
Affiliation(s)
- Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Erik D Williams
- Department of Information Science, Cornell University, Ithaca, New York 14853, United States
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tigist Tamir
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Vergara-Gómez L, Bizama C, Zhong J, Buchegger K, Suárez F, Rosa L, Ili C, Weber H, Obreque J, Espinoza K, Repetto G, Roa JC, Leal P, García P. A Novel Gemcitabine-Resistant Gallbladder Cancer Model Provides Insights into Molecular Changes Occurring during Acquired Resistance. Int J Mol Sci 2023; 24:ijms24087238. [PMID: 37108401 PMCID: PMC10139168 DOI: 10.3390/ijms24087238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Treatment options for advanced gallbladder cancer (GBC) are scarce and usually rely on cytotoxic chemotherapy, but the effectiveness of any regimen is limited and recurrence rates are high. Here, we investigated the molecular mechanisms of acquired resistance in GBC through the development and characterization of two gemcitabine-resistant GBC cell sublines (NOZ GemR and TGBC1 GemR). Morphological changes, cross-resistance, and migratory/invasive capabilities were evaluated. Then, microarray-based transcriptome profiling and quantitative SILAC-based phosphotyrosine proteomic analyses were performed to identify biological processes and signaling pathways dysregulated in gemcitabine-resistant GBC cells. The transcriptome profiling of parental and gemcitabine-resistant cells revealed the dysregulation of protein-coding genes that promote the enrichment of biological processes such as epithelial-to-mesenchymal transition and drug metabolism. On the other hand, the phosphoproteomics analysis of NOZ GemR identified aberrantly dysregulated signaling pathways in resistant cells as well as active kinases, such as ABL1, PDGFRA, and LYN, which could be novel therapeutic targets in GBC. Accordingly, NOZ GemR showed increased sensitivity toward the multikinase inhibitor dasatinib compared to parental cells. Our study describes transcriptome changes and altered signaling pathways occurring in gemcitabine-resistant GBC cells, which greatly expands our understanding of the underlying mechanisms of acquired drug resistance in GBC.
Collapse
Affiliation(s)
- Luis Vergara-Gómez
- Biomedicine and Translational Research Laboratory, Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Carolina Bizama
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center for Cancer Prevention and Control (CECAN), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jun Zhong
- Delta Omics Biotechnology, Rockville, MD 20855, USA
| | - Kurt Buchegger
- Department of Basic Sciences, Universidad de La Frontera, Temuco 4810296, Chile
| | - Felipe Suárez
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Lorena Rosa
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Helga Weber
- Biomedicine and Translational Research Laboratory, Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Javiera Obreque
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Karena Espinoza
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Gabriela Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan C Roa
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center for Cancer Prevention and Control (CECAN), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pamela Leal
- Biomedicine and Translational Research Laboratory, Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| | - Patricia García
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center for Cancer Prevention and Control (CECAN), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
12
|
Kumari S, Kumar P. Design and Computational Analysis of an MMP9 Inhibitor in Hypoxia-Induced Glioblastoma Multiforme. ACS OMEGA 2023; 8:10565-10590. [PMID: 36969457 PMCID: PMC10035023 DOI: 10.1021/acsomega.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The main therapeutic difficulties in treating hypoxia-induced glioblastoma multiforme (GBM) are toxicity of current treatments and the resistance brought on by the microenvironment. More effective therapeutic alternatives are urgently needed to reduce tumor lethality. Hence, we screened plant-based natural product panels intending to identify novel drugs without elevating drug resistance. We explored GEO for the hypoxia GBM model and compared hypoxic genes to non-neoplastic brain cells. A total of 2429 differentially expressed genes expressed exclusively in hypoxia were identified. The functional enrichment analysis demonstrated genes associated with GBM, further PPI network was constructed, and biological pathways associated with them were explored. Seven webtools, including GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis, were used to validate 32 hub genes discovered using Cytoscape tool in GBM patient samples. Four GBM-specific hypoxic hub genes, LYN, MMP9, PSMB9, and TIMP1, were connected to the tumor microenvironment using TIMER analysis. 11 promising hits demonstrated positive drug-likeness with nontoxic characteristics and successfully crossed blood-brain barrier and ADMET analyses. Top-ranking hits have stable intermolecular interactions with the MMP9 protein according to molecular docking, MD simulation, MM-PBSA, PCA, and DCCM analyses. Herein, we have reported flavonoids, 7,4'-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4'-hydroxy-7-methoxyflavan, to inhibit MMP9, a novel hypoxia gene signature that could serve as a promising predictor in various clinical applications, including GBM diagnosis, prognosis, and targeted therapy.
Collapse
|
13
|
Vom Stein AF, Rebollido-Rios R, Lukas A, Koch M, von Lom A, Reinartz S, Bachurski D, Rose F, Bozek K, Abdallah AT, Kohlhas V, Saggau J, Zölzer R, Zhao Y, Bruns C, Bröckelmann PJ, Lohneis P, Büttner R, Häupl B, Oellerich T, Nguyen PH, Hallek M. LYN kinase programs stromal fibroblasts to facilitate leukemic survival via regulation of c-JUN and THBS1. Nat Commun 2023; 14:1330. [PMID: 36899005 PMCID: PMC10006233 DOI: 10.1038/s41467-023-36824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rocio Rebollido-Rios
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Anna Lukas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Maximilian Koch
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Anton von Lom
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - France Rose
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- University of Cologne, Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- University of Cologne, Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ali T Abdallah
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Julia Saggau
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rebekka Zölzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Paul J Bröckelmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max-Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Philipp Lohneis
- Reference Centre for Lymph Node Pathology and Hematopathology, Hämatopathologie Lübeck, Lübeck, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Pathology, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Faculty of Medicine and University Hospital Cologne, Department of Pathology, University of Cologne, Cologne, Germany
| | - Björn Häupl
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Transcriptomic Analysis of Subtype-Specific Tyrosine Kinases as Triple Negative Breast Cancer Biomarkers. Cancers (Basel) 2023; 15:cancers15020403. [PMID: 36672350 PMCID: PMC9856281 DOI: 10.3390/cancers15020403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) shows impediment to the development of targeted therapies due to the absence of specific molecular targets. The high heterogeneity across TNBC subtypes, which can be classified to be at least four subtypes, including two basal-like (BL1, BL2), a mesenchymal (M), and a luminal androgen receptor (LAR) subtype, limits the response to cancer therapies. Despite many attempts to identify TNBC biomarkers, there are currently no effective targeted therapies against this malignancy. In this study, thus, we identified the potential tyrosine kinase (TK) genes that are uniquely expressed in each TNBC subtype, since TKs have been typically used as drug targets. Differentially expressed TK genes were analyzed from The Cancer Genome Atlas (TCGA) database and were confirmed with the other datasets of both TNBC patients and cell lines. The results revealed that each TNBC subtype expressed distinct TK genes that were specific to the TNBC subtype. The identified subtype-specific TK genes of BL1, BL2, M, and LAR are LYN, CSF1R, FGRF2, and SRMS, respectively. These findings could serve as a potential biomarker of specific TNBC subtypes, which could lead to an effective treatment for TNBC patients.
Collapse
|
15
|
Wei W, Ban X, Yang F, Li J, Cheng X, Zhang R, Huang X, Huang Y, Li Q, Qiu Y, Zheng M, Zhu X, Li J. Phase II trial of efficacy, safety and biomarker analysis of sintilimab plus anlotinib for patients with recurrent or advanced endometrial cancer. J Immunother Cancer 2022; 10:e004338. [PMID: 35623659 PMCID: PMC9150151 DOI: 10.1136/jitc-2021-004338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although co-inhibition of the angiogenesis and programmed death 1 (PD-1) pathways is proposed as an effective anticancer strategy, studies in Chinese patients with endometrial cancer are sufficient. Anlotinib is an oral multi-targeted tyrosine kinase inhibitor affecting tumor angiogenesis and proliferation; sintilimab is an anti-PD-1 monoclonal antibody. METHODS This was a phase II trial using Simon's two-stage design. This study enrolled patients with endometrial cancer who had progressed after platinum-based chemotherapy. Sintilimab 200 mg was administered intravenously on day 1 every 3 weeks, and anlotinib 12 mg was administered on days 1-14 in a 21-day cycle. The primary endpoint was the objective response rate (ORR) using the immune-related Response Evaluation Criteria in Solid Tumors criteria. Immunohistochemistry and whole-exome sequencing were used as correlative investigations. RESULTS Between November 2019 and September 2020, 23 eligible patients were enrolled. The ORR and disease control rates were 73.9% (95% CI, 51.6 to 89.8) and 91.3% (95% CI, 72.0 to 98.9), respectively, with 4 complete and 12 partial responses. With a median follow-up of 15.4 months (95% CI, 12.6 to 18.3), the median progression-free survival was not reached, and the probability of PFS >12 months was 57.1% (95% CI, 33.6 to 75.0). Exploratory analysis revealed that mutations in the homologous repair pathway showed a trend for higher ORR (100% vs 0%, p=0.07). Treatment-related grade 3/4 adverse events were observed in 50.0% of the patients. CONCLUSIONS Sintilimab plus anlotinib demonstrated robust therapeutic benefits with tolerable toxicity in endometrial cancer. TRIAL REGISTRATION NUMBER NCT04157491.
Collapse
Affiliation(s)
- Wei Wei
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaohua Ban
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fan Yang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jibin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaqin Cheng
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Huang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongwen Huang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiaqia Li
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya Qiu
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Min Zheng
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jundong Li
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
16
|
Brian BF, Sauer ML, Greene JT, Senevirathne SE, Lindstedt AJ, Funk OL, Ruis BL, Ramirez LA, Auger JL, Swanson WL, Nunez MG, Moriarity BS, Lowell CA, Binstadt BA, Freedman TS. A dominant function of LynB kinase in preventing autoimmunity. SCIENCE ADVANCES 2022; 8:eabj5227. [PMID: 35452291 PMCID: PMC9032976 DOI: 10.1126/sciadv.abj5227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Ben F. Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Monica L. Sauer
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - S. Erandika Senevirathne
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anders J. Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Funk
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L. Ruis
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luis A. Ramirez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Auger
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney L. Swanson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Myra G. Nunez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryce A. Binstadt
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Liu J, Li J, Du H, Xu L, Yang Z, Yuan M, Zhang K, Li J, Xing W, Wang S, Hu T, Wang J, Wang J, Gong Q. Three Potential Tumor Markers Promote Metastasis and Recurrence of Colorectal Cancer by Regulating the Inflammatory Response: ADAM8, LYN, and S100A9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3118046. [PMID: 35103068 PMCID: PMC8800630 DOI: 10.1155/2022/3118046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Metastasis and recurrence are major causes of colorectal cancer (CRC) death, but their molecular mechanisms are unclear. In this study, genes associated with CRC metastasis and recurrence were identified by weighted gene coexpression network analysis, selecting the top 25% most variant genes in the dataset GSE33113. By average linkage hierarchical clustering, a total of 21 modules were generated. One key module was identified as the most relevant to the prognosis of CRC. Gene Ontology analysis indicated that genes associated with tumor metastasis and recurrence in this module were significantly enriched in inflammatory biological functions. Functional analysis was performed on the key module, and candidate hub genes (ADAM8, LYN, and S100A9) were screened out by expression and survival analysis. In summary, the three core genes identified in this study could greatly improve our understanding of CRC metastasis and recurrence. The results also provide a theoretical basis for the use of three core genes (ADAM8, LYN, and S100A9) as a combined marker for early diagnosis, which could benefit CRC patients.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, Hebei 063210, China
| | - Haolin Du
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Department of Clinical Laboratory, Tianshui Hospital of Traditional Chinese Medicine, Tianshui 741000, China
| | - Liming Xu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Zhenbang Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Kaiyue Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jialei Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenjun Xing
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shoujie Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tingting Hu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| |
Collapse
|
18
|
Routledge D, Rogers S, Ono Y, Brunt L, Meniel V, Tornillo G, Ashktorab H, Phesse TJ, Scholpp S. The scaffolding protein flot2 promotes cytoneme-based transport of wnt3 in gastric cancer. eLife 2022; 11:77376. [PMID: 36040316 PMCID: PMC9457691 DOI: 10.7554/elife.77376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The Wnt/β-catenin signalling pathway regulates multiple cellular processes during development and many diseases, including cell proliferation, migration, and differentiation. Despite their hydrophobic nature, Wnt proteins exert their function over long distances to induce paracrine signalling. Recent studies have identified several factors involved in Wnt secretion; however, our understanding of how Wnt ligands are transported between cells to interact with their cognate receptors is still debated. Here, we demonstrate that gastric cancer cells utilise cytonemes to transport Wnt3 intercellularly to promote proliferation and cell survival. Furthermore, we identify the membrane-bound scaffolding protein Flotillin-2 (Flot2), frequently overexpressed in gastric cancer, as a modulator of these cytonemes. Together with the Wnt co-receptor and cytoneme initiator Ror2, Flot2 determines the number and length of Wnt3 cytonemes in gastric cancer. Finally, we show that Flotillins are also necessary for Wnt8a cytonemes during zebrafish embryogenesis, suggesting a conserved mechanism for Flotillin-mediated Wnt transport on cytonemes in development and disease.
Collapse
Affiliation(s)
- Daniel Routledge
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Valerie Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Hassan Ashktorab
- Department of Medicine, Howard UniversityWashingtonUnited States
| | - Toby J Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom,The Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
19
|
Therapeutic potential of the PI3K inhibitor LY294002 and PARP inhibitor Talazoparib combination in BRCA-deficient triple negative breast cancer cells. Cell Signal 2021; 91:110229. [PMID: 34958867 DOI: 10.1016/j.cellsig.2021.110229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors provide a promising therapeutic strategy for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, acquire resistance mechanisms and genetic alterations limit the clinical efficacy of PARP inhibitors. The aberrant activation of phosphatidylinositol 3-kinase (PI3K) is a significant problem for cancer development and thus the inhibition of PI3K by PI3K inhibitors is a novel targeted therapy in advanced breast cancer. Here, we, for the first time, investigated that the combined inhibition of PARP by Talazoparib (TAL) and PI3K by LY294002 synergistically inhibited proliferation of BRCA1 mutant HCC1937 TNBC cells through apoptosis, G0/G1 arrest, oxidative stress and increased DNA damage compared to drug alone. Additionally, TAL and LY294002 combination could be a promising strategy for overcoming TAL resistance. Co-treatment of TAL with LY294002 considerably suppressed the activation of PI3K, Akt1 and mTOR expression and phosphorylated protein levels in TNBC cells and caused changes in the multiple kinase phosphorylation. Our findings revealed that the dual inhibition of PARP and PI3K might represent an effective therapeutic strategy for TNBC and potentially overcome TAL resistance.
Collapse
|
20
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
21
|
Vadlamudi Y, Dey DK, Kang SC. Emerging Multi-cancer Regulatory Role of ESRP1: Orchestration of Alternative Splicing to Control EMT. Curr Cancer Drug Targets 2021; 20:654-665. [PMID: 32564755 DOI: 10.2174/1568009620666200621153831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
RNA binding proteins (RBPs) associate with nascent and mature RNAs to perform biological functions such as alternative splicing and RNA stability. Having unique RNA recognition binding motifs, RBPs form complexes with RNA in a sequence- and structure-based manner. Aberrant expressions of several RBPs have been identified in tumorigenesis and cancer progression. These uncontrolled RBPs affect several mechanisms, including cell proliferation, tumor growth, invasion, metastasis and chemoresistance. Epithelial splicing regulatory protein 1 (ESRP1) is a member of the hnRNP family of proteins that play a crucial role in regulating numerous cellular processes, including alternative splicing and translation of multiple genes during organogenesis. Abnormal expression of ESRP1 alters the cell morphology, and leads to cell proliferation and tumor growth during cancer progression. ESRP1 mediated alternative splicing of target genes, including CD44, FGFR, PTBP1, LYN, ENAH, SPAG1 and ZMYND8, results in cancer progression. In addition, ESRP1 also regulates circularization and biogenesis of circular RNAs such as circUHRF1, circNOL10 and circANKS1B, whose expressions have been identified as key factors in various cancers. This multi-functional protein is also involved in imposing stability of target mRNAs such as cyclin A2, and thereby cell cycle regulation. The scope of this review is to examine recent scientific data, outcomes of the up- and down-regulated proteins, and the role of ESRP1 in various cancers. We conclude by summarizing ESRP1 dysregulation and its consequences on target genes in various human cancers. Collectively, the consequences of ESRP1 mediated splicing in cancer cells suggest the role of ESRP1 in cell proliferation and chemoresistance via apoptosis and autophagy modulation, which could, therefore, be potential targets for cancer therapeutics.
Collapse
Affiliation(s)
| | - Debasish K Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk-38453, Korea
| | - Sun C Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk-38453, Korea
| |
Collapse
|
22
|
Novikova S, Tikhonova O, Kurbatov L, Farafonova T, Vakhrushev I, Lupatov A, Yarygin K, Zgoda V. Omics Technologies to Decipher Regulatory Networks in Granulocytic Cell Differentiation. Biomolecules 2021; 11:907. [PMID: 34207065 PMCID: PMC8233756 DOI: 10.3390/biom11060907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Induced granulocytic differentiation of human leukemic cells under all-trans-retinoid acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the regulation of this process it is possible to identify potential targets for antileukemic drugs and develop novel approaches to differentiation therapy. In this study, we have performed transcriptomic and proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course experiments. Using data on differentially expressed transcripts and proteins we have applied upstream regulator search and obtained transcriptome- and proteome-based regulatory networks of induced granulocytic differentiation that cover both up-regulated (HIC1, NFKBIA, and CASP9) and down-regulated (PARP1, VDR, and RXRA) elements. To verify the designed network we measured HIC1 and PARP1 protein abundance during granulocytic differentiation by selected reaction monitoring (SRM) using stable isotopically labeled peptide standards. We also revealed that transcription factor CEBPB and LYN kinase were involved in differentiation onset, and evaluated their protein levels by SRM technique. Obtained results indicate that the omics data reflect involvement of the DNA repair system and the MAPK kinase cascade as well as show the balance between the processes of the cell survival and apoptosis in a p53-independent manner. The differentially expressed transcripts and proteins, predicted transcriptional factors, and key molecules such as HIC1, CEBPB, LYN, and PARP1 may be considered as potential targets for differentiation therapy of acute myeloid leukemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia; (S.N.); (O.T.); (L.K.); (T.F.); (I.V.); (A.L.); (K.Y.)
| |
Collapse
|
23
|
Liu Y, Xu X, Tang H, Pan Y, Hu B, Huang G. Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int J Mol Med 2021; 47:67. [PMID: 33649774 PMCID: PMC7952246 DOI: 10.3892/ijmm.2021.4900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
There is a growing evidence that Fyn kinase is upregulated in glioblastoma multiforme (GBM), where it plays a key role in tumor proliferation and invasion. In the present study, the antitumor effects of rosmarinic acid (RA), a Fyn inhibitor, were explored in human‑derived U251 and U343 glioma cell lines. These cells were treated with various concentrations of RA to determine its effects on proliferation, migration, invasion, apoptosis, and gene and protein expression levels. The CCK‑8 assay revealed that RA significantly suppressed cell viability of U251 and U343 cells. Furthermore, RA significantly reduced proliferation rates, inhibited migration and invasion, and decreased the expression levels of invasion‑related factors, such as matrix metalloproteinase (MMP)‑2 and MMP‑9. TUNEL staining revealed that RA resulted in a dose‑dependent increase of U251 and U343 cell apoptosis. In line with this finding, the expression of apoptosis suppressor protein Bcl‑2 was downregulated and that of the pro‑apoptotic proteins Bax and cleaved caspase‑3 was increased. In addition, it was revealed that the phosphatidylinositol 3‑kinase (PI3K)/Akt/nuclear factor‑κB (NF‑κB) signaling pathway was involved in RA‑induced cytotoxicity in U251 and U343 cells. Collectively, the present study suggested RA as a drug candidate for the treatment of GBM.
Collapse
Affiliation(s)
- Yunsheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Xiangping Xu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Han Tang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yuchen Pan
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
24
|
Shetve VV, Bhowmick S, Alissa SA, Alothman ZA, Wabaidu SM, Asmary FA, Alhajri HM, Islam MA. Identification of selective Lyn inhibitors from the chemical databases through integrated molecular modelling approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:1-27. [PMID: 33161767 DOI: 10.1080/1062936x.2020.1799433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In the current study, the Asinex and ChEBI databases were virtually screened for the identification of potential Lyn protein inhibitors. Therefore, a multi-steps molecular docking study was carried out using the VSW utility tool embedded in Maestro user interface of the Schrödinger suite. On initial screening, molecules having a higher XP-docking score and binding free energy compared to Staurosporin were considered for further assessment. Based on in silico pharmacokinetic analysis and a common-feature pharmacophore mapping model developed from the Staurosporin, four molecules were proposed as promising Lyn inhibitors. The binding interactions of all proposed Lyn inhibitors revealed strong ligand efficiency in terms of energy score obtained in molecular modelling analyses. Furthermore, the dynamic behaviour of each molecule in association with the Lyn protein-bound state was assessed through an all-atoms molecular dynamics (MD) simulation study. MD simulation analyses were confirmed with notable intermolecular interactions and consistent stability for the Lyn protein-ligand complexes throughout the simulation. High negative binding free energy of identified four compounds calculated through MM-PBSA approach demonstrated a strong binding affinity towards the Lyn protein. Hence, the proposed compounds might be taken forward as potential next-generation Lyn kinase inhibitors for managing numerous Lyn associated diseases or health complications after experimental validation.
Collapse
Affiliation(s)
- V V Shetve
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University , Pune, India
| | - S Bhowmick
- Department of Chemical Technology, University of Calcutta , Kolkata, India
| | - S A Alissa
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University , Riyadh, Saudi Arabia
| | - Z A Alothman
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - S M Wabaidu
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - F A Asmary
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - H M Alhajri
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - M A Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester, UK
- School of Health Sciences, University of Kwazulu-Natal , Durban, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria, South Africa
| |
Collapse
|
25
|
Murakami F, Tsuboi Y, Takahashi Y, Horimoto Y, Mogushi K, Ito T, Emi M, Matsubara D, Shibata T, Saito M, Murakami Y. Short somatic alterations at the site of copy number variation in breast cancer. Cancer Sci 2021; 112:444-453. [PMID: 32860329 PMCID: PMC7780029 DOI: 10.1111/cas.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Copy number variation (CNV) is a polymorphism in the human genome involving DNA fragments larger than 1 kb. Copy number variation sites provide hotspots of somatic alterations in cancers. Herein, we examined somatic alterations at sites of CNV in DNA from 20 invasive breast cancers using a Comparative Genomic Hybridization array specifically designed to detect the genome-wide CNV status of approximately 412 000 sites. Somatic copy number alterations (CNAs) were detected in 39.9% of the CNV probes examined. The most frequently altered regions were gains of 1q21-22 (90%), 8q21-24 (85%), 1q44 (85%), and 3q11 (85%) or losses of 16q22-24 (80%). Gene ontology analyses of genes within the CNA fragments revealed that cascades related to transcription and RNA metabolism correlated significantly with human epidermal growth factor receptor 2 positivity and menopausal status. Thirteen of 20 tumors showed CNAs in more than 35% of sites examined and a high prevalence of CNAs correlated significantly with estrogen receptor (ER) negativity, higher nuclear grade (NG), and higher Ki-67 labeling index. Finally, when CNA fragments were categorized according to their size, CNAs smaller than 10 kb correlated significantly with ER positivity and lower NG, whereas CNAs exceeding 10 Mb correlated with higher NG, ER negativity, and a higher Ki-67 labeling index. Most of these findings were confirmed or supported by quantitative PCR of representative DNA fragments in 72 additional breast cancers. These results suggest that most CNAs are caused by gain or loss of large chromosomal fragments and correlate with NG and several malignant features, whereas solitary CNAs of less than 10 kb could be involved in ER-positive breast carcinogenesis.
Collapse
Affiliation(s)
- Fumi Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of Breast OncologyJuntendo UniversityTokyoJapan
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Yumi Tsuboi
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yuka Takahashi
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | | | - Kaoru Mogushi
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Takeshi Ito
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Mitsuru Emi
- University of Hawaii Cancer CenterHonoluluHIUSA
| | - Daisuke Matsubara
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of PathologyJichiMedical UniversityShimotsukeJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular MedicineThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Mitsue Saito
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
26
|
Regan JL, Smalley MJ. Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. NPJ Breast Cancer 2020; 6:32. [PMID: 32793804 PMCID: PMC7391676 DOI: 10.1038/s41523-020-00175-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The identification and molecular characterization of cellular hierarchies in complex tissues is key to understanding both normal cellular homeostasis and tumorigenesis. The mammary epithelium is a heterogeneous tissue consisting of two main cellular compartments, an outer basal layer containing myoepithelial cells and an inner luminal layer consisting of estrogen receptor-negative (ER−) ductal cells and secretory alveolar cells (in the fully functional differentiated tissue) and hormone-responsive estrogen receptor-positive (ER+) cells. Recent publications have used single-cell RNA-sequencing (scRNA-seq) analysis to decipher epithelial cell differentiation hierarchies in human and murine mammary glands, and reported the identification of new cell types and states based on the expression of the luminal progenitor cell marker KIT (c-Kit). These studies allow for comprehensive and unbiased analysis of the different cell types that constitute a heterogeneous tissue. Here we discuss scRNA-seq studies in the context of previous research in which mammary epithelial cell populations were molecularly and functionally characterized, and identified c-Kit+ progenitors and cell states analogous to those reported in the recent scRNA-seq studies.
Collapse
Affiliation(s)
- Joseph L Regan
- Charité Comprehensive Cancer Centre, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Wales, CF24 4HQ UK
| |
Collapse
|
27
|
Targeting Discoidin Domain Receptor 1 (DDR1) Signaling and Its Crosstalk with β 1-integrin Emerges as a Key Factor for Breast Cancer Chemosensitization upon Collagen Type 1 Binding. Int J Mol Sci 2020; 21:ijms21144956. [PMID: 32668815 PMCID: PMC7404217 DOI: 10.3390/ijms21144956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Collagen type 1 (COL1) is a ubiquitously existing extracellular matrix protein whose high density in breast tissue favors metastasis and chemoresistance. COL1-binding of MDA-MB-231 and MCF-7 breast cancer cells is mainly dependent on β1-integrins (ITGB1). Here, we elucidate the signaling of chemoresistance in both cell lines and their ITGB1-knockdown mutants and elucidated MAPK pathway to be strongly upregulated upon COL1 binding. Notably, Discoidin Domain Receptor 1 (DDR1) was identified as another important COL1-sensor, which is permanently active but takes over the role of COL1-receptor maintaining MAPK activation in ITGB1-knockdown cells. Consequently, inhibition of DDR1 and ERK1/2 act synergistically, and sensitize the cells for cytostatic treatments using mitoxantrone, or doxorubicin, which was associated with an impaired ABCG2 drug efflux transporter activity. These data favor DDR1 as a promising target for cancer cell sensitization, most likely in combination with MAPK pathway inhibitors to circumvent COL1 induced transporter resistance axis. Since ITGB1-knockdown also induces upregulation of pEGFR in MDA-MB-231 cells, inhibitory approaches including EGFR inhibitors, such as gefitinib appear promising for pharmacological interference. These findings provide evidence for the highly dynamic adaptation of breast cancer cells in maintaining matrix binding to circumvent cytotoxicity and highlight DDR1 signaling as a target for sensitization approaches.
Collapse
|
28
|
Indovina P, Forte IM, Pentimalli F, Giordano A. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers (Basel) 2020; 12:cancers12071866. [PMID: 32664483 PMCID: PMC7408838 DOI: 10.3390/cancers12071866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), I-80131 Naples, Italy
- Correspondence: (P.I.); (F.P.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
- Correspondence: (P.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| |
Collapse
|
29
|
Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB, Yang J. Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex. Dev Cell 2020; 54:302-316.e7. [PMID: 32574556 DOI: 10.1016/j.devcel.2020.05.031] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) regulate various cellular processes via distinct mechanotransduction pathways. In breast cancer, increased ECM stiffness promotes epithelial-to-mesenchymal transition (EMT), cell invasion, and metastasis. Here, we identify a mechanosensitive EPHA2/LYN protein complex regulating EMT and metastasis in response to increasing ECM stiffness during tumor progression. High ECM stiffness leads to ligand-independent phosphorylation of ephrin receptor EPHA2, which recruits and activates the LYN kinase. LYN phosphorylates the EMT transcription factor TWIST1 to release TWIST1 from its cytoplasmic anchor G3BP2 to enter the nucleus, thus triggering EMT and invasion. Genetic and pharmacological inhibition of this pathway prevents breast tumor invasion and metastasis in vivo. In human breast cancer samples, activation of this pathway correlates with collagen fiber alignment, a marker of increasing ECM stiffness. Our findings reveal an EPHA2/LYN/TWIST1 mechanotransduction pathway that responds to mechanical signals from the tumor microenvironment to drive EMT, invasion, and metastasis.
Collapse
Affiliation(s)
- Laurent Fattet
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hae-Yun Jung
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92037, USA
| | - Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Albert C Chen
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92037, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, Department of Pediatrics, University of California, San Diego, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Cao ZX, Guo CJ, Song X, He JL, Tan L, Yu S, Zhang RQ, Peng F, Peng C, Li YZ. Erlotinib is effective against FLT3-ITD mutant AML and helps to overcome intratumoral heterogeneity via targeting FLT3 and Lyn. FASEB J 2020; 34:10182-10190. [PMID: 32543003 DOI: 10.1096/fj.201902922rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
Erlotinib has potential therapeutic effect on acute myeloid leukemia (AML) in patients, but the mechanism is not clear. Effective tumor biomarkers for erlotinib in the treatment of AML remain poorly defined. Here, we demonstrate that erlotinib in vitro significantly inhibits the growth of the FLT3-ITD mutant AML cell MV4-11 and Ba/F3-FLT3-ITD cell via targeting FLT3, a certified valid target for the effective treatment of AML. In vivo, oral administration of erlotinib at 100 mg/kg/day induced rapid MV4-11 tumor regression and significantly prolonged the survival time of bone marrow engraftment AML mice via inhibiting the FLT3 signal. Thus, the therapeutic benefits of erlotinib on AML are due to its ability to target FLT3. FLT3-ITD mutation is an effective biomarker for erlotinib during AML treatment. In addition, we also demonstrate that erlotinib inhibits the activity of AML cell KG-1 (no FLT3 expression) by targeting Lyn. Recently, single cell analysis demonstrated that intratumoral heterogeneity are one of the contributors in the relapse and FLT3 inhibitor resistance. Erlotinib could effectively inhibit the MV4-11 cells via targeting FLT3, and inhibit KG-1 cells via targeting Lyn. Therefore, Erlotinib also has the potential to overcome intratumoral heterogeneity via targeting FLT3 and Lyn.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Chuan-Jie Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Xiaominting Song
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Jun-Lin He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Lu Tan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Si Yu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| |
Collapse
|
31
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
32
|
Ferrandon S, Kalady MF. Identifying new targets for rectal cancer treatment. Oncoscience 2020; 7:36-37. [PMID: 32676515 PMCID: PMC7343572 DOI: 10.18632/oncoscience.508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sylvain Ferrandon
- Cancer Biology Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew F Kalady
- Cancer Biology Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Basappa J, Citir M, Zhang Q, Wang HY, Liu X, Melnikov O, Yahya H, Stein F, Muller R, Traynor-Kaplan A, Schultz C, Wasik MA, Ptasznik A. ACLY is the novel signaling target of PIP 2/PIP 3 and Lyn in acute myeloid leukemia. Heliyon 2020; 6:e03910. [PMID: 32420483 PMCID: PMC7218026 DOI: 10.1016/j.heliyon.2020.e03910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
A fundamental feature of tumor progression is reprogramming of metabolic pathways. ATP citrate lyase (ACLY) is a key metabolic enzyme that catalyzes the generation of Acetyl-CoA and is upregulated in cancer cells and required for their growth. The phosphoinositide 3-kinase (PI3K) and Src-family kinase (SFK) Lyn are constitutively activate in many cancers. We show here, for the first time, that both the substrate and product of PI3K, phosphatidylinositol-(4,5)-bisphosphate (PIP2) and phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), respectively, bind to ACLY in Acute Myeloid Leukemia (AML) patient-derived, but not normal donor-derived cells. We demonstrate the binding of PIP2 to the CoA-binding domain of ACLY and identify the six tyrosine residues of ACLY that are phosphorylated by Lyn. Three of them (Y682, Y252, Y227) can be also phosphorylated by Src and they are located in catalytic, citrate binding and ATP binding domains, respectively. PI3K and Lyn inhibitors reduce the ACLY enzyme activity, ACLY-mediated Acetyl-CoA synthesis, phospholipid synthesis, histone acetylation and cell growth. Thus, PIP2/PIP3 binding and Src tyrosine kinases-mediated stimulation of ACLY links oncogenic pathways to Acetyl-CoA-dependent pro-growth and survival metabolic pathways in cancer cells. These results indicate a novel function for Lyn, as a regulator of Acetyl-CoA-mediated metabolic pathways.
Collapse
Affiliation(s)
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Qian Zhang
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Y Wang
- University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaobin Liu
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Hafiz Yahya
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Rainer Muller
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery and University of Washington, Seattle, WA, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.,Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Mariusz A Wasik
- Fox Chase Cancer Center, Philadelphia, PA, USA.,University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
34
|
Kuga T, Yamane Y, Hayashi S, Taniguchi M, Yamaguchi N, Yamagishi N. Depletion of Csk preferentially reduces the protein level of LynA in a Cbl-dependent manner in cancer cells. Sci Rep 2020; 10:7621. [PMID: 32376886 PMCID: PMC7203244 DOI: 10.1038/s41598-020-64624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/20/2020] [Indexed: 11/28/2022] Open
Abstract
There are eight human Src-family tyrosine kinases (SFKs). SFK members c-Src, c-Yes, Fyn, and Lyn are expressed in various cancer cells. SFK kinase activity is negatively regulated by Csk tyrosine kinase. Reduced activity of Csk causes aberrant activation of SFKs, which can be degraded by a compensatory mechanism depending on Cbl-family ubiquitin ligases. We herein investigated whether all SFK members are similarly downregulated by Cbl-family ubiquitin ligases in cancer cells lacking Csk activity. We performed Western blotting of multiple cancer cells knocked down for Csk and found that the protein levels of the 56 kDa isoform of Lyn (LynA), 53 kDa isoform of Lyn (LynB), c-Src, and Fyn, but not of c-Yes, were reduced by Csk depletion. Induction of c-Cbl protein levels was also observed in Csk-depleted cells. The reduction of LynA accompanying the depletion of Csk was significantly reversed by the knockdown for Cbls, whereas such significant recovery of LynB, c-Src, and Fyn was not observed. These results suggested that LynA is selectively downregulated by Cbls in cancer cells lacking Csk activity.
Collapse
Affiliation(s)
- Takahisa Kuga
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan.
| | - Yuka Yamane
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Soujirou Hayashi
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Masanari Taniguchi
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Nobuyuki Yamagishi
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| |
Collapse
|
35
|
Pan J, Silva TC, Gull N, Yang Q, Plummer JT, Chen S, Daigo K, Hamakubo T, Gery S, Ding LW, Jiang YY, Hu S, Xu LY, Li EM, Ding Y, Klempner SJ, Gayther SA, Berman BP, Koeffler HP, Lin DC. Lineage-Specific Epigenomic and Genomic Activation of Oncogene HNF4A Promotes Gastrointestinal Adenocarcinomas. Cancer Res 2020; 80:2722-2736. [PMID: 32332020 DOI: 10.1158/0008-5472.can-20-0390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Gastrointestinal adenocarcinomas (GIAC) of the tubular gastrointestinal (GI) tract including esophagus, stomach, colon, and rectum comprise most GI cancers and share a spectrum of genomic features. However, the unified epigenomic changes specific to GIAC are poorly characterized. Using 907 GIAC samples from The Cancer Genome Atlas, we applied mathematical algorithms to large-scale DNA methylome and transcriptome profiles to reconstruct transcription factor (TF) networks and identify a list of functionally hyperactive master regulator (MR) TF shared across different GIAC. The top candidate HNF4A exhibited prominent genomic and epigenomic activation in a GIAC-specific manner. A complex interplay between the HNF4A promoter and three distal enhancer elements was coordinated by GIAC-specific MRTF including ELF3, GATA4, GATA6, and KLF5. HNF4A also self-regulated its own promoter and enhancers. Functionally, HNF4A promoted cancer proliferation and survival by transcriptional activation of many downstream targets, including HNF1A and factors of interleukin signaling, in a lineage-specific manner. Overall, our study provides new insights into the GIAC-specific gene regulatory networks and identifies potential therapeutic strategies against these common cancers. SIGNIFICANCE: These findings show that GIAC-specific master regulatory transcription factors control HNF4A via three distal enhancers to promote GIAC cell proliferation and survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2722/F1.large.jpg.
Collapse
Affiliation(s)
- Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tiago C Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole Gull
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenji Daigo
- Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Takao Hamakubo
- Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - En-Min Li
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Samuel J Klempner
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California. .,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,National University Cancer Institute, National University Hospital Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
36
|
Knowlson C, Haddock P, Bingham V, McQuaid S, Mullan PB, Buckley NE. Pin1 plays a key role in the response to treatment and clinical outcome in triple negative breast cancer. Ther Adv Med Oncol 2020; 12:1758835920906047. [PMID: 32215056 PMCID: PMC7065279 DOI: 10.1177/1758835920906047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Triple negative breast cancer (TNBC) is the subset of breast cancer associated with the poorest outcome, and currently lacks targeted treatments. Standard of care (SoC) chemotherapy often consists of DNA damaging chemotherapies ± taxanes, with a range of responses observed. However, we currently lack biomarkers to predict this response and lack alternate treatment options. Methods: Pin1 expression was modulated in vitro and proliferation and treatment response was studied. Pin1 expression was analysed in patient samples and correlated with clinical outcome. Results: In this study, we have shown that the prolyl isomerase, Pin1, which is highly expressed in TNBC, plays a key role in pathogenesis of the disease. Knockdown of Pin1 in TNBC resulted in cell death while the opposite is seen in normal cells. We revealed for the first time that loss of Pin1 leads to increased sensitivity to Taxol but only in the absence of functional BRCA1. Conversely, loss of Pin1 results in decreased sensitivity to DNA-damaging agents independent of BRCA1 status. Analysis of Pin1 gene or IHC-based expression in over 200 TNBC patient samples revealed a novel role for Pin1 as a TNBC-specific biomarker, with high expression associated with improved outcome in the context of SoC chemotherapy. Preliminary data indicated this may be extended to other treatment options (e.g. Cisplatin/Parp Inhibitors) that are gaining traction for the treatment of TNBC. Conclusions: This study highlights the important role played by Pin1 in TNBC and highlights the context-dependent functions in modulating cell growth and response to treatment.
Collapse
Affiliation(s)
- Catherine Knowlson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paula Haddock
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Victoria Bingham
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| |
Collapse
|
37
|
Kosok M, Alli-Shaik A, Bay BH, Gunaratne J. Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer. iScience 2020; 23:100868. [PMID: 32058975 PMCID: PMC7015993 DOI: 10.1016/j.isci.2020.100868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer lacking targeted therapies. This is attributed to its high heterogeneity that complicates elucidation of its molecular aberrations. Here, we report identification of specific proteome expression profiles pertaining to two TNBC subclasses, basal A and basal B, through in-depth proteomics analysis of breast cancer cells. We observed that kinases and proteases displayed unique expression patterns within the subclasses. Systematic analyses of protein-protein interaction and co-regulation networks of these kinases and proteases unraveled dysregulated pathways and plausible targets for each TNBC subclass. Among these, we identified kinases AXL, PEAK1, and TGFBR2 and proteases FAP, UCHL1, and MMP2/14 as specific targets for basal B subclass, which represents the more aggressive TNBC cell lines. Our study highlights intricate mechanisms and distinct targets within TNBC and emphasizes that these have to be exploited in a subclass-specific manner rather than a one-for-all TNBC therapy. Proteome profiling reveals functionally distinct subclasses within TNBC Kinases and proteases underlie unique functional signatures among the subclasses Kinase-protease-centric networks highlight subclass-specific molecular rewiring Protein association dysregulations reveal TNBC subclass-specific protein targets
Collapse
Affiliation(s)
- Max Kosok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Asfa Alli-Shaik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
38
|
Mitra M, Lee HN, Coller HA. Splicing Busts a Move: Isoform Switching Regulates Migration. Trends Cell Biol 2020; 30:74-85. [PMID: 31810769 PMCID: PMC8219349 DOI: 10.1016/j.tcb.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Cell migration is essential for normal development, neural patterning, pathogen eradication, and cancer metastasis. Pre-mRNA processing events such as alternative splicing and alternative polyadenylation result in greater transcript and protein diversity as well as function and activity. A critical role for alternative pre-mRNA processing in cell migration has emerged in axon outgrowth during neuronal development, immune cell migration, and cancer metastasis. These findings suggest that migratory signals result in expression changes of post-translational modifications of splicing or polyadenylation factors, leading to splicing events that generate promigratory isoforms. We summarize this recent progress and suggest emerging technologies that may facilitate a deeper understanding of the role of alternative splicing and polyadenylation in cell migration.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ha Neul Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Ndagi U, Abdullahi M, Hamza AN, Soliman ME. An analogue of a kinase inhibitor exhibits subjective characteristics that contribute to its inhibitory activities as a potential anti-cancer candidate: insights through computational biomolecular modelling of UM-164 binding with lyn protein. RSC Adv 2020; 10:145-161. [PMID: 35492550 PMCID: PMC9047091 DOI: 10.1039/c9ra07204g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
The recent emergence of lyn kinase as a driver of aggressive behaviour in triple-negative breast cancer (TNBC) remains a major concern posing a burden for people living with breast cancer and drug development. The binding of UM-164 to lyn protein has been noted to impact the conformational dynamics required for drug fitness. Herein, we provide the first account of the molecular impact of an experimental drug, UM-164 binding on lyn protein using various computational approaches including molecular docking and molecular dynamics simulation. These computational modelling methods enabled us to analyse parameters, for example principal component analysis (PCA), dynamics cross-correlation matrices (DCCM) analysis, hydrogen bond occupancy, thermodynamics calculation and ligand–residue interaction. Findings from these analyses revealed that UM-164 exhibited a higher binding affinity of −9.9 kcal mol−1 with lyn protein than Dasatinib, with a binding affinity of −8.3 kcal mol−1 on docking. It was observed that the binding of UM-164 to lyn protein decreases the capacity of its loop to fluctuate, influences the ligand optimum orientation on the conformational space of lyn protein, and increases the hydrogen bond formation in the lyn-UM-164 system. Also, an increase in drug binding energy of UM-164 was recorded with increasing residue correlation in the lyn-UM-164 system. It is quite informative to note that Met85 was a key stabilising factor in the binding of UM-164 to lyn protein. These findings can provide important insights that will potentially serve as a baseline in the design of novel lyn inhibitors. It could also stimulate further research into multidimensional approaches required to curb the influence of lyn protein in TNBC. This study provides the first account of the molecular impact of UM-164 binding on lyn protein using various computational approaches.![]()
Collapse
Affiliation(s)
- Umar Ndagi
- Faculty of Natural Sciences
- Ibrahim Badamasi Babangida University
- Nigeria
| | - Maryam Abdullahi
- Molecular Bio-Computation and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Asmau N. Hamza
- Faculty of Pharmaceutical Sciences
- Ahmadu Bello University
- Zaria
- Nigeria
| | - Mahmoud E. Soliman
- Molecular Bio-Computation and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| |
Collapse
|
40
|
Nelson LJ, Wright HJ, Dinh NB, Nguyen KD, Razorenova OV, Heinemann FS. Src Kinase Is Biphosphorylated at Y416/Y527 and Activates the CUB-Domain Containing Protein 1/Protein Kinase C δ Pathway in a Subset of Triple-Negative Breast Cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:484-502. [PMID: 31843498 DOI: 10.1016/j.ajpath.2019.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Targeted therapeutics are needed for triple-negative breast cancer (TNBC). In this study, we investigated the activation of Src family of cytoplasmic tyrosine kinases (SFKs) and two SFK substrates-CUB-domain containing protein 1 (CDCP1) and protein kinase C δ (PKCδ)-in 56 formalin-fixed, paraffin-embedded (FFPE) TNBCs. Expression of SFK phosphorylated at Y416 (SFK_pY416+) in tumor cells was strongly associated with phosphorylation of CDCP1 and PKCδ (CDCP1_ pY743+ and PKCδ_pY311+), as assessed by immunohistochemistry, indicating increased SFK activity in situ. To enable biochemical analysis, protein extraction from FFPE tissue was optimized. Cleaved CDCP1 isoform (70 kDa) was expressed to a varying degree in all samples but only phosphorylated in TNBC tumor cells that expressed SFK_pY416. Interestingly, active SFK was found to be biphosphorylated (SFK_pY416+/pY527+). Biphosphorylated active SFK was observed more frequently in forkhead box protein A1 (FOXA1)- TNBCs. In addition, in SFK_pY416- samples, FOXA1+ TNBC tended to be SFK_pY527+ (classic inactive SFK), and FOXA1- TNBC tended to be SFK_pY527- (SFK poised for activation). Strong SFK_pY416 staining was also observed in tumor-infiltrating lymphocytes in a subset of TNBCs with high tumor-infiltrating lymphocyte content. This report will facilitate protein biochemical analysis of FFPE tumor samples and justifies the development of therapies targeting the SFK/CDCP1/PKCδ pathway for TNBC treatment.
Collapse
Affiliation(s)
- Luke J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Heather J Wright
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Nguyen B Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Kevin D Nguyen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California.
| | - F Scott Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, California.
| |
Collapse
|
41
|
Brian BF, Jolicoeur AS, Guerrero CR, Nunez MG, Sychev ZE, Hegre SA, Sætrom P, Habib N, Drake JM, Schwertfeger KL, Freedman TS. Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells. eLife 2019; 8:e46043. [PMID: 31282857 PMCID: PMC6660195 DOI: 10.7554/elife.46043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022] Open
Abstract
The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.
Collapse
Affiliation(s)
- Ben F Brian
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | | | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaMinneapolisUnited States
| | - Myra G Nunez
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Zoi E Sychev
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Siv A Hegre
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pål Sætrom
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Nagy Habib
- Department of Surgery and CancerHammersmith Hospital, Imperial College LondonLondonUnited Kingdom
| | - Justin M Drake
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Department of UrologyUniversity of MinnesotaMinneapolisUnited States
| | - Kathryn L Schwertfeger
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUnited States
| | - Tanya S Freedman
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Center for Autoimmune Diseases ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|