1
|
Geng Y, Chen Z, Luo T, Liu Y, Kong S, Yan X, Bai H, Wang Y. Innovative construction and application of bile duct organoids: Unraveling the complexity of bile duct diseases and potential therapeutic strategies. Cancer Lett 2025; 618:217619. [PMID: 40074068 DOI: 10.1016/j.canlet.2025.217619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential. BDOs can accurately simulate the physiological structure and function of bile ducts, making them valuable tools for in-vitro biliary disease research. Here, we review the development of BDO models, focusing on stem cell-derived organoids and tissue-derived organoids. We also illustrate the role of cultivation strategies and extracellular scaffolds in supporting organoid growth and stability, including the influence of cellular components of the microenvironment and physicochemical factors. Furthermore, we discuss the applications of BDOs in biliary development, disease modeling, regenerative medicine, and drug screening. Additionally, we emphasize the transformative potential in BDO biobanks and personalized medicine, which helps to pave the way for innovative therapeutic strategies and personalized medicine. Finally, we summarize the current and prospective advancements in BDO technologies, highlighting the integration of emerging technologies such as artificial intelligence, 3D bioprinting, and organoid-on-chip systems. These technologies hold great promise for significantly enhancing both clinical and research applications in the field of biliary diseases.
Collapse
Affiliation(s)
- Yadi Geng
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China; School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ziye Chen
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Tianzi Luo
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yakun Liu
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Siming Kong
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Hui Bai
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallée JC. State-of-the-Art Liver Cancer Organoids: Modeling Cancer Stem Cell Heterogeneity for Personalized Treatment. BioDrugs 2025; 39:237-260. [PMID: 39826071 PMCID: PMC11906529 DOI: 10.1007/s40259-024-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses. Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration of PDOs' benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly in terms of culture conditions, reproducibility, and scalability.
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France.
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Maël Padelli
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Hind Guenou
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Charles Duclos-Vallée
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- INSERM UMR-S 1193, Paul Brousse Hospital, Villejuif, France
- Hepato-Biliary Department, Paul Brousse Hospital, APHP, Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hepatinov, Villejuif, France
| |
Collapse
|
3
|
Nagao M, Fukuda A, Kashima H, Matsuyama S, Iimori K, Nakayama S, Mizukoshi K, Kawai M, Yamakawa G, Omatsu M, Namikawa M, Masuda T, Hiramatsu Y, Muta Y, Maruno T, Nakanishi Y, Tsuruyama T, Seno H. Cholangiocyte organoids for disease, cancer, and regenerative medicine. Eur J Cell Biol 2025; 104:151472. [PMID: 39721346 DOI: 10.1016/j.ejcb.2024.151472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
The biliary tract is a ductal network comprising the intrahepatic (IHBDs) and extrahepatic bile duct (EHBDs). Biliary duct disorders include cholangitis, neoplasms, and injury. However, the underlying mechanisms are not fully understood. With advancements in 3D culture technology, cholangiocyte organoids (COs) derived from primary tissues or induced pluripotent stem cells (iPSCs) can accurately replicate the structural and functional properties of biliary tissues. These organoids have become powerful tools for studying the pathogenesis of biliary diseases, such as cystic fibrosis and primary sclerosing cholangitis, and for developing new therapeutic strategies for cholangiocarcinoma. Additionally, COs have the potential to repair bile duct injuries and facilitate transplantation therapies. This review also discusses the use of organoids in genetically engineered mouse models to provide mechanistic insights into tumorigenesis and cancer progression. Continued innovation and standardization of organoid technology are crucial for advancing precision medicine for biliary diseases and cancer.
Collapse
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hirotaka Kashima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sho Matsuyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kei Iimori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinnosuke Nakayama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, The Japan Baptist Hospital, 47 Yamanomoto-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8273, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2025; 36:235-248. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
5
|
Ogawa H, Yoshida K, Hasegawa S, Wada H, Yasui M, Tahara H. Significance of mouse xenograft tumor model using patient-derived cancer organoids for clinical drug development. Front Oncol 2025; 15:1485886. [PMID: 40078183 PMCID: PMC11896854 DOI: 10.3389/fonc.2025.1485886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Background In vitro and in vivo preclinical examinations of cancer cell lines are performed to determine the effectiveness of new drugs before initiating clinical trials. However, there is often a significant disparity between the promising results observed in preclinical evaluations and actual outcomes in clinical trials. Therefore, we hypothesized that this inconsistency might be due to the differences between the characteristics of cell lines and actual cancers in patients. Therefore, we screened drugs for bile duct cancer to test our hypotheses. Methods We established patient-derived cancer organoids (PDCOs) from the surgical samples of patients with bile duct cancer and conducted multiple in vitro drug screening tests. Results We identified proteasome inhibitors (Bortezomib and Carfilzomib) as promising drugs in the screening. Bortezomib has demonstrated a significant antitumor effect on bile duct cancer cell-derived xenografts, as previously reported in preclinical trials. However, although Bortezomib showed significant proliferation inhibition in PDCOs in three-dimensional culture in vitro, it did not exhibit significant anti-tumor effects in mouse xenograft tumor models using our PDCOs. Bile duct cancer cell-line-derived xenografts are characterized by structurally uniform, irregular glandular structures surrounded by simple and sparse stromal components. However, organoid-derived xenografts exhibit a spectrum of differentiation levels within irregular glandular structures and consist of a complex and rich stromal microenvironment similar to those observed in surgical specimens. Conclusion These findings suggest that in vivo studies using PDCO xenograft tumor models may be more suitable than conventional mouse tumor models for determining the clinical development of drugs.
Collapse
Affiliation(s)
- Hisataka Ogawa
- Nitto joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichi Yoshida
- Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Shinichiro Hasegawa
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Yasui
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Osaka, Japan
- Center for Clinical Research, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Beutel AK, Ekizce M, Ettrich TJ, Seufferlein T, Lindenmayer J, Gout J, Kleger A. Organoid-based precision medicine in pancreatic cancer. United European Gastroenterol J 2025; 13:21-33. [PMID: 39540683 PMCID: PMC11866314 DOI: 10.1002/ueg2.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks among the leading causes of cancer-related deaths worldwide. Despite advances in precision oncology in other malignancies, treatment of PDAC still largely relies on conventional chemotherapy. Given the dismal prognosis and heterogeneity in PDAC, there is an urgent need for personalized therapeutic strategies to improve treatment response. Organoids, generated from patients' tumor tissue, have emerged as a powerful tool in cancer research. These three-dimensional models faithfully recapitulate the morphological and genetic features of the parental tumor and retain patient-specific heterogeneity. This review summarizes existing precision oncology approaches in PDAC, explores current applications and limitations of organoid cultures in personalized medicine, details preclinical studies correlating in vitro organoid prediction and patient treatment response, and provides an overview of ongoing organoid-based clinical trials.
Collapse
Affiliation(s)
- Alica K. Beutel
- Department of Internal Medicine IUniversity Hospital UlmUlmGermany
| | - Menar Ekizce
- Institute of Molecular Oncology and Stem Cell BiologyUlm University HospitalUlmGermany
| | | | | | | | - Johann Gout
- Institute of Molecular Oncology and Stem Cell BiologyUlm University HospitalUlmGermany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell BiologyUlm University HospitalUlmGermany
- Core Facility OrganoidsMedical Faculty of Ulm UniversityUlmGermany
- Division of Interdisciplinary PancreatologyDepartment of Internal Medicine IUlm University HospitalUlmGermany
| |
Collapse
|
8
|
Dutta A, Chowdhury N, Chandra S, Guha P, Saha V, GuhaSarkar D. Gallbladder cholangiocyte organoids. Biol Cell 2025; 117:e2400132. [PMID: 39945546 PMCID: PMC11823593 DOI: 10.1111/boc.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Organoids are miniature three-dimensional (3D) organ-like structures developed from primary cells that closely mimic the key histological, functional, and molecular characteristics of their parent organs. These structures self-organize through cell-cell and cell-matrix interaction in culture. In the last decade, organoids and allied 3D culture technologies have catalyzed studies involving developmental biology, disease biology, high-throughput drug screening, personalized medicine, biomarker discovery, tissue engineering, and regenerative medicine. Many organoid systems have been generated from the gastrointestinal system, for example, intestine, stomach, liver, pancreas, or colon. Gallbladder cancer (GBC) is the most common and highly aggressive form of biliary tract cancer. GBC is rare in the west but has a high incidence in South America and India. Prolonged chronic inflammation is implicated in the pathogenesis of GBC but the driving molecular pathways leading to neoplasia are not well understood. Gallbladder cholangiocyte organoids (GCO) will facilitate the understanding of the evolution of the disease and novel therapeutic strategies. In this review, we have discussed alternative methodologies and culture conditions developed to generate GCO models, applications that these models have been subjected to and the current limitations for the use of GCOs in addressing the challenges in GBC research.
Collapse
Affiliation(s)
- Ankita Dutta
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Nandita Chowdhury
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Shinjini Chandra
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Payel Guha
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Vaskar Saha
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
- Department of Paediatric Haematology and Oncology Tata Medical CenterKolkataIndia
- Division of Cancer SciencesFaculty of BiologyMedicine and HealthSchool of Medical SciencesUniversity of ManchesterManchesterUK
| | - Dwijit GuhaSarkar
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| |
Collapse
|
9
|
Verstegen MMA, Coppes RP, Beghin A, De Coppi P, Gerli MFM, de Graeff N, Pan Q, Saito Y, Shi S, Zadpoor AA, van der Laan LJW. Clinical applications of human organoids. Nat Med 2025; 31:409-421. [PMID: 39901045 DOI: 10.1038/s41591-024-03489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025]
Abstract
Organoids are innovative three-dimensional and self-organizing cell cultures of various lineages that can be used to study diverse tissues and organs. Human organoids have dramatically increased our understanding of developmental and disease biology. They provide a patient-specific model to study known diseases, with advantages over animal models, and can also provide insights into emerging and future health threats related to climate change, zoonotic infections, environmental pollutants or even microgravity during space exploration. Furthermore, organoids show potential for regenerative cell therapies and organ transplantation. Still, several challenges for broad clinical application remain, including inefficiencies in initiation and expansion, increasing model complexity and difficulties with upscaling clinical-grade cultures and developing more organ-specific human tissue microenvironments. To achieve the full potential of organoid technology, interdisciplinary efforts are needed, integrating advances from biology, bioengineering, computational science, ethics and clinical research. In this Review, we showcase pivotal achievements in epithelial organoid research and technologies and provide an outlook for the future of organoids in advancing human health and medicine.
Collapse
Affiliation(s)
- Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Rob P Coppes
- Departments of Biomedical Sciences and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne Beghin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Research and Engineering in Space Technology, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mattia F M Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, UK
| | - Nienke de Graeff
- Department of Medical Ethics and Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shaojun Shi
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, the Netherlands
| |
Collapse
|
10
|
Krendl FJ, Primavesi F, Oberhuber R, Neureiter D, Ocker M, Bekric D, Kiesslich T, Mayr C. The importance of preclinical models for cholangiocarcinoma drug discovery. Expert Opin Drug Discov 2025; 20:205-216. [PMID: 39840603 DOI: 10.1080/17460441.2025.2457637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Biliary tract cancer (BTC) comprises a clinically diverse and genetically heterogeneous group of tumors along the intra- and extrahepatic biliary system (intrahepatic and extrahepatic cholangiocarcinoma) and gallbladder cancer with the common feature of a poor prognosis, despite increasing molecular knowledge of associated genetic aberrations and possible targeted therapies. Therefore, the search for even more precise and individualized therapies is ongoing and preclinical tumor models are central to the development of such new approaches. AREAS COVERED The models described in the current review include simple and advanced in vitro and in vivo models, including cell lines, 2D monolayer, spheroid and organoid cultures, 3D bioprinting, patient-derived xenografts, and more recently, machine-perfusion platform-based models of resected liver specimens. All these models have individual advantages, disadvantages and limitations that need to be considered depending on the desired application. EXPERT OPINION In addition to potential cost limitations, availability of BTC cell types, time required for model establishment and growth success rate, the individual models differently reflect relevant characteristics such as tumor heterogeneity, spatial tumor-stroma microenvironment interactions, metabolic and nutritional gradients and immunological interactions. Therefore, a consequent combination of different models may be required to improve clinical study outcomes by strengthening the preclinical data basis.
Collapse
Affiliation(s)
- Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Dino Bekric
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Kiesslich
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Christian Mayr
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| |
Collapse
|
11
|
McGreevy O, Bosakhar M, Gilbert T, Quinn M, Fenwick S, Malik H, Goldring C, Randle L. The importance of preclinical models in cholangiocarcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108304. [PMID: 38653585 DOI: 10.1016/j.ejso.2024.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Cholangiocarcinoma (CCA) is an adenocarcinoma of the hepatobiliary system with a grim prognosis. Incidence is rising globally and surgery is currently the only curative treatment, but is only available for patients who are fit and diagnosed in an early-stage of disease progression. Great importance has been placed on developing preclinical models to help further our understanding of CCA and potential treatments to improve therapeutic outcomes. Preclinical models of varying complexity and cost have been established, ranging from more simplistic in vitro 2D CCA cell lines in culture, to more complex in vivo genetically engineered mouse models. Currently there is no single model that faithfully recaptures the complexities of human CCA and the in vivo tumour microenvironment. Instead a multi-model approach should be used when designing preclinical trials to study CCA and potential therapies.
Collapse
Affiliation(s)
- Owen McGreevy
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Mohammed Bosakhar
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Timothy Gilbert
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK; Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Marc Quinn
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK; Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Stephen Fenwick
- Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Hassan Malik
- Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Christopher Goldring
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Laura Randle
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
12
|
Colangelo M, Di Martino M, Polidoro MA, Forti L, Tober N, Gennari A, Pagano N, Donadon M. Management of intrahepatic cholangiocarcinoma: a review for clinicians. Gastroenterol Rep (Oxf) 2025; 13:goaf005. [PMID: 39867595 PMCID: PMC11769681 DOI: 10.1093/gastro/goaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy that arises from second-order biliary epithelial cells. Its incidence is gradually increasing worldwide. Well-known risk factors have been described, although in many cases, they are not identifiable. Treatment options are continuously expanding, but the prognosis of iCCA remains dismal. R0 liver resection remains the only curative treatment, but only a limited number of patients can benefit from it. Frequently, major hepatectomies are needed to completely remove the tumour. This could contraindicate surgery or increase postoperative morbidity in patients with chronic liver disease and small remnant liver volume. In cases of anticipated inadequate future liver remnant, regenerative techniques may be used to expand resectability. The role and extent of lymphadenectomy in iCCA are still matters of debate. Improvements in iCCA diagnosis and better understanding of genetic profiles might lead to optimized surgical approaches and drug therapies. The role of neoadjuvant and adjuvant therapies is broadening, gaining more and more acceptance in clinical practice. Combining surgery with locoregional therapies and novel drugs, such as checkpoint-inhibitors and molecular-targeted molecules, might improve treatment options and survival rates. Liver transplantation, after very poor initial results, is now receiving attention for the treatment of patients with unresectable very early iCCA (i.e. <2 cm) in cirrhotic livers, showing survival outcomes comparable to those of hepatocellular carcinoma. Ongoing prospective protocols are testing the efficacy of liver transplantation for patients with unresectable, advanced tumours confined to the liver, with sustained response to neoadjuvant treatment. In such a continuously changing landscape, the aim of our work is to review the state-of-the-art in the surgical and medical treatment of iCCA.
Collapse
Affiliation(s)
- Matteo Colangelo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Marcello Di Martino
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laura Forti
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
| | - Nastassja Tober
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
| | - Alessandra Gennari
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Nico Pagano
- Division of Gastroenterology, University Maggiore Hospital della Carità, Novara, Italy
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| |
Collapse
|
13
|
Pastore M, Giachi A, Spínola-Lasso E, Marra F, Raggi C. Organoids and spheroids: advanced in vitro models for liver cancer research. Front Cell Dev Biol 2025; 12:1536854. [PMID: 39850799 PMCID: PMC11754960 DOI: 10.3389/fcell.2024.1536854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional in vivo animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced in vitro models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development. Spheroids are simpler 3D culture models that partially recreate tumor structure and cell interactions. They can be used for drug penetration studies and high-throughput screening. Organoids derived from stem cells or patient tissues that accurately emulate the complexity and functionality of liver tissue. They can be generated from pluripotent and adult stem cells, as well as from liver tumor specimens, providing personalized models for studying tumor behavior and drug responses. Liver organoids retain the genetic variability of the original tumor and offer a robust platform for high-throughput drug screening and personalized treatment strategies. However, both organoids and spheroids have limitations, such as the absence of functional vasculature and immune components, which are essential for tumor growth and therapeutic responses. The field of preclinical modeling is evolving, with ongoing efforts to develop more predictive and personalized models that reflect the complexities of human liver cancer. By integrating these advanced in vitro tools, researchers can gain deeper insights into liver cancer biology and accelerate the development of novel treatments.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Lederer AK, Görrissen N, Nguyen TT, Kreutz C, Rasel H, Bartsch F, Lang H, Endres K. Exploring the effects of gut microbiota on cholangiocarcinoma progression by patient-derived organoids. J Transl Med 2025; 23:34. [PMID: 39789543 PMCID: PMC11716211 DOI: 10.1186/s12967-024-06012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking. This review aimed to discuss the suitability of complex cell culture models to investigate the role of gut microbiota in cholangiocarcinoma progression. MAIN BODY Clinical research in this area is challenging due to poor comparability of patients and feasibility reasons, which is why translational models are needed to understand the basis of tumor progression in cholangiocarcinoma. A promising approach to investigate the influence of gut microbiota could be an organoid model. Organoids are 3D cell models cultivated in a modifiable and controlled condition, which can be grown from tumor tissue. 3D cell models are able to imitate physiological and pathological processes in the human body and thus contribute to a better understanding of health and disease. CONCLUSION The use of complex cell cultures such as organoids and organoid co-cultures might be powerful and valuable tools to study not only the growth behavior and growth of cholangiocarcinoma cells, but also the interaction with the tumor microenvironment and with components of the gut microbiota.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany.
- Center for Complementary Medicine, Department of Medicine II, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
| | - Nele Görrissen
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Tinh Thi Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, 79106, Freiburg, Germany
| | - Hannah Rasel
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Fabian Bartsch
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany
- Faculty of Computer Sciences and Microsystems Technology, University of Applied Sciences Kaiserslautern, 66482, Zweibrücken, Germany
| |
Collapse
|
15
|
Lei Z, Yang Y, Xiang Y. The utilisation of biliary organoids for biomedical applications. Front Bioeng Biotechnol 2025; 12:1501829. [PMID: 39845376 PMCID: PMC11753252 DOI: 10.3389/fbioe.2024.1501829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs in vitro. They provide a valuable platform for studying the pathogenesis of biliary tract diseases and offer novel possibilities for repairing and regenerating biliary tract injuries. The main seed cells used to construct biliary tract organoids include primary human biliary tract epithelial cells as well as pluripotent stem cells. The construction of these organoids involves various techniques such as traditional embedding technology, rotary culture technology, hanging drop culture technology, along with emerging approaches like organ chip technology, three-dimensional (3D) printing technology, and four-dimensional (4D) printing technology. This article comprehensively reviews the construction methods of biliary tract organoids while discussing their applications in disease modeling research on disease mechanisms drug screening tissue/organ repair; it also highlights current challenges and suggests future research directions regarding biliary tract organoids which will serve as references for treating common refractory digestive system diseases in clinical practice.
Collapse
Affiliation(s)
- Zhongwen Lei
- Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Yang Xiang
- Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
- Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
16
|
Hadi NSA, Stopper H. Micronuclei as genotoxicity endpoint applied in the co-culture of two mammalian cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503839. [PMID: 39855823 DOI: 10.1016/j.mrgentox.2024.503839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
There has been a shift from traditional animal models towards alternative methods. While 2D cell culture has a decade long tradition, more advances methods like 3D cultures, organoids, and co-culture techniques, which better mimic in vivo conditions, are not yet well established in every research area. Genotoxicity assessment is an integral part of toxicological testing or regulatory approval of pharmaceuticals and chemicals. The micronucleus assay is now a standard method in this context. In this systematic literature review, we aim to describe the state of the art of the application of co-cultures of two mammalian cell lines for micronucleus assessment. We summarized the cell types used, methods for co-culture, disease models and agents, as well as the application of additional genotoxicity endpoints and viability tests. Airway system cells were the most frequent, followed by macrophage-like cells, liver cells, and various others. Co-culture techniques involve either direct physical contact or separation by porous membranes. Within a limited number of investigations using other genotoxicity assays like the comet and γH2AX assays in parallel, the micronucleus assay performed well. Overall, the micronucleus test demonstrating its suitability in disease models and for a more complex substance testing beyond simple 2D cultures, encouraging a more widespread use in co-culture systems in the future.
Collapse
Affiliation(s)
- Naji Said Aboud Hadi
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany; School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
17
|
Zhang Y, Qi F, Chen P, Liu BF, Li Y. Spatially defined microenvironment for engineering organoids. BIOPHYSICS REVIEWS 2024; 5:041302. [PMID: 39679203 PMCID: PMC11646138 DOI: 10.1063/5.0198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
In the intricately defined spatial microenvironment, a single fertilized egg remarkably develops into a conserved and well-organized multicellular organism. This observation leads us to hypothesize that stem cells or other seed cell types have the potential to construct fully structured and functional tissues or organs, provided the spatial cues are appropriately configured. Current organoid technology, however, largely depends on spontaneous growth and self-organization, lacking systematic guided intervention. As a result, the structures replicated in vitro often emerge in a disordered and sparse manner during growth phases. Although existing organoids have made significant contributions in many aspects, such as advancing our understanding of development and pathogenesis, aiding personalized drug selection, as well as expediting drug development, their potential in creating large-scale implantable tissue or organ constructs, and constructing multicomponent microphysiological systems, together with functioning at metabolic levels remains underutilized. Recent discoveries have demonstrated that the spatial definition of growth factors not only induces directional growth and migration of organoids but also leads to the formation of assembloids with multiple regional identities. This opens new avenues for the innovative engineering of higher-order organoids. Concurrently, the spatial organization of other microenvironmental cues, such as physical stresses, mechanical loads, and material composition, has been minimally explored. This review delves into the burgeoning field of organoid engineering with a focus on potential spatial microenvironmental control. It offers insight into the molecular principles, expected outcomes, and potential applications, envisioning a future perspective in this domain.
Collapse
Affiliation(s)
- Yilan Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Qureshi AA, Wehrle CJ, Ferreira-Gonzalez S, Jiao C, Hong H, Dadgar N, Arpi-Palacios J, Phong YP, Kim J, Sun K, Hashimoto K, Kwon DCH, Miller C, Leipzig N, Ma WW, Melenhorst J, Aucejo F, Schlegel A. Tumor organoids for primary liver cancers: A systematic review of current applications in diagnostics, disease modeling, and drug screening. JHEP Rep 2024; 6:101164. [PMID: 39583095 PMCID: PMC11584567 DOI: 10.1016/j.jhepr.2024.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Liver cancer-related deaths are projected to exceed one million annually by 2030. Existing therapies have significant limitations, including severe side effects and inconsistent efficacy. Innovative therapeutic approaches to address primary liver cancer (PLC) have led to the ongoing development of tumor-derived organoids. These are sophisticated three-dimensional structures capable of mimicking native tissue architecture and function in vitro, improving our ability to model in vivo homeostasis and disease. Methods This systematic review consolidates known literature on human and mouse liver organoids across all PLC subtypes, emphasizing diagnostic precision, disease modeling, and drug screening capabilities. Results Across all 39 included studies, organoids were most frequently patient-derived, closely followed by cancer cell line-derived. The literature concentrated on hepatocellular carcinoma and intrahepatic cholangiocarcinoma, while exploration of other subtypes was limited. These studies demonstrate a valuable role for PLC organoid cultures in biomarker discovery, disease modeling, and therapeutic exploration. Conclusions Encouraging advances such as organoid-on-a-chip and co-culturing systems hold promise for advancing treatment regimens for PLC. Standardizing in vitro protocols is crucial to integrate research breakthroughs into practical treatment strategies for PLC. Impact and implications This study provides an overview of the current understanding of tumor-derived organoids in primary liver cancers, emphasizing their potential in diagnostics, disease modeling, and drug screening. The scientific foundation rests on the organoids' ability to replicate the tumor microenvironment and genetic landscape, opening new avenues for personalized therapies. These insights are crucial for both researchers and clinicians, as patient-derived organoids can help identify biomarkers and therapeutic targets. Physicians and policymakers can harness these advances to drive progress in precision medicine, while recognizing the challenges involved in standardizing organoid models for clinical implementation.
Collapse
Affiliation(s)
- Ayesha A. Qureshi
- Nationwide Children's Hospital, Abigail Wexner Research Institute, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | | | - Sofia Ferreira-Gonzalez
- CIR Centre for Inflammation Research, University of Edinburgh, 5 Little France Drive Edinburgh, EH16 4UU, UK
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hanna Hong
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Neda Dadgar
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
- Translational Hematology & Oncology Research, Cleveland Clinic, Enterprise Cancer Institute, Cleveland, OH, USA
| | - Jorge Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Yee Phoon Phong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Jaekeun Kim
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Nic Leipzig
- The University of Akron, Department of Chemical, Biomolecular, and Corrosion Engineering, Akron, OH, USA
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Jos Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | | | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
20
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
21
|
Vasiliadou I, Cattaneo C, Chan PYK, Henley-Smith R, Gregson-Williams H, Collins L, Wojewodka G, Guerrero-Urbano T, Jeannon JP, Connor S, Davis J, Pasto A, Mustapha R, Ng T, Kong A. Correlation of the treatment sensitivity of patient-derived organoids with treatment outcomes in patients with head and neck cancer (SOTO): protocol for a prospective observational study. BMJ Open 2024; 14:e084176. [PMID: 39389599 PMCID: PMC11474813 DOI: 10.1136/bmjopen-2024-084176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Organoids have been successfully used in several areas of cancer research and large living biobanks of patient-derived organoids (PDOs) have been developed from various malignancies. The characteristics of the original tumour tissue such as mutation signatures, phenotype and genetic diversity are well preserved in organoids, thus showing promising results for the use of this model in translational research. In this study, we aim to assess whether we can generate PDOs from head and neck squamous cell carcinoma (HNSCC) samples and whether PDOs can be used to predict treatment sensitivity in HNSCC patients as well as to explore potential biomarkers. METHODS AND ANALYSIS This is a prospective observational study at a single centre (Guy's and St Thomas' NHS Foundation Trust) to generate PDOs from patients' samples to assess treatment response and to correlate with patients' treatment outcomes. Patients will be included if they are diagnosed with HNSCC undergoing curative treatment (primary surgery or radiotherapy) or presenting with recurrent or metastatic cancers and they will be categorised into three groups (cohort 1: primary surgery, cohort 2: primary radiotherapy and cohort 3: recurrent/metastatic disease). Research tumour samples will be collected and processed into PDOs and chemosensitivity/radiosensitivity will be assessed using established methods. Moreover, blood and other biological samples (eg, saliva) will be collected at different time intervals during treatment and will be processed in the laboratory for plasma and peripheral blood mononuclear cell (PBMC) isolation. Plasma and saliva will be used for circulating tumour DNA analysis and PBMC will be stored for assessment of the peripheral immune characteristics of the patients as well as to perform co-culture experiments with PDOs. SOTO study (correlation of the treatment Sensitivity of patient-derived Organoids with Treatment Outcomes in patients with head and neck cancer) uses the collaboration of several specialties in head and neck cancer and has the potential to explore multiple areas of research with the aim of offering a valid and effective approach to personalised medicine for cancer patients. ETHICS AND DISSEMINATION This study was approved by North West-Greater Manchester South Research Ethics Committee (REC Ref: 22/NW/0023) on 21 March 2022. An informed consent will be obtained from all participants prior to inclusion in the study. Results will be disseminated via peer-reviewed publications and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT05400239.
Collapse
Affiliation(s)
| | | | | | - Rhonda Henley-Smith
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | - Lisette Collins
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | | | | | - Steve Connor
- Head and Neck Radiology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Jessica Davis
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anna Pasto
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Rami Mustapha
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Tony Ng
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anthony Kong
- Comprehensive Cancer Centre, King's College London, London, UK
| |
Collapse
|
22
|
Cordts SC, Yuki K, Henao Echeverri MF, Narasimhan B, Kuo CJ, Tang SKY. Microdissection tools to generate organoids for modeling the tumor immune microenvironment. MICROSYSTEMS & NANOENGINEERING 2024; 10:126. [PMID: 39251611 PMCID: PMC11385579 DOI: 10.1038/s41378-024-00756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
Patient-derived tumor organoids have emerged as promising models for predicting personalized drug responses in cancer therapy, but they typically lack immune components. Preserving the in vivo association between tumor cells and endogenous immune cells is critical for accurate testing of cancer immunotherapies. Mechanical dissection of tumor specimens into tumor fragments, as opposed to enzymatic digestion into single cells, is essential for maintaining these native tumor-immune cell spatial relationships. However, conventional mechanical dissection relying on manual mincing is time-consuming and irreproducible. This study describes two microdissection devices, the µDicer and µGrater, to facilitate the generation of intact tumor fragments from mouse B16 melanoma, a common model of human melanoma. The µDicer- and µGrater-cut tumor fragments were used to generate air‒liquid interface (ALI) organoids that copreserve tumor cells with infiltrating immune subsets without artificial reconstitution. The µDicer, consisting of a hexagonal array of silicon microblades, was employed to investigate the effect of organoid size. The viability of ALI organoid immune cells appeared insensitive to organoid sizes exceeding ~400 µm but diminished in organoids ~200 µm in size. The µGrater, consisting of an array of submillimeter holes in stainless steel, was employed to accelerate dissection. For the samples studied, the µGrater was 4.5 times faster than manual mincing. Compared with those generated by manual mincing, ALI organoids generated by the µGrater demonstrated similar viability, immune cell composition, and responses to anti-PD-1 immunotherapy. With further optimization, the µGrater holds potential for integration into clinical workflows to support the advancement of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Seth C Cordts
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | | | | | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
25
|
Zhu X, Trehan R, Xie C. Primary liver cancer organoids and their application to research and therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:195-202. [PMID: 39281720 PMCID: PMC11401492 DOI: 10.1016/j.jncc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Primary liver cancer is a leading cause of death worldwide. To create advanced treatments for primary liver cancer, studies have utilized models such as 2D cell culture and in vivo animal models. Recent developments in cancer organoids have created the possibility for 3D in vitro cultures that recapitulates the cancer cell structure and operation as well as the tumor microenvironment (TME). However, before organoids can be directly translated to clinical use, tissue processing and culture medium must be standardized with unified protocols to decrease variability in results. Herein, we present the wide variety of published methodologies used to derive liver cancer organoids from patient tumor tissues. Additionally, we summarize validation methodologies for organoids in terms of marker expression levels with immunohistochemistry as well as the presence of mutations and variants through RNA-sequencing. Primary liver cancer organoids have exciting applications allowing for faster drug testing at a larger scale. Primary liver cancer organoids also assisit in uncovering new mechanisms. Through the coculture of different immune cells and cancer organoids, organoids are now better able to recapitulate the liver cancer TME. In addition, it further aids in the investigation of drug development and drug resistance. Lastly, we posit that the usage of liver cancer organoids in animal models provides researchers a methodology to overcome the current limitations of culture systems.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Rajiv Trehan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
26
|
Huang S, Mei Z, Wan A, Zhao M, Qi X. Application and prospect of organoid technology in breast cancer. Front Immunol 2024; 15:1413858. [PMID: 39253075 PMCID: PMC11381393 DOI: 10.3389/fimmu.2024.1413858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.
Collapse
Affiliation(s)
- Shanlin Huang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Liu S, Cheng C, Zhu L, Zhao T, Wang Z, Yi X, Yan F, Wang X, Li C, Cui T, Yang B. Liver organoids: updates on generation strategies and biomedical applications. Stem Cell Res Ther 2024; 15:244. [PMID: 39113154 PMCID: PMC11304926 DOI: 10.1186/s13287-024-03865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The liver is the most important metabolic organ in the body. While mouse models and cell lines have further deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the generation strategies and current advances in the field focusing on their application in regenerative medicine, drug discovery and modeling diseases.
Collapse
Affiliation(s)
- Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | | | - Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, 300192, China
| | - Tianyu Zhao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Ze Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiulin Yi
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengying Yan
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoliang Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tao Cui
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China.
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Baofeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
28
|
Lee SY, Lee E, Ryu JO, Kim K, Hwang Y, Ku B, Moon SW, Moon MH, Kim KS, Hyun K, Lim JU, Park CK, Kim SW, Yeo CD, Lee DW, Kim SJ. Histo-pillar strip for optimal histogel block construction and biomarker analysis in 3D-lung cancer patient-derived organoids. Biofabrication 2024; 16:045017. [PMID: 39074508 DOI: 10.1088/1758-5090/ad68a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
This study proposed an optimized histogel construction method for histological analysis by applying lung cancer patient-derived organoids (PDOs) to the developed histo-pillar strip. Previously, there is the cultured PDOs damage problem during the histogel construction due to forced detachment of the Matrigel spots from the 96-well plate bottom. To address this issue, we cultured PDO on the proposed Histo-pillar strips and then immersed them in 4% paraformaldehyde fixation solution to self-isolate PDO without damage. The 4μl patient-derived cell (PDC)/Matrigel mixtures were dispensed on the surface of a U-shaped histo-pillar strip, and the PDCs were aggregated by gravity and cultured into PDOs. Cultured PDOs were self-detached by simply immersing them in a paraformaldehyde fixing solution without physical processing, showing about two times higher cell recovery rate than conventional method. In addition, we proposed a method for embedding PDOs under conditions where the histogel temperature was maintained such that the histogel did not harden, thereby improving the problem of damaging the histogel block in the conventional sandwich histogel construction method. We performed histological and genotyping analyses using tumor tissues and PDOs from two patients with lung adenocarcinoma. Therefore, the PDO culture and improved histogel block construction method using the histo-pillar strip proposed in this study can be employed as useful tools for the histological analysis of a limited number of PDCs.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-O Ryu
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Kyuhwan Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwanyong Hyun
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
30
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
31
|
Conti Nibali S, De Siervi S, Luchinat E, Magrì A, Messina A, Brocca L, Mantovani S, Oliviero B, Ahmed MH, Mondelli MU, De Pinto V, Turato C, Arrigoni C, Lolicato M. VDAC1-interacting molecules promote cell death in cancer organoids through mitochondrial-dependent metabolic interference. iScience 2024; 27:109853. [PMID: 38784007 PMCID: PMC11112339 DOI: 10.1016/j.isci.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.
Collapse
Affiliation(s)
| | - Silvia De Siervi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enrico Luchinat
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Firenze, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Mario U. Mondelli
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, Section of Biology & Genetics, University of Catania, Catania, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
33
|
Yan S, He Y, Zhu Y, Ye W, Chen Y, Zhu C, Zhan F, Ma Z. Human patient derived organoids: an emerging precision medicine model for gastrointestinal cancer research. Front Cell Dev Biol 2024; 12:1384450. [PMID: 38638528 PMCID: PMC11024315 DOI: 10.3389/fcell.2024.1384450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality with a poor prognosis. It is one of the leading causes of cancer-related deaths worldwide. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. As a novel preclinical model, tumor patient-derived organoids (PDOs), can be established from patients' tumor tissue and cultured in the laboratory in 3D architectures. This 3D model can not only highly simulate and preserve key biological characteristics of the source tumor tissue in vitro but also reproduce the in vivo tumor microenvironment through co-culture. Our review provided an overview of the different in vitro models in current tumor research, the derivation of cells in PDO models, and the application of PDO model technology in gastrointestinal cancers, particularly the applications in combination with CRISPR/Cas9 gene editing technology, tumor microenvironment simulation, drug screening, drug development, and personalized medicine. It also elucidates the ethical status quo of organoid research and the current challenges encountered in clinical research, and offers a forward-looking assessment of the potential paths for clinical organoid research advancement.
Collapse
Affiliation(s)
- Sicheng Yan
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxuan He
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuehong Zhu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wangfang Ye
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Chen
- Department of Colorectal Surgery, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Cong Zhu
- Department of Colorectal Surgery, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Fuyuan Zhan
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
34
|
Mahdi-Esferizi R, Shiasi Z, Heidari R, Najafi A, Mahmoudi I, Elahian F, Tahmasebian S. Single-cell transcriptional signature-based drug repurposing and in vitro evaluation in colorectal cancer. BMC Cancer 2024; 24:371. [PMID: 38528462 DOI: 10.1186/s12885-024-12142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The need for intelligent and effective treatment of diseases and the increase in drug design costs have raised drug repurposing as one of the effective strategies in biomedicine. There are various computational methods for drug repurposing, one of which is using transcription signatures, especially single-cell RNA sequencing (scRNA-seq) data, which show us a clear and comprehensive view of the inside of the cell to compare the state of disease and health. METHODS In this study, we used 91,103 scRNA-seq samples from 29 patients with colorectal cancer (GSE144735 and GSE132465). First, differential gene expression (DGE) analysis was done using the ASAP website. Then we reached a list of drugs that can reverse the gene signature pattern from cancer to normal using the iLINCS website. Further, by searching various databases and articles, we found 12 drugs that have FDA approval, and so far, no one has reported them as a drug in the treatment of any cancer. Then, to evaluate the cytotoxicity and performance of these drugs, the MTT assay and real-time PCR were performed on two colorectal cancer cell lines (HT29 and HCT116). RESULTS According to our approach, 12 drugs were suggested for the treatment of colorectal cancer. Four drugs were selected for biological evaluation. The results of the cytotoxicity analysis of these drugs are as follows: tezacaftor (IC10 = 19 µM for HCT-116 and IC10 = 2 µM for HT-29), fenticonazole (IC10 = 17 µM for HCT-116 and IC10 = 7 µM for HT-29), bempedoic acid (IC10 = 78 µM for HCT-116 and IC10 = 65 µM for HT-29), and famciclovir (IC10 = 422 µM for HCT-116 and IC10 = 959 µM for HT-29). CONCLUSIONS Cost, time, and effectiveness are the main challenges in finding new drugs for diseases. Computational approaches such as transcriptional signature-based drug repurposing methods open new horizons to solve these challenges. In this study, tezacaftor, fenticonazole, and bempedoic acid can be introduced as promising drug candidates for the treatment of colorectal cancer. These drugs were evaluated in silico and in vitro, but it is necessary to evaluate them in vivo.
Collapse
Affiliation(s)
- Roohallah Mahdi-Esferizi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Shiasi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Issa Mahmoudi
- Information Technology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
35
|
Guo L, Li C, Gong W. Toward reproducible tumor organoid culture: focusing on primary liver cancer. Front Immunol 2024; 15:1290504. [PMID: 38571961 PMCID: PMC10987700 DOI: 10.3389/fimmu.2024.1290504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Organoids present substantial potential for pushing forward preclinical research and personalized medicine by accurately recapitulating tissue and tumor heterogeneity in vitro. However, the lack of standardized protocols for cancer organoid culture has hindered reproducibility. This paper comprehensively reviews the current challenges associated with cancer organoid culture and highlights recent multidisciplinary advancements in the field with a specific focus on standardizing liver cancer organoid culture. We discuss the non-standardized aspects, including tissue sources, processing techniques, medium formulations, and matrix materials, that contribute to technical variability. Furthermore, we emphasize the need to establish reproducible platforms that accurately preserve the genetic, proteomic, morphological, and pharmacotypic features of the parent tumor. At the end of each section, our focus shifts to organoid culture standardization in primary liver cancer. By addressing these challenges, we can enhance the reproducibility and clinical translation of cancer organoid systems, enabling their potential applications in precision medicine, drug screening, and preclinical research.
Collapse
Affiliation(s)
| | | | - Weiqiang Gong
- Department of Hepatobiliary and Pancreatic Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
36
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
37
|
Zhang Y, Liu K, He H, Xiao H, Fang Z, Chen X, Li H. Innovative explorations: unveiling the potential of organoids for investigating environmental pollutant exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16256-16273. [PMID: 38342830 DOI: 10.1007/s11356-024-32256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
As the economy rapidly develops, chemicals are widely produced and used. This has exacerbated the problems associated with environmental pollution, raising the need for efficient toxicological evaluation techniques to investigate the toxic effects and mechanisms of toxicity of environmental pollutants. The progress in the techniques of cell culture in three dimensions has resulted in the creation of models that are more relevant in terms of biology and physiology. This enables researchers to study organ development, toxicology, and drug screening. Adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs) can be obtained from various mammalian tissues, including cancerous and healthy tissues. Such stem cells exhibit a significant level of tissue memory and ability to self-assemble. When cultivated in 3D in vitro environments, the resulting organoids demonstrate a remarkable capacity to recapitulate the cellular composition and function of organs in vivo. Recently, many tumors' tissue-derived organoids have been widely used in research on tumor pathogenesis, drug development, precision medicine, and other fields, including those derived from colon cancer, cholangiocarcinoma, liver cancer, and gastric cancer. However, the application of organoid models for evaluating the toxicity of environmental pollutants is still in its infancy. This review introduces the characteristics of the toxicity responses of organoid models upon exposure to pollutants from the perspectives of organoid characteristics, tissue types, and their applications in toxicology; discusses the feasibility of using organoid models in evaluating the toxicity of pollutants; and provides a reference for future toxicological studies on environmental pollutants based on organoid models.
Collapse
Affiliation(s)
- Yuanhang Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China
| | - Hui Xiao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Fang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China.
| |
Collapse
|
38
|
Seghers S, Le Compte M, Hendriks JMH, Van Schil P, Janssens A, Wener R, Komen N, Prenen H, Deben C. A systematic review of patient-derived tumor organoids generation from malignant effusions. Crit Rev Oncol Hematol 2024; 195:104285. [PMID: 38311013 DOI: 10.1016/j.critrevonc.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
This review assesses the possibility of utilizing malignant effusions (MEs) for generating patient-derived tumor organoids (PDTOs). Obtained through minimally invasive procedures MEs broaden the spectrum of organoid sources beyond resection specimens and tissue biopsies. A systematic search yielded 11 articles, detailing the successful generation of 190 ME-PDTOs (122 pleural effusions, 54 malignant ascites). Success rates ranged from 33% to 100%, with an average of 84% and median of 92%. A broad and easily applicable array of techniques can be employed, encompassing diverse collection methods, variable centrifugation speeds, and the inclusion of approaches like RBC lysis buffer or centrifuged ME supernatants supplementation, enhancing the versatility and accessibility of the methodology. ME-PDTOs were found to recapitulate primary tumor characteristics and were primarily used for drug screening applications. Thus, MEs are a reliable source for developing PDTOs, emphasizing the need for further research to maximize their potential, validate usage, and refine culturing processes.
Collapse
Affiliation(s)
- Sofie Seghers
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.
| | - Maxim Le Compte
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Jeroen M H Hendriks
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium; Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium; Antwerp ReSURG Group, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium; Antwerp ReSURG Group, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology Antwerp University Hospital, Edegem, Belgium
| | - Reinier Wener
- Department of Thoracic Oncology Antwerp University Hospital, Edegem, Belgium; Department of Pulmonary Diseases, Antwerp University Hospital, Edegem, Belgium
| | - Niels Komen
- Department of Abdominal Surgery, Antwerp University Hospital, Edegem, Belgium; Antwerp ReSURG Group, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium; Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium; Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
39
|
Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, Qin W, Fan J, Wang C, Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024; 42:180-197. [PMID: 38350421 DOI: 10.1016/j.ccell.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.
Collapse
Affiliation(s)
- Xupeng Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew X Zhu
- I-Mab Biopharma, Shanghai, China; Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
41
|
Duan X, Zhang T, Feng L, de Silva N, Greenspun B, Wang X, Moyer J, Martin ML, Chandwani R, Elemento O, Leach SD, Evans T, Chen S, Pan FC. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2024; 31:71-88.e8. [PMID: 38151022 PMCID: PMC11022279 DOI: 10.1016/j.stem.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
KRAS mutations, mainly G12D and G12V, are found in more than 90% of pancreatic ductal adenocarcinoma (PDAC) cases. The success of drugs targeting KRASG12C suggests the potential for drugs specifically targeting these alternative PDAC-associated KRAS mutations. Here, we report a high-throughput drug-screening platform using a series of isogenic murine pancreatic organoids that are wild type (WT) or contain common PDAC driver mutations, representing both classical and basal PDAC phenotypes. We screened over 6,000 compounds and identified perhexiline maleate, which can inhibit the growth and induce cell death of pancreatic organoids carrying the KrasG12D mutation both in vitro and in vivo and primary human PDAC organoids. scRNA-seq analysis suggests that the cholesterol synthesis pathway is upregulated specifically in the KRAS mutant organoids, including the key cholesterol synthesis regulator SREBP2. Perhexiline maleate decreases SREBP2 expression levels and reverses the KRAS mutant-induced upregulation of the cholesterol synthesis pathway.
Collapse
Affiliation(s)
- Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lingling Feng
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Benjamin Greenspun
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Xing Wang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven D Leach
- Dartmouth Cancer Center, Dartmouth College, Hanover, NH 03755, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Fong Cheng Pan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| |
Collapse
|
42
|
Obreque J, Vergara-Gómez L, Venegas N, Weber H, Owen GI, Pérez-Moreno P, Leal P, Roa JC, Bizama C. Advances towards the use of gastrointestinal tumor patient-derived organoids as a therapeutic decision-making tool. Biol Res 2023; 56:63. [PMID: 38041132 PMCID: PMC10693174 DOI: 10.1186/s40659-023-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In December 2022 the US Food and Drug Administration (FDA) removed the requirement that drugs in development must undergo animal testing before clinical evaluation, a declaration that now demands the establishment and verification of ex vivo preclinical models that closely represent tumor complexity and that can predict therapeutic response. Fortunately, the emergence of patient-derived organoid (PDOs) culture has enabled the ex vivo mimicking of the pathophysiology of human tumors with the reassembly of tissue-specific features. These features include histopathological variability, molecular expression profiles, genetic and cellular heterogeneity of parental tissue, and furthermore growing evidence suggests the ability to predict patient therapeutic response. Concentrating on the highly lethal and heterogeneous gastrointestinal (GI) tumors, herein we present the state-of-the-art and the current methodology of PDOs. We highlight the potential additions, improvements and testing required to allow the ex vivo of study the tumor microenvironment, as well as offering commentary on the predictive value of clinical response to treatments such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Javiera Obreque
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Vergara-Gómez
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Nicolás Venegas
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
| | - Helga Weber
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Gareth I Owen
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Pérez-Moreno
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Pamela Leal
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
43
|
Takahashi R, Ishizawa T, Inagaki Y, Tanaka M, Ogasawara A, Kuriki Y, Fujita K, Kamiya M, Ushiku T, Urano Y, Hasegawa K. Real-Time Fluorescence Imaging to Identify Cholangiocarcinoma in the Extrahepatic Biliary Tree Using an Enzyme-Activatable Probe. Liver Cancer 2023; 12:590-602. [PMID: 38058421 PMCID: PMC10697719 DOI: 10.1159/000530645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Complete resection is the only possible treatment for cholangiocarcinoma in the extrahepatic biliary tree (eCCA), although current imaging modalities are limited in their ability to accurately diagnose longitudinal spread. We aimed to develop fluorescence imaging techniques for real-time identification of eCCA using an enzyme-activatable probe, which emits fluorescence immediately after activation by a cancer-specific enzyme. Methods Using lysates and small tissue fragments collected from surgically resected specimens, we selected the most specific probe for eCCA from among 800 enzyme-activatable probes. The selected probe was directly sprayed onto resected specimens and fluorescence images were acquired; these images were evaluated for diagnostic accuracy. We also comprehensively searched for enzymes that could activate the probe, then compared their expression levels in cancer and non-cancer tissues. Results Analyses of 19 samples (four cancer lysates, seven non-cancer lysates, and eight bile samples) and 54 tissue fragments (13 cancer tissues and 41 non-cancer tissues) revealed that PM-2MeSiR was the most specific fluorophore for eCCA. Fluorescence images of 7 patients were obtained; these images enabled rapid identification of cancerous regions, which closely matched histopathology findings in 4 patients. Puromycin-sensitive aminopeptidase was identified as the enzyme that might activate the probe, and its expression was upregulated in eCCA. Conclusion Fluorescence imaging with PM-2MeSiR, which may be activated by puromycin-sensitive aminopeptidase, yielded generally high accuracy. This technique may be useful for real-time identification of the spread of eCCA during surgery and endoscopic examinations.
Collapse
Affiliation(s)
- Ryugen Takahashi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshinori Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Ogasawara
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohhei Fujita
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| |
Collapse
|
44
|
Yáñez-Bartolomé M, Macarulla T, Tian TV. The potential of patient-derived organoids in precision medicine of biliary tract cancer. Cell Rep Med 2023; 4:101294. [PMID: 37992681 PMCID: PMC10694744 DOI: 10.1016/j.xcrm.2023.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Chemotherapy resistance in biliary tract cancer (BTC) presents a major clinical hurdle. Ren et al.1 developed and characterized an extensive collection of BTC patient-derived organoid (PDO) models, enabling advanced investigation of chemotherapy response prediction.
Collapse
Affiliation(s)
- Mariana Yáñez-Bartolomé
- Upper Gastrointestinal Cancer Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Teresa Macarulla
- Upper Gastrointestinal Cancer Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Tian V Tian
- Upper Gastrointestinal Cancer Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain.
| |
Collapse
|
45
|
Manzano-Núñez F, Prates Tiago Aguilar L, Sempoux C, Lemaigre FP. Biliary Tract Cancer: Molecular Biology of Precursor Lesions. Semin Liver Dis 2023; 43:472-484. [PMID: 37944999 DOI: 10.1055/a-2207-9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Biliary tract cancer is a devastating malignancy of the bile ducts and gallbladder with a dismal prognosis. The study of precancerous lesions has received considerable attention and led to a histopathological classification which, in some respects, remains an evolving field. Consequently, increasing efforts have been devoted to characterizing the molecular pathogenesis of the precursor lesions, with the aim of better understanding the mechanisms of tumor progression, and with the ultimate goal of meeting the challenges of early diagnosis and treatment. This review delves into the molecular mechanisms that initiate and promote the development of precursor lesions of intra- and extrahepatic cholangiocarcinoma and of gallbladder carcinoma. It addresses the genomic, epigenomic, and transcriptomic landscape of these precursors and provides an overview of animal and organoid models used to study them. In conclusion, this review summarizes the known molecular features of precancerous lesions in biliary tract cancer and highlights our fragmentary knowledge of the molecular pathogenesis of tumor initiation.
Collapse
Affiliation(s)
| | | | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
46
|
Freires IA, Morelo DFC, Soares LFF, Costa IS, de Araújo LP, Breseghello I, Abdalla HB, Lazarini JG, Rosalen PL, Pigossi SC, Franchin M. Progress and promise of alternative animal and non-animal methods in biomedical research. Arch Toxicol 2023; 97:2329-2342. [PMID: 37394624 DOI: 10.1007/s00204-023-03532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - David Fernando Colon Morelo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | | | | | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
- Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
47
|
Zhou B, Feng Z, Xu J, Xie J. Organoids: approaches and utility in cancer research. Chin Med J (Engl) 2023; 136:1783-1793. [PMID: 37365679 PMCID: PMC10406116 DOI: 10.1097/cm9.0000000000002477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 06/28/2023] Open
Abstract
ABSTRACT Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.
Collapse
Affiliation(s)
- Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiwei Feng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
48
|
Fang Z, Li P, Du F, Shang L, Li L. The role of organoids in cancer research. Exp Hematol Oncol 2023; 12:69. [PMID: 37537666 PMCID: PMC10401879 DOI: 10.1186/s40164-023-00433-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Organoids are established through in vitro 3D culture, and they can mimic the structure and physiological functions of organs or tissues in vivo. Organoids have attracted much attention in recent years. They can provide a reliable technology platform for cancer research and treatment and are a valuable preclinical model for academic research and personalized medicine. A number of studies have confirmed that organoids have great application prospects in new drug development, drug screening, tumour mechanism research, and precision medicine. In this review, we mainly focus on recent advances in the application of organoids in cancer research. We also discussed the opportunities and challenges facing organoids, hoping to indicate directions for the development of organoids in the future.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Peijuan Li
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China.
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China.
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
| |
Collapse
|
49
|
Yan HHN, Chan AS, Lai FPL, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell 2023; 30:917-937. [PMID: 37315564 DOI: 10.1016/j.stem.2023.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Organoids derived from adult stem cells (ASCs) and pluripotent stem cells (PSCs) are important preclinical models for studying cancer and developing therapies. Here, we review primary tissue-derived and PSC-derived cancer organoid models and detail how they have the potential to inform personalized medical approaches in different organ contexts and contribute to the understanding of early carcinogenic steps, cancer genomes, and biology. We also compare the differences between ASC- and PSC-based cancer organoid systems, discuss their limitations, and highlight recent improvements to organoid culture approaches that have helped to make them an even better representation of human tumors.
Collapse
Affiliation(s)
- Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Frank Pui-Ling Lai
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
50
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|