1
|
Milhouse W, Organski AC, Sun X, Ai D, Zhou B, Cross TL, Ren H. Microbiome affects mice metabolic homeostasis via differential regulation of gene expression in the brain and gut. Physiol Rep 2025; 13:e70373. [PMID: 40387487 PMCID: PMC12087290 DOI: 10.14814/phy2.70373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
The gut microbiome (GMB) regulates digestion, metabolism, immunity, and energy homeostasis. This study investigates how gut microbiota integrate the regulation in the neuroendocrine and enteroendocrine systems, with a focus on G protein-coupled receptors (GPCRs) in the brain-gut axis and sex differences. Germ-free (GF) mice exhibited increased hypothalamic expression of the anorexigenic neuropeptide and decreased expression of the negative regulator of leptin signaling. GF males had significantly lower serum leptin levels compared to conventional (CON) males, highlighting a potential link between the microbiome and leptin resistance. In the gut, GF mice demonstrated heightened expression of anorexigenic gut hormones, including peptide YY (Pyy) and cholecystokinin (Cck), in addition to increased levels of G protein-coupled receptors (GPCRs) involved in gut hormone secretion and nutrient metabolism, particularly in females. While carbohydrate metabolism genes were upregulated in CON mice, lipid metabolism genes were predominantly higher in GF mice. These findings suggest that the gut microbiota downregulates genes involved in appetite suppression, modulates GPCRs linked to gut hormone secretion, and contributes to leptin resistance, particularly in males. This research underscores the importance of the gut microbiome in host metabolism and reveals potential molecular targets for novel treatments of metabolic diseases.
Collapse
Affiliation(s)
- Wynne Milhouse
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| | | | - Xun Sun
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Derek Ai
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
| | - Baohua Zhou
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Tzu‐Wen L. Cross
- Department of Nutrition SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Hongxia Ren
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
2
|
Biswal N, Harish R, Roshan M, Samudrala S, Jiao X, Pestell RG, Ashton AW. Role of GPCR Signaling in Anthracycline-Induced Cardiotoxicity. Cells 2025; 14:169. [PMID: 39936961 PMCID: PMC11817789 DOI: 10.3390/cells14030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025] Open
Abstract
Anthracyclines are a class of chemotherapeutics commonly used to treat a range of cancers. Despite success in improving cancer survival rates, anthracyclines have dose-limiting cardiotoxicity that prevents more widespread clinical utility. Currently, the therapeutic options for these patients are limited to the iron-chelating agent dexrazoxane, the only FDA-approved drug for anthracycline cardiotoxicity. However, the clinical use of dexrazoxane has failed to replicate expectations from preclinical studies. A limited list of GPCRs have been identified as pathogenic in anthracycline-induced cardiotoxicity, including receptors (frizzled, adrenoreceptors, angiotensin II receptors) previously implicated in cardiac remodeling in other pathologies. The RNA sequencing of iPSC-derived cardiac myocytes from patients has increased our understanding of the pathogenic mechanisms driving cardiotoxicity. These data identified changes in the expression of novel GPCRs, heterotrimeric G proteins, and the regulatory pathways that govern downstream signaling. This review will capitalize on insights from these experiments to explain aspects of disease pathogenesis and cardiac remodeling. These data provide a cornucopia of possible unexplored potential pathways by which we can reduce the cardiotoxic side effects, without compromising the anti-cancer effects, of doxorubicin and provide new therapeutic options to improve the recovery and quality of life for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Nimish Biswal
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
| | - Ritika Harish
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
| | - Minahil Roshan
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
| | - Sathvik Samudrala
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
| | - Xuanmao Jiao
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
| | - Richard G. Pestell
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anthony W. Ashton
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
- Division of Perinatal Research, Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| |
Collapse
|
3
|
Correa-da-Silva F, Yi CX. Neuroglia in eating disorders (obesity, Prader-Willi syndrome and anorexia nervosa). HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:313-324. [PMID: 40148052 DOI: 10.1016/b978-0-443-19102-2.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The hypothalamus is widely recognized as one of the most extensively studied brain regions involved in the central regulation of energy homeostasis. Within the hypothalamus, peptidergic neurons play a crucial role in monitoring peripheral concentrations of metabolites and hormones, and they finely adjust the sensing of these factors, leading to the activation of either anorexigenic (appetite-suppressing) or orexigenic (appetite-stimulating) pathways. While cortical innervation of the hypothalamus does influence these processes, it is generally considered of secondary importance. Eating-related disorders, such as obesity and anorexia nervosa, are strongly associated with imbalances in energy intake and expenditure. The phenotypes of these disorders can be attributed to dysfunctions in the hypothalamus. Traditionally, it has been believed that hypothalamic dysfunction in these disorders primarily stems from defects in neural pathways. However, recent evidence challenges this perception, highlighting the active participation of neuroglial cells in shaping both physiologic and behavioral characteristics. This review aims to provide an overview of the latest insights into glial biology in three specific eating disorders: obesity, Prader-Willi syndrome, and anorexia. In these disorders, neural dysfunction coincides with glial malfunction, suggesting that neuroglia actively contribute to the development and progression of various neurologic disorders. These findings underscore the importance of glial cells and open up potential new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Chen Z, Wan B, Zhang H, Zhang L, Zhang R, Li L, Zhang Y, Hu C. Histone lactylation mediated by Fam172a in POMC neurons regulates energy balance. Nat Commun 2024; 15:10111. [PMID: 39578459 PMCID: PMC11584794 DOI: 10.1038/s41467-024-54488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Glycolysis-derived lactate was identified as substrate for histone lactylation, which has been regarded as a significant role in transcriptional regulation in many tissues. However, the role of histone lactylation in the metabolic center, the hypothalamus, is still unknown. Here, we show that hypothalamic pro-opiomelanocortin (POMC) neuron-specific deletion of family with sequence similarity 172, member A (Fam172a) can increase histone lactylation and protect mice against diet-induced obesity (DIO) and related metabolic disorders. Conversely, overexpression of Fam172a in POMC neurons led to an obesity-like phenotype. Using RNA-seq and CUT&Tag chromatin profiling analyzes, we find that knockdown of Fam172a activates the glycolytic process and increases peptidylglycine α-amidating monooxygenase (PAM), which affects the synthesis of α-MSH, via H4K12la (histone lactylation). In addition, pharmacological inhibition of lactate production clearly abrogates the anti-obesity effect of PFKO (POMC-Cre, Fam172aloxP/loxP, POMC neurons Fam172a knockout). These findings highlight the importance of Fam172a and lactate in the development of obesity and our results mainly concern male mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianxi Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.
| |
Collapse
|
5
|
McCarthy SF, Bornath DPD, Tucker JAL, Cohen TR, Medeiros PJ, Hazell TJ. Greater lactate accumulation does not alter peripheral concentrations of key appetite-regulating neuropeptides. J Appl Physiol (1985) 2024; 137:1397-1408. [PMID: 39359185 DOI: 10.1152/japplphysiol.00559.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
The potential mechanisms involved in lactate's role in exercise-induced appetite suppression require further examination. We used sodium bicarbonate (NaHCO3) supplementation in a double-blind, placebo-controlled, randomized crossover design to explore lactate's role on neuropeptide Y (NPY), agouti-related peptide (AgRP), and alpha-melanocyte-stimulating hormone (α-MSH) concentrations. Twelve adults (7 males; 24.2 ± 3.4 kg·m-2; 42.18 ± 8.56 mL·kg-1·min-1) completed two identical high-intensity interval training sessions following ingestion of NaHCO3 (BICARB) or sodium chloride (PLACEBO) pre-exercise. Blood lactate, acylated ghrelin, NPY, AgRP, α-MSH, and appetite perceptions were measured pre-exercise, 0-, 30-, 60-, and 90-min postexercise. Free-living energy intake (electronic food diaries) was measured the day before, of, and after each experimental session. In BICARB, blood lactate was greater postexercise (P < 0.002, d > 0.70), though acylated ghrelin was similar (P = 0.075, [Formula: see text] = 0.206) at all time points postexercise (P > 0.034, d < 0.22). NPY (P = 0.006, [Formula: see text] > 0.509) and AgRP (P < 0.001, [Formula: see text] > 0.488) had main effects of time increasing following exercise and returning to baseline, with no differences between sessions (NPY: P = 0.0.192, [Formula: see text] = 0.149; AgRP: P = 0.422, [Formula: see text] = 0.060). α-MSH had no main effect of time (P = 0.573, [Formula: see text] = 0.063) or session (P = 0.269, [Formula: see text] = 0.110). Appetite perceptions were similar during BICARB and PLACEBO (P = 0.007, d = 0.28), increasing in both sessions postexercise (P < 0.088, d > 0.57). Energy intake had a main effect of day (P = 0.025, [Formula: see text] = 0.825), where the experimental session day was greater than the day before (P = 0.010, d = 0.59) with no other differences between days (P > 0.260, d < 0.38). The lower accumulation of lactate than our previous work did not generate exercise-induced appetite suppression as there were no differences in acylated ghrelin, appetite perceptions, or peripheral concentrations of neuropeptides.NEW & NOTEWORTHY Current evidence supports lactate's role in exercise-induced appetite suppression. Here, we demonstrate a smaller degree of lactate accumulation with sodium bicarbonate ingestion and HIIT than our previous work and no subsequent suppression of acylated ghrelin concentrations, subjective appetite perceptions, or peripheral concentrations of neuropeptides. These results suggest either changes in central appetite-regulating neuropeptides are not reflected peripherally or the smaller magnitude of lactate accumulation did not generate exercise-induced appetite suppression as seen previously.
Collapse
Affiliation(s)
- Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Tamara R Cohen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip J Medeiros
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Louie AY, Drnevich J, Johnson JL, Woodard M, Kukekova AV, Johnson RW, Steelman AJ. Respiratory infection with influenza A virus delays remyelination and alters oligodendrocyte metabolism. iScience 2024; 27:110464. [PMID: 39104416 PMCID: PMC11298649 DOI: 10.1016/j.isci.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Peripheral viral infection disrupts oligodendrocyte (OL) homeostasis such that endogenous remyelination may be affected. Here, we demonstrate that influenza A virus infection perpetuated a demyelination- and disease-associated OL phenotype following cuprizone-induced demyelination that resulted in delayed OL maturation and remyelination in the prefrontal cortex. Furthermore, we assessed cellular metabolism ex vivo, and found that infection altered brain OL and microglia metabolism in a manner that opposed the metabolic profile induced by remyelination. Specifically, infection increased glycolytic capacity of OLs and microglia, an effect that was recapitulated by lipopolysaccharide (LPS) stimulation of mixed glia cultures. In contrast, mitochondrial dependence was increased in OLs during remyelination, which was similarly observed in OLs of myelinating P14 mice compared to adult and aged mice. Collectively, our data indicate that respiratory viral infection is capable of suppressing remyelination, and suggest that metabolic dysfunction of OLs is implicated in remyelination impairment.
Collapse
Affiliation(s)
- Allison Y. Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Meagan Woodard
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anna V. Kukekova
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rodney W. Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J. Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
McCarthy SF, Tucker JAL, Hazell TJ. Exercise-induced appetite suppression: An update on potential mechanisms. Physiol Rep 2024; 12:e70022. [PMID: 39187396 PMCID: PMC11347021 DOI: 10.14814/phy2.70022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
The first systematic reviews of the effects of exercise on appetite-regulation and energy intake demonstrated changes in appetite-regulating hormones consistent with appetite suppression and decreases in subsequent relative energy intake over a decade ago. More recently, an intensity-dependent effect and several potential mechanisms were proposed, and this review aims to highlight advances in this field. While exercise-induced appetite suppression clearly involves acylated ghrelin, glucagon-like peptide-1 may also be involved, though recent evidence suggests peptide tyrosine tyrosine may not be relevant. Changes in subjective appetite perceptions and energy intake continue to be equivocal, though these results are likely due to small sample sizes and methodological inconsistencies. Of the proposed mechanisms responsible for exercise-induced appetite suppression, lactate has garnered the most support through in vitro and in vivo rodent studies as well as a growing amount of work in humans. Other potential modulators of exercise-induced appetite suppression may include sex hormones, growth-differentiation factor 15, Lac-Phe, brain-derived neurotrophic factor, and asprosin. Research should focus on the mechanisms responsible for the changes and consider these other modulators (i.e., myokines/exerkines) of appetite to improve our understanding of the role of exercise on appetite regulation.
Collapse
Affiliation(s)
- Seth F. McCarthy
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Jessica A. L. Tucker
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Tom J. Hazell
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| |
Collapse
|
8
|
Cai Y, Guo H, Han T, Wang H. Lactate: a prospective target for therapeutic intervention in psychiatric disease. Neural Regen Res 2024; 19:1473-1479. [PMID: 38051889 PMCID: PMC10883489 DOI: 10.4103/1673-5374.387969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/07/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Although antipsychotics that act via monoaminergic neurotransmitter modulation have considerable therapeutic effect, they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorders. This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs. Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitters. Among these candidate neurotransmitters, lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years. Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses; animal experiments have also shown that the supply of exogenous lactate exerts an antidepressant effect. In this review, we have described how medications targeting newer neurotransmitters offer promise in psychiatric diseases; we have also summarized the advances in the use of lactate (and its corresponding signaling pathways) as a signaling molecule. In addition, we have described the alterations in brain lactate levels in depression, anxiety, bipolar disorder, and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology.
Collapse
Affiliation(s)
- Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Tianle Han
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
9
|
Hao RH, Zhang TP, Jiang F, Liu JH, Dong SS, Li M, Guo Y, Yang TL. Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expression. Nat Commun 2024; 15:4890. [PMID: 38849352 PMCID: PMC11161590 DOI: 10.1038/s41467-024-49263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
The human brain has been implicated in the pathogenesis of several complex diseases. Taking advantage of single-cell techniques, genome-wide association studies (GWAS) have taken it a step further and revealed brain cell-type-specific functions for disease loci. However, genetic causal associations inferred by Mendelian randomization (MR) studies usually include all instrumental variables from GWAS, which hampers the understanding of cell-specific causality. Here, we developed an analytical framework, Cell-Stratified MR (csMR), to investigate cell-stratified causality through colocalizing GWAS signals with single-cell eQTL from different brain cells. By applying to obesity-related traits, our results demonstrate the cell-type-specific effects of GWAS variants on gene expression, and indicate the benefits of csMR to identify cell-type-specific causal effect that is often hidden from bulk analyses. We also found csMR valuable to reveal distinct causal pathways between different obesity indicators. These findings suggest the value of our approach to prioritize target cells for extending genetic causation studies.
Collapse
Affiliation(s)
- Ruo-Han Hao
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tian-Pei Zhang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Feng Jiang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jun-Hui Liu
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Yan Guo
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| | - Tie-Lin Yang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
10
|
McKay EJ, Luijten I, Weng X, Martinez de Morentin PB, De Frutos González E, Gao Z, Kolonin MG, Heisler LK, Semple RK. Mesenchymal-specific Alms1 knockout in mice recapitulates metabolic features of Alström syndrome. Mol Metab 2024; 84:101933. [PMID: 38583571 PMCID: PMC11047791 DOI: 10.1016/j.molmet.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.
Collapse
Affiliation(s)
- Eleanor J McKay
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Xiong Weng
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Pablo B Martinez de Morentin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elvira De Frutos González
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; Área de Fisiología Humana, Departamento de Ciencias básicas de la Salud, Facultad de ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Zhanguo Gao
- Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
McCarthy SF, Bornath DPD, Grisebach D, Tucker JAL, Jarosz C, Ormond SC, Medeiros PJ, Hazell TJ. Low- and high-load resistance training exercise to volitional fatigue generate exercise-induced appetite suppression. Appetite 2024; 196:107286. [PMID: 38417533 DOI: 10.1016/j.appet.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Research on exercise-induced appetite suppression often does not include resistance training (RT) exercise and only compared matched volumes. PURPOSE To compare the effects of low-load and high-load RT exercise completed to volitional fatigue on appetite-regulation. METHODS 11 resistance-trained males (24 ± 2 y) completed 3 sessions in a crossover experimental design: 1) control (CTRL); 2) RT exercise at 30% 1-repetition maximum (RM); and 3) RT exercise at 90% 1-RM. RT sessions consisted of 3 sets of 5 exercises completed to volitional fatigue. Acylated ghrelin, active glucagon-like peptide-1 (GLP-1), active peptide tyrosine (PYY), lactate, and subjective appetite perceptions were measured pre-exercise, 0-, 60-, and 120-min post-exercise. Energy intake was recorded the day before, of, and after each session. RESULTS Lactate was elevated following both 30% (0-, 60-, 120-min post-exercise) and 90% (0-, 60-min post-exercise; P < 0.001, d > 3.92) versus CTRL, with 30% greater than 90% (0-min post-exercise; P = 0.011, d = 1.14). Acylated ghrelin was suppressed by 30% (P < 0.007, d > 1.22) and 90% (P < 0.028, d > 0.096) post-exercise versus CTRL, and 30% suppressed concentrations versus 90% (60-min post-exercise; P = 0.032, d = 0.95). There was no effect on PYY (P > 0.171, ηp2 <0.149) though GLP-1 was greater at 60-min post-exercise in 90% (P = 0.052, d = 0.86) versus CTRL. Overall appetite was suppressed 0-min post-exercise following 30% and 90% versus CTRL (P < 0.013, d > 1.10) with no other differences (P > 0.279, d < 0.56). There were no differences in energy intake (P > 0.101, ηp2 <0.319). CONCLUSIONS RT at low- and high-loads to volitional fatigue induced appetite suppression coinciding with changes in acylated ghrelin though limited effects on anorexigenic hormones or free-living energy intake were present.
Collapse
Affiliation(s)
- Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Daniel Grisebach
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Claudia Jarosz
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Sion C Ormond
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Philip J Medeiros
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
12
|
Gao F, Zhang W, Cao M, Liu X, Han T, He W, Shi B, Gu Z. Maternal supplementation with konjac glucomannan improves maternal microbiota for healthier offspring during lactation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3736-3748. [PMID: 38234014 DOI: 10.1002/jsfa.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND The maternal diet during gestation and lactation affects the health of the offspring. Konjac glucomannan (KGM) is a significantly functional polysaccharide in food research, possessing both antioxidant and prebiotic properties. However, the mechanisms of how KGM regulates maternal nutrition remain insufficient and limited. This study aimed to investigate maternal supplementation with KGM during late gestation and lactation to benefit both maternal and offspring generations. RESULTS Our findings indicate that KGM improves serum low density lipoprotein cholesterol (LDL-C) and antioxidant capacity. Furthermore, the KGM group displayed a significant increase in the feed intake-related hormones neuropeptide tyrosine (NPY), Ghrelin, and adenosine monophosphate-activated kinase (AMPK) levels. KGM modified the relative abundance of Clostridium, Candidatus Saccharimonas, unclassified Firmicutes, and unclassified Christensenellaceae in sow feces. Acetate, valerate, and isobutyrate were also improved in the feces of sows in the KGM group. These are potential target bacterial genera that may modulate the host's health. Furthermore, Spearman's correlation analysis unveiled significant correlations between the altered bacteria genus and feed intake-related hormones. More importantly, KGM reduced interleukin-6 (IL-6) levels in milk, further improved IL-10 levels, and reduced zonulin levels in the serum of offspring. CONCLUSION In conclusion, maternal dietary supplementation with KGM during late gestation and lactation improves maternal nutritional status by modifying maternal microbial and increasing lactation feed intake, which benefits the anti-inflammatory capacity of the offspring serum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingting Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhigang Gu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Nave KA, Asadollahi E, Sasmita A. Expanding the function of oligodendrocytes to brain energy metabolism. Curr Opin Neurobiol 2023; 83:102782. [PMID: 37703600 DOI: 10.1016/j.conb.2023.102782] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Oligodendrocytes are best known for wrapping myelin, a unique specialization that enables energy-efficient and fast axonal impulse propagation in white matter tracts and fibers of the cortical circuitry. However, myelinating oligodendrocytes have additional metabolic functions that are only gradually understood, including the regulated release of pyruvate/lactate and extracellular vesicles, both of which are in support of the axonal energy balance. The axon-supportive functions of glial cells are older than myelin in nervous system evolution and implicate oligodendrocyte dysfunction and loss of myelin integrity as a risk factor for progressive neurodegeneration in brain diseases.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Multidisciplinary Sciences, Göttingen.
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute of Multidisciplinary Sciences, Göttingen. https://twitter.com/EbrahimAsadoll3
| | - Andrew Sasmita
- Department of Neurogenetics, Max Planck Institute of Multidisciplinary Sciences, Göttingen. https://twitter.com/AOSasmita
| |
Collapse
|
14
|
Fang M, Chen L, Tang T, Qiu M, Xu X. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Glia 2023; 71:2499-2510. [PMID: 37278537 DOI: 10.1002/glia.24426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
In the central nervous system, oligodendrocytes (OLs) produce myelin sheaths that provide trophic support to neuronal axons and increase the propagation speed of action potential. OLs are constantly generated from OL precursor cells (OPCs) throughout life span. The production of myelinating OLs consists of three canonical stages: OPCs, newly-formed OLs (NFOs), and mature myelinating OLs. Recently, single-cell RNA transcriptomic analyses identified a new population of oligodendroglial cells, namely differentiation committed OPCs (COPs). COPs represent a critical intermediate population between OPCs and NFOs, as revealed by specific expression of G-protein coupled receptor 17 (GPR17). The dysregulation of COPs leads to the remyelination failure in demyelinating diseases and impairs the replacement of lost myelin sheaths due to aging. Hence, understanding the development of COPs and their underlying regulatory network will be helpful in establishing new strategies for promoting myelin repair in demyelinating diseases. This review summarizes the current knowledge on the development and functions of COPs under both physiological and pathological conditions. Overall, COPs function as "checkpoints" to prevent inappropriate precocious OL differentiation and myelination through expressing distinct regulatory factors. Deepening our understanding of COPs may not only advance our knowledge of how OL lineage progresses during development, but also open the door to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
McKay EJ, Luijten I, Weng X, Martinez de Morentin PB, De Frutos González E, Gao Z, Kolonin MG, Heisler LK, Semple RK. Mesenchymal-specific Alms1 knockout in mice recapitulates key metabolic features of Alström Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562074. [PMID: 37873427 PMCID: PMC10592792 DOI: 10.1101/2023.10.12.562074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.
Collapse
|
16
|
Lund J, Breum AW, Gil C, Falk S, Sass F, Isidor MS, Dmytriyeva O, Ranea-Robles P, Mathiesen CV, Basse AL, Johansen OS, Fadahunsi N, Lund C, Nicolaisen TS, Klein AB, Ma T, Emanuelli B, Kleinert M, Sørensen CM, Gerhart-Hines Z, Clemmensen C. The anorectic and thermogenic effects of pharmacological lactate in male mice are confounded by treatment osmolarity and co-administered counterions. Nat Metab 2023; 5:677-698. [PMID: 37055619 DOI: 10.1038/s42255-023-00780-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.
Collapse
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberte Wollesen Breum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cláudia Gil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark
| | - Marie Sophie Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olivia Sveidahl Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark
| | - Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Sand Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Yang Z, Yu Z, Xiao B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci Bull 2023; 39:453-465. [PMID: 36352321 PMCID: PMC10043148 DOI: 10.1007/s12264-022-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Collapse
Affiliation(s)
- Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
18
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Chen Y, Zhang S, Ye L, Chen H, Yu L, Wu D. An Acute Bout of Exercise Suppresses Appetite via Central Lactate Metabolism. Neuroscience 2023; 510:49-59. [PMID: 36529295 DOI: 10.1016/j.neuroscience.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
Exercise has been reported to elicit a transient suppression of appetite. Plasma lactate, which is produced by exercising muscle, is believed to have a critical effect on exercise-induced appetite suppression. However, the underlying mechanisms and signaling steps of central lactate metabolism remain unexplored. After central oxamate administration, C57BL/6J male mice performed 10 high-intensity interval running at 90% Vmax for 4 minutes each, which separated by 2 minutes at 12 m/min. Food intake and the expression of hypothalamic appetite-regulating neuropeptides including proopiomelanocortin (POMC) and neuropeptide Y (NPY) were investigated following exercise training. Janus kinase 2 (Jak2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway was also determined by Western blot. In addition, hypoxia-inducible factor-1α (HIF-1α) was investigated to explore the effect of central lactate metabolism following exercise. We found that central oxamate administration reversed exercise-induced suppression of food intake, and as well as changes in the expression of POMC and NPY. Moreover, acute exercise led to an increase in the phosphorylation of Jak2 and STAT3 in the hypothalamus, while central lactate inhibition significantly blunted this effect. In addition, HIF-1α expression increased obviously after exercise, while it was attenuated by central oxamate administration. Collectively, our data reveal that central lactate metabolism mediates exercise-induced suppression of appetite and changes in neuropeptides, possibly through enhanced Jak2-STAT3 signaling.
Collapse
Affiliation(s)
- Yi Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyan Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ye
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandong Wu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Kusumoto J, Ataka K, Iwai H, Oga Y, Yamagata K, Marutani K, Ishikawa T, Asakawa A, Miyawaki S. Malocclusion impairs cognitive behavior via AgRP signaling in adolescent mice. Front Neurosci 2023; 17:1156523. [PMID: 37168929 PMCID: PMC10164942 DOI: 10.3389/fnins.2023.1156523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Occlusal disharmony induced by deteriorating oral health conditions, such as tooth loss and decreased masticatory muscle due to sarcopenia, is one of the causes of cognitive impairment. Chewing is an essential oral function for maintaining cognitive function not only in the elderly but also in young people. Malocclusion is an occlusal disharmony that commonly occurs in children. The connection between a decline in cognitive function and malocclusion in children has been shown with chronic mouth breathing, obstructive sleep apnea syndrome, and thumb/digit sucking habits. However, the mechanism of malocclusion-induced cognitive decline is not fully understood. We recently reported an association between feeding-related neuropeptides and cognitive decline in adolescent mice with activity-based anorexia. The aim of the present study was to assess the effects of malocclusion on cognitive behavior and clarify the connection between cognitive decline and hypothalamic feeding-related neuropeptides in adolescent mice with malocclusion. Methods Four-week-old mice were randomly assigned to the sham-operated solid diet-fed (Sham/solid), sham-operated powder diet-fed (Sham/powder), or malocclusion-operated powder diet-fed (Malocclusion/powder) group. We applied composite resin to the mandibular anterior teeth to simulate malocclusion. We evaluated cognitive behavior using a novel object recognition (NOR) test, measured hypothalamic feeding-related neuropeptide mRNA expression levels, and enumerated c-Fos-positive cells in the hypothalamus 1 month after surgery. We also evaluated the effects of central antibody administration on cognitive behavior impairment in the NOR test. Results The NOR indices were lower and the agouti-related peptide (AgRP) mRNA levels and number of c-Fos-positive cells were higher in the malocclusion/powder group than in the other groups. The c-Fos-positive cells were also AgRP-positive. We observed that the central administration of anti-AgRP antibody significantly increased the NOR indices. Discussion The present study suggests that elevated cerebral AgRP signaling contributes to malocclusion-induced cognitive decline in adolescents, and the suppression of AgRP signaling can be a new therapeutic target against cognitive decline in occlusal disharmony.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Koji Ataka,
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuhiko Oga
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keita Yamagata
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Kanako Marutani
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Takanori Ishikawa
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
Ye F, Wong T, Chen G, Zhang Z, Zhang B, Gan S, Gao W, Li J, Wu Z, Pan X, Du Y. Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein. MedComm (Beijing) 2022; 3:e159. [PMID: 36105372 PMCID: PMC9464062 DOI: 10.1002/mco2.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
GPR17 is a class A orphan G protein-coupled receptor (GPCR) expressed in neurons and oligodendrocyte progenitors of the central nervous system (CNS). The signalling of GPR17 occurs through the heterotrimeric Gi, but its activation mechanism is unclear. Here, we employed cryo-electron microscopy (cryo-EM) technology to elucidate the structure of activated GPR17-Gi complex. The 3.02 Å resolution structure, together with mutagenesis studies, revealed that the extracellular loop2 of GPR17 occupied the orthosteric binding pocket to promote its self-activation. The active GPR17 carried several typical microswitches like other class A GPCRs. Moreover, the Gi interacted with the key residues of transmembrane helix 3 (TM3), the amphipathic helix 8 (Helix8), and intracellular loops 3 (ICL3) in GPR17 to engage in the receptor core. In summary, our results highlight the activation mechanism of GPR17 from the structural basis. Elucidating the structural and activation mechanism of GPR17 may facilitate the pharmacological intervention for acute/chronic CNS injury.
Collapse
Affiliation(s)
- Fang Ye
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| | - Thian‐Sze Wong
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Geng Chen
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Wei Gao
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Jiancheng Li
- Instrumental Analysis CenterShenzhen UniversityShenzhenGuangdongChina
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Xin Pan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Yang Du
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| |
Collapse
|
22
|
Wang Y, Han Y, Lv R, He C, Zuo Z, Chen Y, Huang J. Herbal Tea Essences (HTE) Ameliorate HFD-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9315318. [PMID: 39280956 PMCID: PMC11401730 DOI: 10.1155/2022/9315318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/18/2024]
Abstract
Tea is one of the most popular beverages in the world. The health-promoting effects of tea and its individual constituents, including antiobesity and antihyperlipidaemia effects, have been well accepted. In this study, we evaluated the effects of herbal tea essence (HTE), a commercial product extracted from black tea, on HFD-induced obesity in mice. HTE effectively reduces the gain in body weight and improves glucose tolerance and insulin sensitivity after HFD treatment. HTE inhibits lipid accumulation in the body and reduces serum lipid contents. Furthermore, HTE negatively regulates the expression levels of genes that control lipogenesis and gluconeogenesis and upregulates the expression of genes for lipid β oxidation. The regulatory effects of HTE on these genes may occur through activation of the AKT, IRS-1, and AMPK signalling pathways. Our observations suggest that HTE could be a promising option for nutritional intervention in the treatment of obesity.
Collapse
Affiliation(s)
- Yue Wang
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Han
- The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
- Xiamen Key Laboratory of Genetic Testing, Xiamen 361101, Fujian, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Chengyong He
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
SP and KLF Transcription Factors in Cancer Metabolism. Int J Mol Sci 2022; 23:ijms23179956. [PMID: 36077352 PMCID: PMC9456310 DOI: 10.3390/ijms23179956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor development and progression depend on reprogramming of signaling pathways that regulate cell metabolism. Alterations to various metabolic pathways such as glycolysis, oxidative phosphorylation, lipid metabolism, and hexosamine biosynthesis pathway are crucial to sustain increased redox, bioenergetic, and biosynthesis demands of a tumor cell. Transcription factors (oncogenes and tumor suppressors) play crucial roles in modulating these alterations, and their functions are tethered to major metabolic pathways under homeostatic conditions and disease initiation and advancement. Specificity proteins (SPs) and Krüppel-like factors (KLFs) are closely related transcription factors characterized by three highly conserved zinc fingers domains that interact with DNA. Studies have demonstrated that SP and KLF transcription factors are expressed in various tissues and regulate diverse processes such as proliferation, differentiation, apoptosis, inflammation, and tumorigenesis. This review highlights the role of SP and KLF transcription factors in the metabolism of various cancers and their impact on tumorigenesis. A better understanding of the role and underlying mechanisms governing the metabolic changes during tumorigenesis could provide new therapeutic opportunities for cancer treatment.
Collapse
|
24
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
25
|
Marangon D, Audano M, Pedretti S, Fumagalli M, Mitro N, Lecca D, Caruso D, Abbracchio MP. Rewiring of Glucose and Lipid Metabolism Induced by G Protein-Coupled Receptor 17 Silencing Enables the Transition of Oligodendrocyte Progenitors to Myelinating Cells. Cells 2022; 11:cells11152369. [PMID: 35954217 PMCID: PMC9368002 DOI: 10.3390/cells11152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes (OLs) provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, OLs require energy and building blocks for lipids, which implies a great investment of energy fuels and molecular sources of carbon. The oligodendroglial G protein-coupled receptor 17 (GPR17) has emerged as a key player in OL maturation; it reaches maximal expression in pre-OLs, but then it has to be internalized to allow terminal maturation. In this study, we aim at elucidating the role of physiological GPR17 downregulation in OL metabolism by applying transcriptomics, metabolomics and lipidomics on differentiating OLs. After GPR17 silencing, we found a significant increase in mature OL markers and alteration of several genes involved in glucose metabolism and lipid biosynthesis. We also observed an increased release of lactate, which is partially responsible for the maturation boost induced by GPR17 downregulation. Concomitantly, GPR17 depletion also changed the kinetics of specific myelin lipid classes. Globally, this study unveils a functional link between GPR17 expression, lactate release and myelin composition, and suggests that innovative interventions targeting GPR17 may help to foster endogenous myelination in demyelinating diseases.
Collapse
Affiliation(s)
- Davide Marangon
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
- Correspondence: ; Tel.: +39-02-5031-8304
| |
Collapse
|
26
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
27
|
Huisman C, Norgard MA, Levasseur PR, Krasnow SM, van der Wijst MGP, Olson B, Marks DL. Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing. Mol Metab 2022; 58:101441. [PMID: 35031523 PMCID: PMC8851272 DOI: 10.1016/j.molmet.2022.101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.
Collapse
Affiliation(s)
- Christian Huisman
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States.
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Medical Scientist Training Program, Oregon Health & Science University, Portland, United States
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, United States.
| |
Collapse
|
28
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|
29
|
Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Rep 2022; 38:110179. [PMID: 34986353 PMCID: PMC8972502 DOI: 10.1016/j.celrep.2021.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to nutritional, neural, and microbial cues and modulate the release of gut hormones. Here we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, and these are two critical factors regulating GLP-1 secretion. Together, our work shows that intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention. Yan et al. locate GPR17 expression in the enteroendocrine cells of human and rodent intestinal epithelium. They find that GPR17 signaling inhibits intracellular rise of cAMP and calcium and that loss of intestinal Gpr17 in rodents leads to better glucose tolerance via increased hormone secretion in response to nutrient ingestion.
Collapse
|
30
|
Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y. Dysmyelination by Oligodendrocyte-Specific Ablation of Ninj2 Contributes to Depressive-Like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103065. [PMID: 34787377 PMCID: PMC8787401 DOI: 10.1002/advs.202103065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Depression is a mental disorder affecting more than 300 million people in the world. Abnormalities in white matter are associated with the development of depression. Here, the authors show that mice with oligodendrocyte-specific deletion of Nerve injury-induced protein 2 (Ninj2) exhibit depressive-like behaviors. Loss of Ninj2 in oligodendrocytes inhibits oligodendrocyte development and myelination, and impairs neuronal structure and activities. Ninj2 competitively inhibits TNFα/TNFR1 signaling pathway by directly binding to TNFR1 in oligodendrocytes. Loss of Ninj2 activates TNFα-induced necroptosis, and increases C-C Motif Chemokine Ligand 2 (Ccl2) production, which might mediate the signal transduction from oligodendrocyte to neurons. Inhibition of necroptosis by Nec-1s administration synchronously restores oligodendrocyte development, improves neuronal excitability, and alleviates depressive-like behaviors. This study thus illustrates the role of Ninj2 in the development of depression and myelination, reveals the relationship between oligodendrocytes and neurons, and provides a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yuxia Sun
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Xiang Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Yue Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Wenjing Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalFudan UniversityShanghai200438China
| | - Changqin Liu
- Department of Endocrinology and DiabetesThe First Affiliated Hospital of Xiamen UniversityFujian Province Key Laboratory of Diabetes Translational MedicineXiamenFujian361101China
| | - Ying Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| |
Collapse
|
31
|
Liu W, Yang Y, Zeng Z, Tian Y, Wu Q, Zhou M, Fu ZF, Zhao L. G protein-coupled receptor 17 restricts rabies virus replication via BAK-mediated apoptosis. Vet Microbiol 2021; 265:109326. [PMID: 34979406 DOI: 10.1016/j.vetmic.2021.109326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonotic disease that significantly affects human and animal health throughout the world. RABV causes acute encephalitis in mammals with a high fatality rate in developing countries. G protein-coupled receptor 17 (GPR17) is a vital gene in the central nervous system (CNS) that plays important roles in demyelinating diseases and ischemia brain. However, it is still unclear whether GPR17 participates in the regulation of RABV infection. Here, we found that upregulation or activation of GPR17 can reduce the virus titer; conversely, the inactivation or silence of GPR17 led to increased RABV replication in N2a cells. The recombinant RABV expressing GPR17 (rRABV-GPR17) showed reduced replication capacity compared to the parent virus rRABV. Moreover, overexpression of GPR17 can attenuate RABV pathogenicity in mice. Further study demonstrated that GPR17 suppressed RABV replication via BAK-mediated apoptosis. Our findings uncover an unappreciated role of GPR17 in suppressing RABV infection, where GPR17 mediates cell apoptosis to limit RABV replication and may be an attractive candidate for new therapeutic interventions in the treatment of rabies.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Qian Z, Li H, Yang H, Yang Q, Lu Z, Wang L, Chen Y, Li X. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. SCIENCE ADVANCES 2021; 7:eabi5811. [PMID: 34678058 PMCID: PMC8535816 DOI: 10.1126/sciadv.abi5811] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/01/2021] [Indexed: 05/24/2023]
Abstract
The bone-derived hormone osteocalcin (OCN) is crucial for brain development and neural cognitive functions, yet the exact roles of OCN in central nervous system (CNS) remain elusive. Here, we find that genetic deletion of OCN facilitates oligodendrocyte (OL) differentiation and hypermyelination in the CNS. Although dispensable for the proliferation of oligodendrocyte precursor cells (OPCs), OCN is critical for the myelination of OLs, which affects myelin production and remyelination after demyelinating injury. Genome-wide RNA sequencing analyses reveal that OCN regulates a number of G protein–coupled receptors and myelination-associated transcription factors, of which Myrf might be a key downstream effector in OLs. GPR37 is identified as a previously unknown receptor for OCN, thus regulating OL differentiation and CNS myelination. Overall, these findings suggest that OCN orchestrates the transition between OPCs and myelinating OLs via GPR37 signaling, and hence, the OCN/GPR37 pathway regulates myelin homeostasis in the CNS.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Wen ZQ, Liu D, Zhang Y, Cai ZJ, Xiao WF, Li YS. G Protein-Coupled Receptors in Osteoarthritis: A Novel Perspective on Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:758220. [PMID: 34746150 PMCID: PMC8564363 DOI: 10.3389/fcell.2021.758220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that trigger numerous intracellular signaling pathways in response to the extracellular stimuli. The GPCRs superfamily contains enormous structural and functional diversity and mediates extensive biological processes. Until now, critical roles have been established in many diseases, including osteoarthritis (OA). Existing studies have shown that GPCRs play an important role in some OA-related pathogenesis, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. However, current pharmacological treatments are mostly symptomatic and there is a paucity of disease-modifying OA drugs so far. Targeting GPCRs is capable of inhibiting cartilage matrix degradation and synovitis and up-regulating cartilage matrix synthesis, providing a new therapeutic strategy for OA. In this review, we have comprehensively summarized the structures, biofunctions, and the novel roles of GPCRs in the pathogenesis and treatment of OA, which is expected to lay the foundation for the development of novel therapeutics against OA. Even though targeting GPCRs may ameliorate OA progression, many GPCRs-related therapeutic strategies are still in the pre-clinical stage and require further investigation.
Collapse
Affiliation(s)
- Ze-qin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-jun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Wargent ET, Ahmad SJS, Lu QR, Kostenis E, Arch JRS, Stocker CJ. Leanness and Low Plasma Leptin in GPR17 Knockout Mice Are Dependent on Strain and Associated With Increased Energy Intake That Is Not Suppressed by Exogenous Leptin. Front Endocrinol (Lausanne) 2021; 12:698115. [PMID: 34646232 PMCID: PMC8503278 DOI: 10.3389/fendo.2021.698115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.
Collapse
Affiliation(s)
- Edward T. Wargent
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | - Suhaib J. S. Ahmad
- Department of Surgery, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Qing Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | | | - Jonathan R. S. Arch
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | | |
Collapse
|
36
|
Wang X, Wang HY, Hu GS, Tang WS, Weng L, Zhang Y, Guo H, Yao SS, Liu SY, Zhang GL, Han Y, Liu M, Zhang XD, Cen X, Shen HF, Xiao N, Liu CQ, Wang HR, Huang J, Liu W, Li P, Zhao TJ. DDB1 binds histone reader BRWD3 to activate the transcriptional cascade in adipogenesis and promote onset of obesity. Cell Rep 2021; 35:109281. [PMID: 34161765 DOI: 10.1016/j.celrep.2021.109281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity has become a global pandemic. Identification of key factors in adipogenesis helps to tackle obesity and related metabolic diseases. Here, we show that DDB1 binds the histone reader BRWD3 to promote adipogenesis and diet-induced obesity. Although typically recognized as a component of the CUL4-RING E3 ubiquitin ligase complex, DDB1 stimulates adipogenesis independently of CUL4. A DDB1 mutant that does not bind CUL4A or CUL4B fully restores adipogenesis in DDB1-deficient cells. Ddb1+/- mice show delayed postnatal development of white adipose tissues and are protected from diet-induced obesity. Mechanistically, by interacting with BRWD3, DDB1 is recruited to acetylated histones in the proximal promoters of ELK1 downstream immediate early response genes and facilitates the release of paused RNA polymerase II, thereby activating the transcriptional cascade in adipogenesis. Our findings have uncovered a CUL4-independent function of DDB1 in promoting the transcriptional cascade of adipogenesis, development of adipose tissues, and onset of obesity.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hao-Yan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Wen-Shuai Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Weng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuzhu Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shan-Shan Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shen-Ying Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China
| | - Guo-Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Han
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Cen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Feng Shen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chang-Qin Liu
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
37
|
Conley JM, Sun H, Ayers KL, Zhu H, Chen R, Shen M, Hall MD, Ren H. Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles. J Biol Chem 2021; 297:100881. [PMID: 34144038 PMCID: PMC8267566 DOI: 10.1016/j.jbc.2021.100881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure–function relationship studies of GPR17 signaling and metabolic disease.
Collapse
Affiliation(s)
- Jason M Conley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kristin L Ayers
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hongxia Ren
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
38
|
G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis 2021; 12:610. [PMID: 34120140 PMCID: PMC8197764 DOI: 10.1038/s41419-021-03897-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
Glioma is the most common primary tumor in the central nervous system. However, the development of glioma and effective therapeutic strategies remain elusive. Here, we identify GPR17 as a potential target to treat glioma. Data mining with human LGG and GBM samples reveals that GPR17 is negatively correlated with glioma development. Overexpressing GPR17 inhibits glioma cell proliferation and induces apoptosis by raising ROS levels. GPR17-overexpressing glioma cells are less tumorigenic in the brain than in control cells. Mechanistically, GPR17 inhibits the transcription of RNF2, a key component in the PRC1 complex, through cAMP/PKA/NF-κB signaling, leading to reduced histone H2A monoubiquitination. ChIP-Seq and RNA-Seq analyses reveal KLF9 as a direct target of RNF2. KLF9 mediates the functions of GPR17 and RNF2 in glioma cells. Furthermore, activation of GPR17 by its agonist inhibits glioma formation. Our findings have thus identified GPR17 as a key regulator of glioma development and a potential therapeutic target for gliomas.
Collapse
|
39
|
Rivera AD, Chacon-De-La-Rocha I, Pieropan F, Papanikolau M, Azim K, Butt AM. Keeping the ageing brain wired: a role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors. Pflugers Arch 2021; 473:775-783. [PMID: 33712969 PMCID: PMC8076121 DOI: 10.1007/s00424-021-02544-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
White matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical communication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2 (Cspg4), and are often termed NG2-glia. Adult NG2+ OPCs are slowly proliferating cells that have the stem cell-like property of self-renewal and differentiation into a pool of 'late OPCs' or 'differentiation committed' OPCs(COPs) identified by specific expression of the G-protein-coupled receptor GPR17, which are capable of differentiation into myelinating oligodendrocytes. In the adult brain, these reservoirs of OPCs and COPs ensure rapid myelination of new neuronal connections formed in response to neuronal signalling, which underpins learning and cognitive function. However, there is an age-related decline in myelination that is associated with a loss of neuronal function and cognitive decline. The underlying causes of myelin loss in ageing are manifold, but a key factor is the decay in OPC 'stemness' and a decline in their replenishment of COPs, which results in the ultimate failure of myelin regeneration. These changes in ageing OPCs are underpinned by dysregulation of neuronal signalling and OPC metabolic function. Here, we highlight the role of purine signalling in regulating OPC self-renewal and the potential importance of GPR17 and the P2X7 receptor subtype in age-related changes in OPC metabolism. Moreover, age is the main factor in the failure of myelination in chronic multiple sclerosis and myelin loss in Alzheimer's disease, hence understanding the importance of purine signalling in OPC regeneration and myelination is critical for developing new strategies for promoting repair in age-dependent neuropathology.
Collapse
Affiliation(s)
- Andrea D Rivera
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | | | - Francesca Pieropan
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Maria Papanikolau
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Kasum Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
40
|
Zhao X, Tian Z, Liu L. circATP2B1 Promotes Aerobic Glycolysis in Gastric Cancer Cells Through Regulation of the miR-326 Gene Cluster. Front Oncol 2021; 11:628624. [PMID: 33996547 PMCID: PMC8120303 DOI: 10.3389/fonc.2021.628624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
The discovery of circular RNA (circRNA) enormously complimented the repertoire of traditional gene expression theory. As a type of endogenous noncoding RNA, circRNA participates in the occurrence of many kinds of tumors in addition to regulating their development. The Warburg effect (aerobic glycolysis is taken with priority for cancer cells instead of oxidative phosphorylation) is one of the most important factors involved in the excessive proliferation of gastric cancer cells. Our data showed that circRNA circATP2B1 (also called hsa_circ_000826) was overexpressed in gastric cancer tissues instead of linear ATP2B1 mRNA, and it promoted aerobic glycolysis in gastric cancer cells. Bioinformatic Gene Ontology analysis showed that the potential downstream targets of circATP2B1 include the microRNA miR-326 gene cluster (miR-326-3p/miR-330-5p), which is functionally focused on cell growth and metabolic processes. The expressions of miR-326-3p/miR-330-5p were downregulated in gastric cancer, and circATP2B1 functionally targeted miR-326-3p/miR-330-5p in an RNA-induced silencing complex (RISC) dependent manner. Dual-luciferase reporter assays demonstrated that pyruvate kinase M2 (PKM2) was one of the targets of miR-326-3p/miR-330-5p. As a rate-limiting enzyme in the aerobic glycolytic pathway, PKM2 accelerated gastric cancer cells' glucose uptake and increased cell viability. Taken together, circATP2B1 captured miR-326-3p/miR-330-5p and decreased the suppression of PKM2 by miR-326-3p/miR-330-5p, thus aiding the aerobic glycolysis and proliferation of gastric cancer cells. This study identified a novel molecular pathway in gastric cancer that may provide more targets for reversing cancer metabolic reprogramming, as well as a potential strategy for targeted therapy of gastric cancer.
Collapse
Affiliation(s)
- Xihe Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Zhang XH, Tang LY, Wang XY, Shen CL, Xiong WF, Shen Y, Wan YH, Wu YB, Wang YC, Zhang HX, Lu SY, Fei J, Wang ZG. ADGRA1 negatively regulates energy expenditure and thermogenesis through both sympathetic nervous system and hypothalamus-pituitary-thyroid axis in male mice. Cell Death Dis 2021; 12:362. [PMID: 33824276 PMCID: PMC8024368 DOI: 10.1038/s41419-021-03634-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
Adhesion G protein-coupled receptor A1 (ADGRA1, also known as GPR123) belongs to the G protein-coupled receptors (GPCRs) family and is well conserved in the vertebrate lineage. However, the structure of ADGRA1 is unique and its physiological function remains unknown. Previous studies have shown that Adgra1 is predominantly expressed in the central nervous system (CNS), indicating its important role in the transduction of neural signals. The aim of this study is to investigate the central function of Adgra1 in vivo and clarify its physiological significance by establishing an Adgra1-deficient mouse (Adgra1-/-) model. The results show that Adgra1-/- male mice exhibit decreased body weight with normal food intake and locomotion, shrinkage of body mass, increased lipolysis, and hypermetabolic activity. Meanwhile, mutant male mice present elevated core temperature coupled with resistance to hypothermia upon cold stimulus. Further studies show that tyrosine hydroxylase (TH) and β3-adrenergic receptor (β3-AR), indicators of sympathetic nerve excitability, are activated as well as their downstream molecules including uncoupling protein 1 (UCP1), coactivator 1 alpha (PGC1-α) in brown adipose tissue (BAT), and hormone-sensitive lipase (HSL) in white adipose tissue (WAT). In addition, mutant male mice have higher levels of serum T3, T4, accompanied by increased mRNAs of hypothalamus-pituitary-thyroid axis. Finally, Adgra1-/- male mice present abnormal activation of PI3K/AKT/GSK3β and MEK/ERK pathways in hypothalamus. Overexpression of ADGRA1 in Neuro2A cell line appears to suppress these two signaling pathways. In contrast, Adgra1-/- female mice show comparable body weight along with normal metabolic process to their sex-matched controls. Collectively, ADGRA1 is a negative regulator of sympathetic nervous system (SNS) and hypothalamus-pituitary-thyroid axis by regulating PI3K/AKT/GSK3β and MEK/ERK pathways in hypothalamus of male mice, suggesting an important role of ADGRA1 in maintaining metabolic homeostasis including energy expenditure and thermogenic balance.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Ling-Yun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Xi-Yi Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
- Department of Obstetrics and Gynecology, Tang-Du Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710038, China
| | - Chun-Ling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Wen-Feng Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Ying-Han Wan
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc., Shanghai, 201318, China
| | - You-Bing Wu
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc., Shanghai, 201318, China
| | - Yi-Cheng Wang
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc., Shanghai, 201318, China
| | - Hong-Xin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Shun-Yuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Jian Fei
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc., Shanghai, 201318, China
| | - Zhu-Gang Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China.
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc., Shanghai, 201318, China.
| |
Collapse
|
42
|
Rivera AD, Pieropan F, Chacon‐De‐La‐Rocha I, Lecca D, Abbracchio MP, Azim K, Butt AM. Functional genomic analyses highlight a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell 2021; 20:e13335. [PMID: 33675110 PMCID: PMC8045941 DOI: 10.1111/acel.13335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.
Collapse
Affiliation(s)
- Andrea D. Rivera
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
- Department of NeuroscienceInstitute of Human AnatomyUniversity of PaduaPaduaItaly
| | - Francesca Pieropan
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| | | | - Davide Lecca
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
| | | | - Kasum Azim
- Department of NeurologyNeuroregenerationMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Arthur M. Butt
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
43
|
Yi MH, Liu YU, Liu K, Chen T, Bosco DB, Zheng J, Xie M, Zhou L, Qu W, Wu LJ. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun 2021; 92:78-89. [PMID: 33221486 PMCID: PMC7897256 DOI: 10.1016/j.bbi.2020.11.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CX3CR1creER/+:R26LSL-hM4Di/+ transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia. We found that microglial Gi DREADD activation inhibited spinal nerve transection (SNT)-induced microglial reactivity as well as chronic pain in both male and female mice. Gi DREADD activation downregulated the transcription factor interferon regulatory factor 8 (IRF8) and its downstream target pro-inflammatory cytokine interleukin 1 beta (IL-1β). Using in vivo spinal cord recording, we found that activation of microglial Gi DREADD attenuated synaptic transmission following SNT. Our results demonstrate that microglial Gi DREADD reduces neuroinflammation, synaptic function and neuropathic pain after SNT. Thus, chemogenetic approaches provide a potential opportunity for interrogating microglial function and neuropathic pain treatment.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong U. Liu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin Liu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08854 USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lijun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Departments of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
44
|
Yang YR, Kwon KS. Potential Roles of Exercise-Induced Plasma Metabolites Linking Exercise to Health Benefits. Front Physiol 2020; 11:602748. [PMID: 33343398 PMCID: PMC7744613 DOI: 10.3389/fphys.2020.602748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Regular exercise has a myriad of health benefits. An increase in circulating exercise factors following exercise is a critical physiological response. Numerous studies have shown that exercise factors released from tissues during physical activity may contribute to health benefits via autocrine, paracrine, and endocrine mechanisms. Myokines, classified as proteins secreted from skeletal muscle, are representative exercise factors. The roles of myokines have been demonstrated in a variety of exercise-related functions linked to health benefits. In addition to myokines, metabolites are also exercise factors. Exercise changes the levels of various metabolites via metabolic reactions. Several studies have identified exercise-induced metabolites that positively influence organ functions. Here, we provide an overview of selected metabolites secreted into the circulation upon exercise.
Collapse
Affiliation(s)
- Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
45
|
McCarthy SF, Islam H, Hazell TJ. The emerging role of lactate as a mediator of exercise-induced appetite suppression. Am J Physiol Endocrinol Metab 2020; 319:E814-E819. [PMID: 32893673 DOI: 10.1152/ajpendo.00256.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactate, a molecule originally considered metabolic waste, is now associated with a number of important physiological functions. Although the roles of lactate as a signaling molecule, fuel source, and gluconeogenic substrate have garnered significant attention in recent reviews, a relatively underexplored and emerging role of lactate is its control of energy intake (EI). To expand our understanding of the physiological roles of lactate, we present evidence from early infusion studies demonstrating the ability of lactate to suppress EI in both rodents and humans. We then discuss findings from recent human studies that have utilized exercise intensity and/or sodium bicarbonate supplementation to modulate endogenous lactate and examine its impact on appetite regulation. These studies consistently demonstrate that greater blood lactate accumulation is associated with greater suppression of the hunger hormone ghrelin and subjective appetite, thereby supporting a role of lactate in the control of EI. To stimulate future research investigating the role of lactate as an appetite-regulatory molecule, we also highlight potential underlying mechanisms explaining the appetite-suppressive effects of lactate using evidence from rodent and in vitro cellular models. Specifically, we discuss the ability of lactate to 1) inhibit the secretory function of ghrelin producing gastric cells, 2) modulate the signaling cascades that control hypothalamic neuropeptide expression/release, and 3) inhibit signaling through the ghrelin receptor in the hypothalamus. Unravelling the role of lactate as an appetite-regulatory molecule can shed important insight into the regulation of EI, thereby contributing to the development of interventions aimed at combatting overweight and obesity.
Collapse
Affiliation(s)
- Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
46
|
Lecca D, Raffaele S, Abbracchio MP, Fumagalli M. Regulation and signaling of the GPR17 receptor in oligodendroglial cells. Glia 2020; 68:1957-1967. [PMID: 32086854 DOI: 10.1002/glia.23807] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Remyelination, namely, the formation of new myelin sheaths around denuded axons, counteracts axonal degeneration and restores neuronal function. Considerable advances have been made in understanding this regenerative process that often fails in diseases like multiple sclerosis, leaving axons demyelinated and vulnerable to damage, thus contributing to disease progression. The identification of the membrane receptor GPR17 on a subset of oligodendrocyte precursor cells (OPCs), which mediate remyelination in the adult central nervous system (CNS), has led to a huge amount of evidence that validated this receptor as a new attractive target for remyelinating therapies. Here, we summarize the role of GPR17 in OPC function, myelination and remyelination, describing its atypical pharmacology, its downstream signaling, and the genetic and epigenetic factors modulating its activity. We also highlight crucial insights into GPR17 pathophysiology coming from the demonstration that oligodendrocyte injury, associated with inflammation in chronic neurodegenerative conditions, is invariably characterized by abnormal and persistent GPR17 upregulation, which, in turn, is accompanied by a block of OPCs at immature premyelinating stages. Finally, we discuss the current literature in light of the potential exploitment of GPR17 as a therapeutic target to promote remyelination.
Collapse
Affiliation(s)
- Davide Lecca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
47
|
Lietzau G, Magni G, Kehr J, Yoshitake T, Candeias E, Duarte AI, Pettersson H, Skogsberg J, Abbracchio MP, Klein T, Nyström T, Ceruti S, Darsalia V, Patrone C. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging. Neurobiol Aging 2020; 89:12-23. [PMID: 32143981 DOI: 10.1016/j.neurobiolaging.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The nigrostriatal dopaminergic system (NDS) controls motor activity, and its impairment during type 2 diabetes (T2D) progression could increase Parkinson's disease risk in diabetics. If so, whether glycemia regulation prevents this impairment needs to be addressed. We investigated whether T2D impairs the NDS and whether dipeptidyl peptidase-4 inhibition (DPP-4i; a clinical strategy against T2D but also neuroprotective in animal models) prevents this effect, in middle-aged mice. Neither T2D (induced by 12 months of high-fat diet) nor aging (14 months) changed striatal dopamine content assessed by high-performance liquid chromatography. However, T2D reduced basal and amphetamine-stimulated striatal extracellular dopamine, assessed by microdialysis. Both the DPP-4i linagliptin and the sulfonylurea glimepiride (an antidiabetic comparator unrelated to DPP-4i) counteracted these effects. The functional T2D-induced effects did not correlate with NDS neuronal/glial alterations. However, aging itself affected striatal neurons/glia, and the glia effects were counteracted mainly by DPP-4i. These findings show NDS functional pathophysiology in T2D and suggest the preventive use of two unrelated anti-T2D drugs. Moreover, DPP-4i counteracted striatal age-related glial alterations suggesting striatal rejuvenation properties.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Jan Kehr
- Pronexus Analytical AB, Bromma, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emanuel Candeias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana I Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hans Pettersson
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Reilly AM, Zhou S, Panigrahi SK, Yan S, Conley JM, Sheets PL, Wardlaw SL, Ren H. Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding. Nutr Diabetes 2019; 9:29. [PMID: 31611548 PMCID: PMC6791877 DOI: 10.1038/s41387-019-0096-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 11/19/2022] Open
Abstract
Background Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) control energy homeostasis by sensing hormonal and nutrient cues and activating secondary melanocortin sensing neurons. We identified the expression of a G protein-coupled receptor, Gpr17, in the ARH and hypothesized that it contributes to the regulatory function of POMC neurons on metabolism. Methods In order to test this hypothesis, we generated POMC neuron-specific Gpr17 knockout (PGKO) mice and determined their energy and glucose metabolic phenotypes on normal chow diet (NCD) and high-fat diet (HFD). Results Adult PGKO mice on NCD displayed comparable body composition and metabolic features measured by indirect calorimetry. By contrast, PGKO mice on HFD demonstrated a sexually dimorphic phenotype with female PGKO mice displaying better metabolic homeostasis. Notably, female PGKO mice gained significantly less body weight and adiposity (p < 0.01), which was associated with increased energy expenditure, locomotor activity, and respiratory quotient, while males did not have an overt change in energy homeostasis. Though PGKO mice of both sexes had comparable glucose and insulin tolerance, detailed analyses of liver gene expression and serum metabolites indicate that PGKO mice could have reduced gluconeogenesis and increased lipid utilization on HFD. To elucidate the central-based mechanism(s) underlying the better-preserved energy and glucose homeostasis in PGKO mice on HFD, we examined the electrophysiological properties of POMC neurons and found Gpr17 deficiency led to increased spontaneous action potentials. Moreover, PGKO mice, especially female knockouts, had increased POMC-derived alpha-melanocyte stimulating hormone and beta-endorphin despite a comparable level of prohormone POMC in their hypothalamic extracts. Conclusions Gpr17 deficiency in POMC neurons protects metabolic homeostasis in a sex-dependent manner during dietary and aging challenges, suggesting that Gpr17 could be an effective anti-obesity target in specific populations with poor metabolic control.
Collapse
Affiliation(s)
- Austin M Reilly
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street Indianapolis, Indianapolis, IN, 46202, USA
| | - Shudi Zhou
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street Indianapolis, Indianapolis, IN, 46202, USA
| | - Sunil K Panigrahi
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Shijun Yan
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Jason M Conley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Patrick L Sheets
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street Indianapolis, Indianapolis, IN, 46202, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Sharon L Wardlaw
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hongxia Ren
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street Indianapolis, Indianapolis, IN, 46202, USA. .,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Department of Pharmacology & Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|