1
|
Marano N, Holaska JM. The role of inner nuclear membrane protein emerin in myogenesis. FASEB J 2025; 39:e70514. [PMID: 40178931 PMCID: PMC11967984 DOI: 10.1096/fj.202500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Emerin, a ubiquitously expressed inner nuclear membrane protein, plays a central role in maintaining nuclear structure and genomic organization, and in regulating gene expression and cellular signaling pathways. These functions are critical for proper myogenic differentiation and are closely linked to the pathology of Emery-Dreifuss muscular dystrophy 1 (EDMD1), a laminopathy caused by mutations in the EMD gene. Emerin, along with other nuclear lamina proteins, modulates chromatin organization, cell signaling, gene expression, and cellular mechanotransduction, processes essential for muscle development and homeostasis. Loss of emerin function disrupts chromatin localization, causes dysregulated gene expression, and alters nucleoskeletal organization, resulting in impaired myogenic differentiation. Recent findings suggest that emerin tethers repressive chromatin at the nuclear envelope, a process essential for robust myogenesis. This review provides an in-depth discussion of emerin's multifaceted roles in nuclear organization, gene regulation, and cellular signaling, highlighting its importance in myogenic differentiation and disease progression.
Collapse
Affiliation(s)
- Nicholas Marano
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| | - James M. Holaska
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| |
Collapse
|
2
|
Aughey GN, Cali E, Maroofian R, Zaki MS, Pagnamenta AT, Ali Z, Abdulllah U, Rahman F, Menzies L, Shafique A, Suri M, Roze E, Aguennouz M, Ghizlane Z, Saadi SM, Fatima A, Cheema HA, Anjum MN, Morel G, Robin S, McFarland R, Altunoglu U, Kraus V, Shoukier M, Murphy D, Flemming K, Yttervik H, Rhouda H, Lesca G, Chatron N, Rossi M, Murtaza BN, Ur Rehman M, Lord J, Giacopuzzi E, Hayat A, Siraj M, Shervin Badv R, Seo GH, Beetz C, Kayserili H, Krioulie Y, Chung WK, Naz S, Maqbool S, Chandler KE, Kershaw CJ, Wright T, Banka S, Gleeson JG, Taylor JC, Efthymiou S, Baig SM, Severino M, Jepson JEC, Houlden H. Clinical and genetic characterization of a progressive RBL2-associated neurodevelopmental disorder. Brain 2025; 148:1194-1211. [PMID: 39692517 PMCID: PMC11967543 DOI: 10.1093/brain/awae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 12/19/2024] Open
Abstract
Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have been described in only six individuals carrying five biallelic predicted loss-of-function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 35 patients from 20 families carrying pLOF variants in RBL2, including 15 new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were observed uniformly, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Disrupted sleep was also evident in some patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements, seizures and non-specific dysmorphic features. Neuroimaging features included cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster, to investigate how disruption of the conserved RBL2 orthologue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harbouring RBL2 variants, including developmental delay, alterations in head and brain morphology, locomotor defects and perturbed sleep. Surprisingly, in addition to its known role in controlling tissue growth during development, we found that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila, and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, our study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2-linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches might ameliorate some symptoms caused by RBL2 pLOF.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Zafar Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Khyber Pakhtunkhwa 19120, Pakistan
| | - Uzma Abdulllah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioral Pediatrics, The Children’s Hospital, University of Child Health Sciences (UCHS-CH), Lahore 54600, Pakistan
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Anum Shafique
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mohnish Suri
- UK National Paediatric Ataxia Telangiectasia Clinic, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Emmanuel Roze
- INSERM, CNRS, Sorbonne University, Paris Brain Institute, Salpêtrière Hospital/AP-HP, Paris 75013, France
| | - Mohammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98122, Italy
| | - Zouiri Ghizlane
- Unit of Neuropediatrics and Neurometabolism, Pediatric Department 2, Rabat Children’s Hospital, BP 6527 Rabat, Morocco
| | - Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, NIBGE-PIEAS, Faisalabad 61010, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Karachi City, Sindh 74800, Pakistan
| | - Huma Arshad Cheema
- Department of Paediatric Gastroenterology, Hepatology and Genetic Diseases, Children’s Hospital, University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Paediatric Gastroenterology, Hepatology and Genetic Diseases, Children’s Hospital, University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Godelieve Morel
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, Reunion Island, 97400 Saint-Denis, France
| | - Stephanie Robin
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, Reunion Island, 97400 Saint-Denis, France
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Umut Altunoglu
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul 34450, Turkey
| | - Verena Kraus
- Technical University of Munich, Faculty of Medicine, Chair of Social Pediatrics, Heiglhofstr. 65, 81377 Munich, Germany
| | - Moneef Shoukier
- Prenatal Medicine Munich, Lachnerstrasse 20, Munich 80639, Germany
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kristina Flemming
- Department of Pediatric Rehabilitation, University Hospital Northern Norway, Tromsø 9019, Norway
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø 9038, Norway
| | - Hajar Rhouda
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98122, Italy
| | - Gaetan Lesca
- Genetics Department, Hospices Civils de Lyon, Lyon 69002, France
| | - Nicolas Chatron
- Genetics Department, Hospices Civils de Lyon, Lyon 69002, France
| | - Massimiliano Rossi
- Genetics Department, Hospices Civils de Lyon, Lyon 69002, France
- GENDEV Team, CRNL, INSERM U1028, CNRS UMR 5292, UCBL1, Lyon 69675, France
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology, KP 22500, Pakistan
| | - Mujaddad Ur Rehman
- Department of Zoology, Abbottabad University of Science and Technology, KP 22500, Pakistan
| | - Jenny Lord
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | | | - Azam Hayat
- Department of MLT, Abbottabad University of Science and Technology KP, Abbottabad 22500, Pakistan
| | - Muhammad Siraj
- Department of Zoology, Abbottabad University of Science and Technology KP, Abbottabad 22500, Pakistan
- Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Genomics England, London E14 5AB, UK
| | - Reza Shervin Badv
- Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran 14197 33151, Iran
| | - Go Hun Seo
- 3billion inc, 416 Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Christian Beetz
- Department of Genomic Insights, Centogene GmbH, Rostock 18055, Germany
| | - Hülya Kayserili
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul 34450, Turkey
| | - Yamna Krioulie
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98122, Italy
| | - Wendy K Chung
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioral Pediatrics, The Children’s Hospital, University of Child Health Sciences (UCHS-CH), Lahore 54600, Pakistan
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Christopher J Kershaw
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Shahid Mahmood Baig
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Karachi City, Sindh 74800, Pakistan
- Faculty of Life Sciences, Health Services Academy, Islamabad 44000, Pakistan
| | | | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
3
|
Liu M, Xie XJ, Li X, Ren X, Sun JL, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. SCIENCE ADVANCES 2025; 11:eadr2299. [PMID: 39752503 PMCID: PMC11698117 DOI: 10.1126/sciadv.adr2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Unlike most species that use telomerase for telomere maintenance, many dipterans, including Drosophila, rely on three telomere-specific retrotransposons (TRs)-HeT-A, TART, and TAHRE-to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription. Reducing the activity of the Mediator or Sd/dTEAD increases TR expression and telomere length, while overexpressing E2F1-Dp or depleting Rbf1 stimulates TR transcription. The Mediator and Sd/dTEAD regulate this process through E2F1-Dp. CUT&RUN (Cleavage under targets and release using nuclease) analysis shows direct binding of CDK8, Dp, and Sd/dTEAD to telomeric repeats, with motif enrichment revealing E2F- and TEAD-binding sites. These findings uncover the Mediator complex's role in controlling TR transcription and telomere length through E2F1-Dp and Sd, coupling the transcriptional regulation of the TR life cycle with host cell-cycle machinery to protect chromosome ends in Drosophila.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xingjie Ren
- Institute for Human Genetics and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
4
|
Raicu AM, Castanheira P, Arnosti DN. Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs. G3 (BETHESDA, MD.) 2024; 14:jkae238. [PMID: 39365155 PMCID: PMC11631494 DOI: 10.1093/g3journal/jkae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Retinoblastoma tumor suppressor proteins (Rb) are highly conserved metazoan transcriptional corepressors involved in regulating the expression of thousands of genes. The vertebrate lineage and the Drosophila genus independently experienced an Rb gene duplication event, leading to the expression of several Rb paralogs whose unique and redundant roles in gene regulation remain to be fully explored. Here, we used a novel CRISPRi system in Drosophila to identify the significance of paralogy in the Rb family. We engineered dCas9 fusions to the fly Rbf1 and Rbf2 paralogs and deployed them to gene promoters in vivo, studying them in their native chromatin context. By directly querying the in vivo response of dozens of genes to Rbf1 and Rbf2 targeting, using both transcriptional as well as sensitive developmental readouts, we find that Rb paralogs function as "soft repressors" and have highly context-specific activities. Our comparison of targeting endogenous genes to reporter genes in cell culture identified striking differences in activity, underlining the importance of using CRISPRi effectors in a physiologically relevant context to identify paralog-specific activities. Our study uncovers the complexity of Rb-mediated transcriptional regulation in a living organism, and serves as a stepping stone for future CRISPRi development in Drosophila.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Patricia Castanheira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Aughey G, Cali E, Maroofian R, Zaki MS, Pagnamenta AT, Rahman F, Menzies L, Shafique A, Suri M, Roze E, Aguennouz M, Ghizlane Z, Saadi SM, Ali Z, Abdulllah U, Cheema HA, Anjum MN, Morel G, McFarland R, Altunoglu U, Kraus V, Shoukier M, Murphy D, Flemming K, Yttervik H, Rhouda H, Lesca G, Murtaza BN, Rehman MU, Consortium GE, Seo GH, Beetz C, Kayserili H, Krioulie Y, Chung WK, Naz S, Maqbool S, Gleeson J, Baig SM, Efthymiou S, Taylor JC, Severino M, Jepson JE, Houlden H. Clinical and neurogenetic characterisation of autosomal recessive RBL2-associated progressive neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.03.24306631. [PMID: 38746364 PMCID: PMC11092723 DOI: 10.1101/2024.05.03.24306631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 28 patients from 18 families carrying LOF variants in RBL2 , including fourteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements and non-specific dysmorphic features. Common neuroimaging features were cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster , to investigate how disruption of the conserved RBL2 orthologueue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harboring RBL2 variants, including alterations in the head and brain morphology reminiscent of microcephaly, and perturbed locomotor behaviour. Surprisingly, in addition to its known role in controlling tissue growth during development, we find that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila , and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, this study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2 -linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate aspects of RBL2 LOF patient symptoms.
Collapse
|
6
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
7
|
Osana S, Kitajima Y, Naoki S, Murayama K, Takada H, Tabuchi A, Kano Y, Nagatomi R. The aminopeptidase LAP3 suppression accelerates myogenic differentiation via the AKT-TFE3 pathway in C2C12 myoblasts. J Cell Physiol 2023; 238:2103-2119. [PMID: 37435895 DOI: 10.1002/jcp.31070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.
Collapse
Affiliation(s)
- Shion Osana
- Department of Sports and Medical Science, Kokushikan University, Tokyo, Japan
- Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Suzuki Naoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Ayaka Tabuchi
- Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
| | - Yutaka Kano
- Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
8
|
Jacobs J, Pagani M, Wenzl C, Stark A. Widespread regulatory specificities between transcriptional co-repressors and enhancers in Drosophila. Science 2023; 381:198-204. [PMID: 37440660 DOI: 10.1126/science.adf6149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Gene expression is controlled by the precise activation and repression of transcription. Repression is mediated by specialized transcription factors (TFs) that recruit co-repressors (CoRs) to silence transcription, even in the presence of activating cues. However, whether CoRs can dominantly silence all enhancers or display distinct specificities is unclear. In this work, we report that most enhancers in Drosophila can be repressed by only a subset of CoRs, and enhancers classified by CoR sensitivity show distinct chromatin features, function, TF motifs, and binding. Distinct TF motifs render enhancers more resistant or sensitive to specific CoRs, as we demonstrate by motif mutagenesis and addition. These CoR-enhancer compatibilities constitute an additional layer of regulatory specificity that allows differential regulation at close genomic distances and is indicative of distinct mechanisms of transcriptional repression.
Collapse
Affiliation(s)
- Jelle Jacobs
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Christoph Wenzl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
González Morales N, Marescal O, Szikora S, Katzemich A, Correia-Mesquita T, Bíró P, Erdelyi M, Mihály J, Schöck F. The oxoglutarate dehydrogenase complex is involved in myofibril growth and Z-disc assembly in Drosophila. J Cell Sci 2023; 136:jcs260717. [PMID: 37272588 PMCID: PMC10323237 DOI: 10.1242/jcs.260717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
Collapse
Affiliation(s)
- Nicanor González Morales
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
- Department of Biology, Dalhousie University, Nova Scotia B3H 4R2, Canada
| | - Océane Marescal
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Anja Katzemich
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | | | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Frieder Schöck
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| |
Collapse
|
10
|
Poliacikova G, Barthez M, Rival T, Aouane A, Luis NM, Richard F, Daian F, Brouilly N, Schnorrer F, Maurel-Zaffran C, Graba Y, Saurin AJ. M1BP is an essential transcriptional activator of oxidative metabolism during Drosophila development. Nat Commun 2023; 14:3187. [PMID: 37268614 DOI: 10.1038/s41467-023-38986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Oxidative metabolism is the predominant energy source for aerobic muscle contraction in adult animals. How the cellular and molecular components that support aerobic muscle physiology are put in place during development through their transcriptional regulation is not well understood. Using the Drosophila flight muscle model, we show that the formation of mitochondria cristae harbouring the respiratory chain is concomitant with a large-scale transcriptional upregulation of genes linked with oxidative phosphorylation (OXPHOS) during specific stages of flight muscle development. We further demonstrate using high-resolution imaging, transcriptomic and biochemical analyses that Motif-1-binding protein (M1BP) transcriptionally regulates the expression of genes encoding critical components for OXPHOS complex assembly and integrity. In the absence of M1BP function, the quantity of assembled mitochondrial respiratory complexes is reduced and OXPHOS proteins aggregate in the mitochondrial matrix, triggering a strong protein quality control response. This results in isolation of the aggregate from the rest of the matrix by multiple layers of the inner mitochondrial membrane, representing a previously undocumented mitochondrial stress response mechanism. Together, this study provides mechanistic insight into the transcriptional regulation of oxidative metabolism during Drosophila development and identifies M1BP as a critical player in this process.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Marine Barthez
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Thomas Rival
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nuno Miguel Luis
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Richard
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Daian
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Frank Schnorrer
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
11
|
Patop IL, Anduaga AM, Bussi IL, Ceriani MF, Kadener S. Organismal landscape of clock cells and circadian gene expression in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542009. [PMID: 37292867 PMCID: PMC10245886 DOI: 10.1101/2023.05.23.542009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
Collapse
Affiliation(s)
- Ines L. Patop
- Biology Department, Brandeis University, Waltham, MA, 02454, USA
| | | | - Ivana L. Bussi
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Rader AE, Bayarmagnai B, Frolov MV. Combined inactivation of RB and Hippo pathways converts differentiating photoreceptors into eye progenitor cells through derepression of homothorax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537991. [PMID: 37163078 PMCID: PMC10168227 DOI: 10.1101/2023.04.23.537991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The RB and Hippo pathways interact to regulate cell proliferation and differentiation. However, their mechanism of interaction is not fully understood. Drosophila photoreceptors with inactivated RB and Hippo pathways specify normally but fail to maintain neuronal identity and dedifferentiate. We performed single-cell RNA-sequencing to elucidate the cause of dedifferentiation and the fate of these cells. We find that dedifferentiated cells adopt a progenitor-like fate due to inappropriate activation of the retinal differentiation suppressor homothorax (hth) by Yki/Sd. This results in activation of the Yki/Hth transcriptional program, driving photoreceptor dedifferentiation. We show that Rbf physically interacts with Yki which, together with the GAGA factor, inhibits hth expression. Thus, RB and Hippo pathways cooperate to maintain photoreceptor differentiation by preventing inappropriate expression of hth in differentiating photoreceptors. Our work accentuates the importance of both RB and Hippo pathway activity for maintaining the state of terminal differentiation.
Collapse
Affiliation(s)
- Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago IL 60607
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago IL 60607
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago IL 60607
| |
Collapse
|
13
|
Zappia M, Kwon YJ, Westacott A, Liseth I, Lee H, Islam ABMMK, Kim J, Frolov M. E2F regulation of the Phosphoglycerate kinase gene is functionally important in Drosophila development. Proc Natl Acad Sci U S A 2023; 120:e2220770120. [PMID: 37011211 PMCID: PMC10104548 DOI: 10.1073/pnas.2220770120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yong-Jae Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Anton Westacott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Isabel Liseth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Hyun Min Lee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Abul B. M. M. K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka1000, Bangladesh
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
14
|
Bruno S, Landi V, Senczuk G, Brooks SA, Almathen F, Faye B, Gaouar SSB, Piro M, Kim KS, David X, Eggen A, Burger P, Ciani E. Refining the Camelus dromedarius Myostatin Gene Polymorphism through Worldwide Whole-Genome Sequencing. Animals (Basel) 2022; 12:2068. [PMID: 36009658 PMCID: PMC9404819 DOI: 10.3390/ani12162068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin (MSTN) is a highly conserved negative regulator of skeletal muscle in mammals. Inactivating mutations results in a hyper-muscularity phenotype known as "double muscling" in several livestock and model species. In Camelus dromedarius, the gene structure organization and the sequence polymorphisms have been previously investigated, using Sanger and Next-Generation Sequencing technologies on a limited number of animals. Here, we carried out a follow-up study with the aim to further expand our knowledge about the sequence polymorphisms at the myostatin locus, through the whole-genome sequencing data of 183 samples representative of the geographical distribution range for this species. We focused our polymorphism analysis on the ±5 kb upstream and downstream region of the MSTN gene. A total of 99 variants (77 Single Nucleotide Polymorphisms and 22 indels) were observed. These were mainly located in intergenic and intronic regions, with only six synonymous Single Nucleotide Polymorphisms in exons. A sequence comparative analysis among the three species within the Camelus genus confirmed the expected higher genetic distance of C. dromedarius from the wild and domestic two-humped camels compared to the genetic distance between C. bactrianus and C. ferus. In silico functional prediction highlighted: (i) 213 differential putative transcription factor-binding sites, out of which 41 relative to transcription factors, with known literature evidence supporting their involvement in muscle metabolism and/or muscle development; and (ii) a number of variants potentially disrupting the canonical MSTN splicing elements, out of which two are discussed here for their potential ability to generate a prematurely truncated (inactive) form of the protein. The distribution of the considered variants in the studied cohort is discussed in light of the peculiar evolutionary history of this species and the hypothesis that extremely high muscularity, associated with a homozygous condition for mutated (inactivating) alleles at the myostatin locus, may represent, in arid desert conditions, a clear metabolic disadvantage, emphasizing the thermoregulatory and water availability challenges typical of these habitats.
Collapse
Affiliation(s)
- Silvia Bruno
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Samantha Ann Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Faisal Almathen
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Camel Research Center, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | | | | - Mohammed Piro
- Department of Medicine, Surgery and Reproduction, Institut Agronomique et Vétérinaire Hassan II, Rabat BP 6202, Morocco
| | - Kwan Suk Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk 28644, Korea
| | | | | | - Pamela Burger
- Research Institute of Wildlife Ecology, Vetmeduni, 1160 Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
15
|
Kopanja D, Chand V, O’Brien E, Mukhopadhyay NK, Zappia MP, Islam AB, Frolov MV, Merrill BJ, Raychaudhuri P. Transcriptional Repression by FoxM1 Suppresses Tumor Differentiation and Promotes Metastasis of Breast Cancer. Cancer Res 2022; 82:2458-2471. [PMID: 35583996 PMCID: PMC9258028 DOI: 10.1158/0008-5472.can-22-0410] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
UNLABELLED The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eilidh O’Brien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria P. Zappia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B.M.M.K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Chand V, Liao X, Guzman G, Benevolenskaya E, Raychaudhuri P. Hepatocellular carcinoma evades RB1-induced senescence by activating the FOXM1-FOXO1 axis. Oncogene 2022; 41:3778-3790. [PMID: 35761036 PMCID: PMC9329203 DOI: 10.1038/s41388-022-02394-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The retinoblastoma protein (RB1), a regulator of cell proliferation, is functionally inactivated in HCC by CYCLIN D/E-mediated phosphorylation. However, the mechanism of RB1-inactivation is unclear because only small percentages of HCCs exhibit amplification of CYCLIN D/E or mutations in the CDK-inhibitory genes. We show that FOXM1, which is overexpressed and critical for HCC, plays essential roles in inactivating RB1 and suppressing RB1-induced senescence of the HCC cells. Mechanistically, FOXM1 binds RB1 and DNMT3B to repress the expression of FOXO1, leading to a decrease in the levels of the CDK-inhibitors, creating an environment for phosphorylation and inactivation of RB1. Consistent with that, inhibition of FOXM1 causes increased expression of FOXO1 with consequent activation of RB1, leading to senescence of the HCC cells, in vitro and in vivo. Also, repression-deficient mutants of FOXM1 induce senescence that is blocked by depletion of RB1 or FOXO1. We provide evidence that human HCCs rely upon this FOXM1-FOXO1 axis for phosphorylation and inactivation of RB1. The observations demonstrate the existence of a new autoregulatory loop of RB1-inactivation in HCC involving a FOXM1-FOXO1 axis that is required for phosphorylation of RB1 and for aggressive progression of HCC.
Collapse
Affiliation(s)
- Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, Chicago, IL, 60612, USA
| | - Elizaveta Benevolenskaya
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA.
- Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Sainz de la Maza D, Hof-Michel S, Phillimore L, Bökel C, Amoyel M. Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis. Cell Rep 2022; 39:110774. [PMID: 35545055 PMCID: PMC9350557 DOI: 10.1016/j.celrep.2022.110774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs. CycE is critical for CySC self-renewal E2f/Dp does not act in self-renewal but must be silenced for differentiation E2f/Dp inhibits increases in oxidative metabolism involved in normal differentiation Increased mitochondrial biogenesis rescues differentiation of E2f/Dp-active cells
Collapse
Affiliation(s)
- Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Hof-Michel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lee Phillimore
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Bökel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Payankaulam S, Hickey SL, Arnosti DN. Cell cycle expression of polarity genes features Rb targeting of Vang. Cells Dev 2022; 169:203747. [PMID: 34583062 PMCID: PMC8934252 DOI: 10.1016/j.cdev.2021.203747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Specification of cellular polarity is vital to normal tissue development and function. Pioneering studies in Drosophila and C. elegans have elucidated the composition and dynamics of protein complexes critical for establishment of cell polarity, which is manifest in processes such as cell migration and asymmetric cell division. Conserved throughout metazoans, planar cell polarity (PCP) genes are implicated in disease, including neural tube closure defects associated with mutations in VANGL1/2. PCP protein regulation is well studied; however, relatively little is known about transcriptional regulation of these genes. Our earlier study revealed an unexpected role for the fly Rbf1 retinoblastoma corepressor protein, a regulator of cell cycle genes, in transcriptional regulation of polarity genes. Here we analyze the physiological relevance of the role of E2F/Rbf proteins in the transcription of the key core polarity gene Vang. Targeted mutations to the E2F site within the Vang promoter disrupts binding of E2F/Rbf proteins in vivo, leading to polarity defects in wing hairs. E2F regulation of Vang is supported by the requirement for this motif in a reporter gene. Interestingly, the promoter is repressed by overexpression of E2F1, a transcription factor generally identified as an activator. Consistent with the regulation of this polarity gene by E2F and Rbf factors, expression of Vang and other polarity genes is found to peak in G2/M phase in cells of the embryo and wing imaginal disc, suggesting that cell cycle signals may play a role in regulation of these genes. These findings suggest that the E2F/Rbf complex mechanistically links cell proliferation and polarity.
Collapse
Affiliation(s)
- Sandhya Payankaulam
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Stephanie L Hickey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Wen H. THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127042021_0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Background: Athletics plays a very important role in competitive sports. The strength of track and field directly represents the level of a country's sports competition. Objective: This work aimed to study the track and field sports forewarning model based on radial basis function (RBF) neural networks. One hundred outstanding athletes were taken as the research objects. The questionnaire survey method was adopted to count athletes’ injury risk factors, and coaches were consulted to evaluate the questionnaire's overall quality, structure, and content. Methods: A track and field early warning model based on RBF neural network is established, and the results are analyzed. Results: The results showed that the number of people who thought the questionnaire was relatively complete (92%) was considerably higher than that of very complete (2%) and relatively complete (6%) (P<0.05). The number of people who thought that the questionnaire structure was relatively perfect (45%) was notably higher than that of the very perfect (18%) (P<0.05). The semi-reliability test result suggested that the questionnaire reliability was 0.85. Tests on ten samples showed that the RBF neural network model error and the actual results were basically controlled between −0.04~0.04. Conclusions: After the sample library test, the track and field sports forewarning model under RBF neural network can obtain relatively favorable results. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
|
20
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
21
|
Moore TM, Zhou Z, Strumwasser AR, Cohn W, Lin AJ, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Hoang AN, Widjaja K, Abrishami AD, Charugundla S, Stiles L, Whitelegge JP, Turcotte LP, Wanagat J, Hevener AL. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell 2020; 19:e13166. [PMID: 33049094 PMCID: PMC7681042 DOI: 10.1111/acel.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Whitaker Cohn
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Austin N. Hoang
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Widjaja
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Aaron D. Abrishami
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Sarada Charugundla
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Wanagat
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Iris Cantor‐UCLA Women's Health CenterUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
22
|
Zappia MP, de Castro L, Ariss MM, Jefferson H, Islam AB, Frolov MV. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in Drosophila. EMBO Rep 2020; 21:e49555. [PMID: 32815271 PMCID: PMC7534622 DOI: 10.15252/embr.201949555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Drosophila, the wing disc‐associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single‐cell RNA‐sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell‐tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA‐seq for gene discovery and details a strategy that can be applied to other scRNA‐seq datasets.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia de Castro
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Holly Jefferson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul Bmmk Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Muscle development : a view from adult myogenesis in Drosophila. Semin Cell Dev Biol 2020; 104:39-50. [DOI: 10.1016/j.semcdb.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
|
24
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
25
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
26
|
Villar-Quiles RN, Catervi F, Cabet E, Juntas-Morales R, Genetti CA, Gidaro T, Koparir A, Yüksel A, Coppens S, Deconinck N, Pierce-Hoffman E, Lornage X, Durigneux J, Laporte J, Rendu J, Romero NB, Beggs AH, Servais L, Cossée M, Olivé M, Böhm J, Duband-Goulet I, Ferreiro A. ASC-1 Is a Cell Cycle Regulator Associated with Severe and Mild Forms of Myopathy. Ann Neurol 2019; 87:217-232. [PMID: 31794073 DOI: 10.1002/ana.25660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recently, the ASC-1 complex has been identified as a mechanistic link between amyotrophic lateral sclerosis and spinal muscular atrophy (SMA), and 3 mutations of the ASC-1 gene TRIP4 have been associated with SMA or congenital myopathy. Our goal was to define ASC-1 neuromuscular function and the phenotypical spectrum associated with TRIP4 mutations. METHODS Clinical, molecular, histological, and magnetic resonance imaging studies were made in 5 families with 7 novel TRIP4 mutations. Fluorescence activated cell sorting and Western blot were performed in patient-derived fibroblasts and muscles and in Trip4 knocked-down C2C12 cells. RESULTS All mutations caused ASC-1 protein depletion. The clinical phenotype was purely myopathic, ranging from lethal neonatal to mild ambulatory adult patients. It included early onset axial and proximal weakness, scoliosis, rigid spine, dysmorphic facies, cutaneous involvement, respiratory failure, and in the older cases, dilated cardiomyopathy. Muscle biopsies showed multiminicores, nemaline rods, cytoplasmic bodies, caps, central nuclei, rimmed fibers, and/or mild endomysial fibrosis. ASC-1 depletion in C2C12 and in patient-derived fibroblasts and muscles caused accelerated proliferation, altered expression of cell cycle proteins, and/or shortening of the G0/G1 cell cycle phase leading to cell size reduction. INTERPRETATION Our results expand the phenotypical and molecular spectrum of TRIP4-associated disease to include mild adult forms with or without cardiomyopathy, associate ASC-1 depletion with isolated primary muscle involvement, and establish TRIP4 as a causative gene for several congenital muscle diseases, including nemaline, core, centronuclear, and cytoplasmic-body myopathies. They also identify ASC-1 as a novel cell cycle regulator with a key role in cell proliferation, and underline transcriptional coregulation defects as a novel pathophysiological mechanism. ANN NEUROL 2020;87:217-232.
Collapse
Affiliation(s)
- Rocío N Villar-Quiles
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, Paris, France.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, Paris, France
| | - Fabio Catervi
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, Paris, France
| | - Eva Cabet
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, Paris, France
| | - Raul Juntas-Morales
- Neuromuscular Unit, University Hospital Center Montpellier/EA7402 University of Montpellier, University Institute of Clinical Research, Montpellier, France
| | - Casie A Genetti
- Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Asuman Koparir
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey
| | - Adnan Yüksel
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey
| | - Sandra Coppens
- Department of Pediatric Neurology, Reference Neuromuscular Center, Queen Fabiola Children's University Hospital, Free University of Brussels, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Reference Neuromuscular Center, Queen Fabiola Children's University Hospital, Free University of Brussels, Brussels, Belgium
| | - Emma Pierce-Hoffman
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Xavière Lornage
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104, University of Strasbourg, Illkirch, France
| | - Julien Durigneux
- Department of Neuropediatrics, University Hospital Center Angers, Neuromuscular Diseases Reference Center Antlantique Occitanie Caraïbe, Angers, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104, University of Strasbourg, Illkirch, France
| | - John Rendu
- Laboratory of Biochemistry and Molecular Genetics, University Hospital Center Grenoble, Grenoble, France
| | - Norma B Romero
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, Paris, France.,Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Alan H Beggs
- Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Laurent Servais
- I-Motion, Institute of Myology, APHP, Paris, France.,Division of Child Neurology, Neuromuscular Diseases Reference Center, Department of Pediatrics, Liège University Hospital and University of Liège, Liège, Belgium
| | - Mireille Cossée
- Molecular Genetics Laboratory, University Hospital Center Montpellier/National Institute of Health and Medical Research U827, University Institute of Clinical Research, Montpellier, France
| | - Montse Olivé
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Institute of Biomedical Research of Bellvitge-University Hospital of Bellvitge, Barcelona, Spain
| | - Johann Böhm
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104, University of Strasbourg, Illkirch, France
| | - Isabelle Duband-Goulet
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, Paris, France.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, Paris, France
| |
Collapse
|