1
|
Choi AJ, Bennison DJ, Kulkarni E, Azar H, Sun H, Li H, Bradshaw J, Yeap HW, Lim N, Mishra V, Crespo-Puig A, Mills EA, Davies F, Sriskandan S, Shenoy AR. Aminoglycoside heteroresistance in Enterobacter cloacae is driven by the cell envelope stress response. mBio 2024; 15:e0169924. [PMID: 39475244 PMCID: PMC11633387 DOI: 10.1128/mbio.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Enterobacter cloacae is a Gram-negative nosocomial pathogen of the ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp.) priority group with increasing multi-drug resistance via the acquisition of resistance plasmids. However, E. cloacae can also display forms of antibiotic refractoriness, such as heteroresistance and tolerance. Here, we report that E. cloacae displays transient heteroresistance to aminoglycosides, which is accompanied with the formation of small colony variants (SCVs) with increased minimum inhibitor concentration (MIC) of gentamicin and other aminoglycosides used in the clinic, but not other antibiotic classes. To explore the underlying mechanisms, we performed RNA sequencing of heteroresistant bacteria, which revealed global gene expression changes and a signature of the CpxRA cell envelope stress response. Deletion of the cpxRA two-component system abrogated aminoglycoside heteroresistance and SCV formation, pointing to its indispensable role in these processes. The introduction of a constitutively active allele of cpxA led to high aminoglycoside MICs, consistent with cell envelope stress response driving these behaviors in E. cloacae. Cell envelope stress can be caused by environmental cues, including heavy metals. Indeed, bacterial exposure to copper increased gentamicin MIC in the wild-type but not in the ΔcpxRA mutant. Moreover, copper exposure also elevated the gentamicin MICs of clinical isolates from bloodstream infections, suggesting that CpxRA- and copper-dependent aminoglycoside resistance is broadly conserved in E. cloacae strains. Altogether, we establish that E. cloacae relies on transcriptional reprogramming via the envelope stress response pathway for transient resistance to a major class of frontline antibiotic.IMPORTANCEEnterobacter cloacae is a bacterium that belongs to the WHO high-priority group and an increasing threat worldwide due its multi-drug resistance. E. cloacae can also display heteroresistance, which has been linked to treatment failure. We report that E. cloacae shows heteroresistance to aminoglycoside antibiotics. These are important frontline microbicidal drugs used against Gram-negative bacterial infections; therefore, understanding how resistance develops among sensitive strains is important. We show that aminoglycoside resistance is driven by the activation of the cell envelope stress response and transcriptional reprogramming via the CpxRA two-component system. Furthermore, heterologous activation of envelope stress via copper, typically a heavy metal with antimicrobial actions, also increased aminoglycoside MICs of the E. cloacae type strain and clinical strains isolated from bloodstream infections. Our study suggests aminoglycoside recalcitrance in E. cloacae could be broadly conserved and cautions against the undesirable effects of copper.
Collapse
Affiliation(s)
- Ana J. Choi
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Daniel J. Bennison
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Esha Kulkarni
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hibah Azar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haoyu Sun
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hanqi Li
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jonathan Bradshaw
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hui Wen Yeap
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Nicholas Lim
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Vishwas Mishra
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Anna Crespo-Puig
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ewurabena A. Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Avinash R. Shenoy
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
2
|
Miner MV, Rauch I. Why put yourself on a pedestal? The pathogenic role of the A/E pedestal. Infect Immun 2024; 92:e0048923. [PMID: 38591884 PMCID: PMC11384751 DOI: 10.1128/iai.00489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Certain Escherichia coli (E. coli) strains are attaching and effacing (A/E) lesion pathogens that primarily infect intestinal epithelial cells. They cause actin restructuring and polymerization within the host cell to create an actin-rich protrusion below the site of adherence, termed the pedestal. Although there is clarity on the pathways initiating pedestal formation, the underlying purpose(s) of the pedestal remains ambiguous. The conservation of pedestal-forming activity across multiple pathogens and redundancy in formation pathways indicate a pathogenic advantage. However, few decisive conclusions have been drawn, given that the results vary between model systems. Some research argues that the pedestal increases the colonization capability of the bacterium. These studies utilize A/E pathogens specifically deficient in pedestal formation to evaluate adhesion and intestinal colonization following infection. There have been many proposed mechanisms for the colonization benefit conferred by the pedestal. One suggested benefit is that the pedestal allows for direct cytosolic anchoring through incorporation of the established host cortical actin, causing a stable link between the pathogen and cell structure. The pedestal may confer enhanced motility, as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are better able to migrate on the surface of host cells and infect neighboring cells in the presence of the pedestal. Additionally, some research suggests that the pedestal improves effector delivery. This review will investigate the purpose of pedestal formation using evidence from recent literature and will critically evaluate the methodology and model systems. Most importantly, we will contextualize the proposed functions to reconcile potential synergistic effects.
Collapse
Affiliation(s)
- M. V. Miner
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - I. Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
4
|
Yang Y, Chen HL, Wu SF, Bao W. CHMP4B and VSP4A reverse GSDMD-mediated pyroptosis by cell membrane remodeling in endometrial carcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130497. [PMID: 37931722 DOI: 10.1016/j.bbagen.2023.130497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In advanced and recurrent endometrial carcinoma (EC), the current state of immuno- or targeted therapy remains in the clinical research phase. Our study aimed to explore the role of the ESCRT machinery in maintaining cell membrane integrity and reversing pyroptotic cell death. METHODS Immunohistochemistry, western blotting, and co-immunoprecipitation were performed to determine the expression and relationship between GSDMD, CHMP4B, and VPS4A. We employed techniques such as FITC Annexin V/propidium iodide staining, Ca2+ fluorescence intensity, IL-1β enzyme-linked immunosorbent assay, and lactate dehydrogenase release assay to detect pyroptosis in endometrial cancer cells. Plasma membrane perforations and CHMP4B/VPS4A puncta were observed through electron and fluorescence confocal microscopy. RESULTS We showed that GSDMD, CHMP4B, and VPS4A were differentially expressed in the pyroptotic EC xenograft mouse model group, as well as high, moderate, and mild expression in EC cells treated with LPS and nigericin compared to endometrial epithelial cells. Co-IP confirmed the interaction between GSDMD, CHMP4B, and VPS4A. We found that GSDMD knockdown reduced PI-positive cells, Ca2+ efflux, IL-1β, and LDH release, while CHMP4B and VPS4A depletion enhanced these indicators in HEC1A and AN3CA cells. Electron microscopy showed membrane perforations correspondingly decreased with inactivated GSDMD and increased or decreased after CHMP4B and VPS4A depletion or overexpression in EC cells. Fluorescence confocal microscopy detected CHMP4B protein puncta associated with VPS4A at the injured plasma membrane in GSDMDNT cells. CONCLUSIONS We preliminary evidenced that CHMP4B and VPS4A reverses GSDMD-mediated pyroptosis by facilitating cell membrane remodeling in endometrial carcinoma. Targeting CHMP4B related proteins may promote pyroptosis in endometrial tumors.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China
| | - Hai-Lian Chen
- Surgical Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China
| | - Su Fang Wu
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China.
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China.
| |
Collapse
|
5
|
Haritan N, Bouman EA, Nandi I, Shtuhin-Rahav R, Zlotkin-Rivkin E, Danieli T, Melamed-Book N, Nir-Keren Y, Aroeti B. Topology and function of translocated EspZ. mBio 2023; 14:e0075223. [PMID: 37341483 PMCID: PMC10470495 DOI: 10.1128/mbio.00752-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.
Collapse
Affiliation(s)
- Nir Haritan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raisa Shtuhin-Rahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Mishra V, Crespo-Puig A, McCarthy C, Masonou T, Glegola-Madejska I, Dejoux A, Dow G, Eldridge MJG, Marinelli LH, Meng M, Wang S, Bennison DJ, Morrison R, Shenoy AR. IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation. Nat Commun 2023; 14:4385. [PMID: 37474493 PMCID: PMC10359330 DOI: 10.1038/s41467-023-40054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1β turnover in macrophages, leading to excessive mature IL-1β production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1β. We show that precursor abundance determines mature IL-1β production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1β. Our study uncovers fundamental processes governing IL-1β homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.
Collapse
Affiliation(s)
- Vishwas Mishra
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Crespo-Puig
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Callum McCarthy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Tereza Masonou
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Izabela Glegola-Madejska
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Alice Dejoux
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Gabriella Dow
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Matthew J G Eldridge
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Luciano H Marinelli
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Meihan Meng
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Shijie Wang
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel J Bennison
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Morrison
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
7
|
Braverman D, Gershberg J, Sal-Man N. The transmembrane domains of the type III secretion system effector Tir are involved in its secretion and cellular activities. Front Cell Infect Microbiol 2023; 13:1103552. [PMID: 36864885 PMCID: PMC9971567 DOI: 10.3389/fcimb.2023.1103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen and one of the major causes of gastrointestinal illness in developing countries. EPEC, similar to many other Gram-negative bacterial pathogens, possesses essential virulence machinery called the type III secretion system (T3SS) that enables the injection of effector proteins from the bacteria into the host cytoplasm. Of these, the translocated intimin receptor (Tir) is the first effector to be injected, and its activity is essential for the formation of attaching and effacing lesions, the hallmark of EPEC colonization. Tir belongs to a unique group of transmembrane domain (TMD)-containing secreted proteins, which have two conflicting destination indications, one for bacterial membrane integration and another for protein secretion. In this study, we examined whether TMDs participate in the secretion, translocation, and function of Tir in host cells. Methods We created Tir TMD variants with the original or alternative TMD sequence. Results We found that the C-terminal TMD of Tir (TMD2) is critical for the ability of Tir to escape integration into the bacterial membrane. However, the TMD sequence was not by itself sufficient and its effect was context-dependent. Moreover, the N-terminal TMD of Tir (TMD1) was important for the postsecretion function of Tir at the host cell. Discussion Taken together, our study further supports the hypothesis that the TMD sequences of translocated proteins encode information crucial for protein secretion and their postsecretion function.
Collapse
Affiliation(s)
- Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
8
|
Kantrong N, Buranaphatthana W, Hormdee D, Suwannarong W, Chaichit R, Pattanaporn K, Klanrit P, Krisanaprakornkit S. Expression of human caspase-4 in the gingival epithelium affected with periodontitis: Its involvement in Porphyromonas gingivalis-challenged gingival epithelial cells. Arch Oral Biol 2022; 140:105466. [DOI: 10.1016/j.archoralbio.2022.105466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
|
9
|
Caspase-11/4 is involved in bacteria-mediated periodontitis by promoting the release of interleukin-1 β and tumor necrosis factor-α. Arch Oral Biol 2022; 142:105517. [DOI: 10.1016/j.archoralbio.2022.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
|
10
|
Magnani L, Colantuoni M, Mortellaro A. Gasdermins: New Therapeutic Targets in Host Defense, Inflammatory Diseases, and Cancer. Front Immunol 2022; 13:898298. [PMID: 35844522 PMCID: PMC9285118 DOI: 10.3389/fimmu.2022.898298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Gasdermins (GSDMs) are a class of pore-forming proteins related to pyroptosis, a programmed cell death pathway that is induced by a range of inflammatory stimuli. Small-scale GSDM activation and pore formation allow the passive release of cytokines, such as IL-1β and IL-18, and alarmins, but, whenever numerous GSDM pores are assembled, osmotic lysis and cell death occur. Such GSDM-mediated pyroptosis promotes pathogen clearance and can help restore homeostasis, but recent studies have revealed that dysregulated pyroptosis is at the root of many inflammation-mediated disease conditions. Moreover, new homeostatic functions for gasdermins are beginning to be revealed. Here, we review the newly discovered mechanisms of GSDM activation and their prominent roles in host defense and human diseases associated with chronic inflammation. We also highlight the potential of targeting GSDMs as a new therapeutic approach to combat chronic inflammatory diseases and cancer and how we might overcome the current obstacles to realize this potential.
Collapse
|
11
|
Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems 2022; 7:e0020222. [PMID: 35477304 PMCID: PMC9238428 DOI: 10.1128/msystems.00202-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.
Collapse
|
12
|
Zhong Q, Chatterjee S, Choudhary JS, Frankel G. EPEC-induced activation of the Ca 2+ transporter TRPV2 leads to pyroptotic cell death. Mol Microbiol 2022; 117:480-492. [PMID: 34897856 DOI: 10.1111/mmi.14863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sharanya Chatterjee
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
13
|
Lee JB, Kim SK, Yoon JW. Pathophysiology of enteropathogenic Escherichia coli during a host infection. J Vet Sci 2022; 23:e28. [PMID: 35187883 PMCID: PMC8977535 DOI: 10.4142/jvs.21160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.
Collapse
Affiliation(s)
- Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
Ragland SA, Kagan JC. Cytosolic detection of phagosomal bacteria-Mechanisms underlying PAMP exodus from the phagosome into the cytosol. Mol Microbiol 2021; 116:1420-1432. [PMID: 34738270 DOI: 10.1111/mmi.14841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Kennedy CR, Goya Grocin A, Kovačič T, Singh R, Ward JA, Shenoy AR, Tate EW. A Probe for NLRP3 Inflammasome Inhibitor MCC950 Identifies Carbonic Anhydrase 2 as a Novel Target. ACS Chem Biol 2021; 16:982-990. [PMID: 34003636 PMCID: PMC8218299 DOI: 10.1021/acschembio.1c00218] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Inhibition of inflammasome
and pyroptotic pathways are promising
strategies for clinical treatment of autoimmune and inflammatory disorders.
MCC950, a potent inhibitor of the NLR-family inflammasome pyrin domain-containing
3 (NLRP3) protein, has shown encouraging results in animal models
for a range of conditions; however, until now, no off-targets have
been identified. Herein, we report the design, synthesis, and application
of a novel photoaffinity alkyne-tagged probe for MCC950 (IMP2070) which shows direct engagement with NLRP3 and inhibition of inflammasome
activation in macrophages. Affinity-based chemical proteomics in live
macrophages identified several potential off-targets, including carbonic
anhydrase 2 (CA2) as a specific target of IMP2070, and
independent cellular thermal proteomic profiling revealed stabilization
of CA2 by MCC950. MCC950 displayed noncompetitive inhibition of CA2
activity, confirming carbonic anhydrase as an off-target class for
this compound. These data highlight potential biological mechanisms
through which MCC950 and derivatives may exhibit off-target effects
in preclinical or clinical studies.
Collapse
Affiliation(s)
- Cassandra R. Kennedy
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
- Institute of Chemical Biology Centre for Doctoral Training, Imperial College London, London W12 0BZ, United Kingdom
| | - Andrea Goya Grocin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Tristan Kovačič
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Ravi Singh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Jennifer A. Ward
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
- Institute of Chemical Biology Centre for Doctoral Training, Imperial College London, London W12 0BZ, United Kingdom
| | - Avinash R. Shenoy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
16
|
Zhu Y, Tang Y, Ruan Z, Dai Y, Li Z, Lin Z, Zhao S, Cheng L, Sun B, Zeng M, Zhu J, Zhao R, Lu B, Long H. Mg(OH) 2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species. J Biomed Mater Res A 2021; 109:2369-2380. [PMID: 34110087 DOI: 10.1002/jbm.a.37219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022]
Abstract
Infection often causes disastrous consequences in all fields of clinical medicine, especially orthopedics. Hence, critical efforts are being made to engineer novel nanomaterials for the treatment of orthopedic infections due to the high biocompatibility and antibacterial properties they possess. The purpose of this study was to investigate the antibacterial effects of magnesium hydroxide (Mg(OH)2 ) nanoparticles (NPs) in vitro and determine their possible mechanisms of action. In this study, Escherichia coli was selected as the pathogenic bacteria and it was found that Mg(OH)2 NPs significantly inhibited the growth of E. coli by promoting nucleic acid leakage, inhibiting protein synthesis, and suppressing the metabolic activity. The minimum inhibitory concentration for these bacteria was determined to be 4.4 μg/ml. In vitro flow cytometry and immunofluorescence tests indicated that Mg(OH)2 NPs induced the macrophages to generate reactive oxygen species to kill the bacteria. To understand the mechanisms involved in this process, western blotting was performed and it was found that Mg(OH)2 NPs activated the phosphatidylinositol-3-kinase/serine-threonine kinase (PI3K/Akt) signaling pathway of macrophages to enhance their phagocytosis with no obvious cytotoxicity. Thus, Mg(OH)2 NPs are a suitable choice to develop promising agents or coating materials for the treatment of clinically widespread infections in view of their safety, biocompatibility, and powerful antibacterial properties.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yifu Tang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, China
| | - Zhaohui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Buhua Sun
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Bangbao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
18
|
Mylona E, Sanchez-Garrido J, Hoang Thu TN, Dongol S, Karkey A, Baker S, Shenoy AR, Frankel G. Very long O-antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death. Cell Microbiol 2021; 23:e13306. [PMID: 33355403 PMCID: PMC8609438 DOI: 10.1111/cmi.13306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD‐mediated pyroptosis via activation of caspase‐1, caspase‐4 and caspase‐8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island‐1 (SPI‐1) injectisome, HilA‐mediated overexpression of the SPI‐1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O‐antigen length regulator, which induces the production of very long O‐antigen chains. Using a ΔfepE mutant we established that the very long O‐antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome‐mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar‐specific inflammasome modulation, which mirrors the pro‐ and anti‐inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome‐mediated detection through the elaboration of very long LPS O‐polysaccharides.
Collapse
Affiliation(s)
- Elli Mylona
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Julia Sanchez-Garrido
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trang Nguyen Hoang Thu
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Avinash R Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
19
|
Zhong Q, Roumeliotis TI, Kozik Z, Cepeda-Molero M, Fernández LÁ, Shenoy AR, Bakal C, Frankel G, Choudhary JS. Clustering of Tir during enteropathogenic E. coli infection triggers calcium influx-dependent pyroptosis in intestinal epithelial cells. PLoS Biol 2020; 18:e3000986. [PMID: 33378358 PMCID: PMC7773185 DOI: 10.1371/journal.pbio.3000986] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Massiel Cepeda-Molero
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM-Cantoblanco, Madrid, Spain
| | - Avinash R. Shenoy
- Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Chris Bakal
- Dynamical Cell Systems, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Jyoti S. Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
20
|
Diospyrin Modulates Inflammation in Poly I:C-Induced Macrophages via ER Stress-Induced Calcium-CHOP Pathway. Processes (Basel) 2020. [DOI: 10.3390/pr8091050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diospyrin, plant-derived bisnaphthoquinonoid, is known to have anticancer activity. However, pharmacological activity of diospyrin on viral infection is not well known. We investigated effects of diospyrin on macrophages induced by polyinosinic-polycytidylic acid (poly I:C), a mimic of double-stranded viral RNA. Various cytokines, intracellular calcium, nitric oxide (NO), phosphorylated p38 MAPK, and phosphorylated ERK1/2 as well as mRNA expressions of transcription factors were evaluated. Diospyrin significantly reduced NO production, granulocyte-macrophage colony-stimulating factor production, and intracellular calcium release in poly I:C-induced RAW 264.7. The phosphorylation of p38 MAPK and ERK1/2 was also significantly suppressed. Additionally, diospyrin inhibited mRNA levels of nitric oxide synthase 2, C/EBP homologous protein (CHOP), calcium/calmodulin dependent protein kinase II alpha, signal transducers and activators of transcription 1 (STAT1), STAT3, STAT4, Janus kinase 2, first apoptosis signal receptor, c-Jun, and c-Fos in poly I:C-induced RAW 264.7. Taken together, this study represents that diospyrin might have the inhibitory activity against viral inflammation such as excessive production of inflammatory mediators in poly I:C-induced RAW 264.7 via ER stress-induced calcium-CHOP pathway.
Collapse
|
21
|
Slater SL, Frankel G. Advances and Challenges in Studying Type III Secretion Effectors of Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2020; 10:337. [PMID: 32733819 PMCID: PMC7358347 DOI: 10.3389/fcimb.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sabrina L Slater
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
23
|
Zhang H, Zeng L, Xie M, Liu J, Zhou B, Wu R, Cao L, Kroemer G, Wang H, Billiar TR, Zeh HJ, Kang R, Jiang J, Yu Y, Tang D. TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host Microbe 2020; 27:556-570.e6. [PMID: 32142632 DOI: 10.1016/j.chom.2020.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
The discovery of TMEM173/STING-dependent innate immunity has recently provided guidance for the prevention and management of inflammatory disorders. Here, we show that myeloid TMEM173 occupies an essential role in regulating coagulation in bacterial infections through a mechanism independent of type I interferon response. Mechanistically, TMEM173 binding to ITPR1 controls calcium release from the endoplasmic reticulum in macrophages and monocytes. The TMEM173-dependent increase in cytosolic calcium drives Gasdermin D (GSDMD) cleavage and activation, which triggers the release of F3, the key initiator of blood coagulation. Genetic or pharmacological inhibition of the TMEM173-GSDMD-F3 pathway blocks systemic coagulation and improves animal survival in three models of sepsis (cecal ligation and puncture or bacteremia with Escherichia coli or Streptococcus pneumoniae infection). The upregulation of the TMEM173 pathway correlates with the severity of disseminated intravascular coagulation and mortality in patients with sepsis. Thus, TMEM173 is a key regulator of blood clotting during lethal bacterial infections.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Zeng
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- The Third Affiliated Hospital, Protein Modification and Degradation Lab of Guangzhou and Guangdong, Guangzhou Medical University, Guang Zhou, Guangdong 510600, China
| | - Borong Zhou
- The Third Affiliated Hospital, Protein Modification and Degradation Lab of Guangzhou and Guangdong, Guangzhou Medical University, Guang Zhou, Guangdong 510600, China
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianxin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Daolin Tang
- The Third Affiliated Hospital, Protein Modification and Degradation Lab of Guangzhou and Guangdong, Guangzhou Medical University, Guang Zhou, Guangdong 510600, China; Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
25
|
Yi Y. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology 2020; 159:142-155. [PMID: 31630388 PMCID: PMC6954705 DOI: 10.1111/imm.13134] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a part of the body's immune response for protection against pathogenic infections and other cellular damages; however, chronic inflammation is a major cause of various diseases. One key step in the inflammatory response is the activation of inflammasomes, intracellular protein complexes comprising pattern recognition receptors and other inflammatory molecules. The role of the NLRP3 inflammasome in inflammatory responses has been extensively investigated; however, the caspase-11 inflammasome has been recently identified and has been classified as a 'non-canonical' inflammasome, and emerging studies have highlighted its role in inflammatory responses. Because the ligands and the mechanisms for the activation of these two inflammasomes are different, studies to date have separately described their roles, although recent studies have reported the functional cooperation between these two inflammasomes during an inflammatory response. This review discusses the studies investigating the functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes in the context of inflammatory responses; moreover, it provides insight for the development of novel anti-inflammatory therapeutics to prevent and treat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Young‐Su Yi
- Department of Pharmaceutical and Biomedical EngineeringCheongju UniversityCheongjuKorea
| |
Collapse
|
26
|
Prasad H, Shenoy AR, Visweswariah SS. Cyclic nucleotides, gut physiology and inflammation. FEBS J 2020; 287:1970-1981. [PMID: 31889413 DOI: 10.1111/febs.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Misregulation of gut function and homeostasis impinges on the overall well-being of the entire organism. Diarrheal disease is the second leading cause of death in children under 5 years of age, and globally, 1.7 billion cases of childhood diarrhea are reported every year. Accompanying diarrheal episodes are a number of secondary effects in gut physiology and structure, such as erosion of the mucosal barrier that lines the gut, facilitating further inflammation of the gut in response to the normal microbiome. Here, we focus on pathogenic bacteria-mediated diarrhea, emphasizing the role of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in driving signaling outputs that result in the secretion of water and ions from the epithelial cells of the gut. We also speculate on how this aberrant efflux and influx of ions could modulate inflammasome signaling, and therefore cell survival and maintenance of gut architecture and function.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
27
|
Yun M, Yi YS. Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res 2019; 44:373-385. [PMID: 32372859 PMCID: PMC7195600 DOI: 10.1016/j.jgr.2019.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, Apoptosis-associated speck-like protein containing CARD
- CARD, C-terminal caspase recruit domain
- COX-2, Cyclooxygenase-2
- Caspase, Cysteine aspartate–specific protease
- DAMP, Danger-associated molecular pattern
- FIIND, Functional-to-find domain
- GSDMD, Gasdermin D
- Ginseng
- Ginsenoside
- HIN, Hematopoietic interferon-inducible nuclear protein
- IL, Interleukin
- Inflammasome
- Inflammation
- Inflammatory caspase
- LPS, Lipopolysaccharide
- LRR, Leucine-rich repeat
- NACHT, Nucleotide-binding and oligomerization domain
- NF-κB, Nuclear factor-kappa B
- NLR, Nucleotide-binding oligomerization domain-like receptor
- NO, Nitric oxide
- PAMP, Pathogen-associated molecular pattern
- PGE2, Prostaglandin E2
- PRR, Pattern-recognition receptor
- PYD, N-terminal pyrin domain
- RGE, Korean Red Ginseng
- ROS, Reactive oxygen species
Collapse
Affiliation(s)
- Miyong Yun
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Republic of Korea
| | - Young-Su Yi
- Department of Life Science, Kyonggi University, Suwon, Republic of Korea
| |
Collapse
|
28
|
Watson JL, Sanchez-Garrido J, Goddard PJ, Torraca V, Mostowy S, Shenoy AR, Clements A. Shigella sonnei O-Antigen Inhibits Internalization, Vacuole Escape, and Inflammasome Activation. mBio 2019; 10:e02654-19. [PMID: 31848280 PMCID: PMC6918081 DOI: 10.1128/mbio.02654-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/04/2022] Open
Abstract
Two Shigella species, Shigella flexneri and Shigella sonnei, cause approximately 90% of bacterial dysentery worldwide. While S. flexneri is the dominant species in low-income countries, S. sonnei causes the majority of infections in middle- and high-income countries. S. flexneri is a prototypic cytosolic bacterium; once intracellular, it rapidly escapes the phagocytic vacuole and causes pyroptosis of macrophages, which is important for pathogenesis and bacterial spread. In contrast, little is known about the invasion, vacuole escape, and induction of pyroptosis during S. sonnei infection of macrophages. We demonstrate here that S. sonnei causes substantially less pyroptosis in human primary monocyte-derived macrophages and THP1 cells. This is due to reduced bacterial uptake and lower relative vacuole escape, which results in fewer cytosolic S. sonnei and hence reduced activation of caspase-1 inflammasomes. Mechanistically, the O-antigen (O-Ag), which in S. sonnei is contained in both the lipopolysaccharide and the capsule, was responsible for reduced uptake and the type 3 secretion system (T3SS) was required for vacuole escape. Our findings suggest that S. sonnei has adapted to an extracellular lifestyle by incorporating multiple layers of O-Ag onto its surface compared to other Shigella species.IMPORTANCE Diarrheal disease remains the second leading cause of death in children under five. Shigella remains a significant cause of diarrheal disease with two species, S. flexneri and S. sonnei, causing the majority of infections. S. flexneri are well known to cause cell death in macrophages, which contributes to the inflammatory nature of Shigella diarrhea. Here, we demonstrate that S. sonnei causes less cell death than S. flexneri due to a reduced number of bacteria present in the cell cytosol. We identify the O-Ag polysaccharide which, uniquely among Shigella spp., is present in two forms on the bacterial cell surface as the bacterial factor responsible. Our data indicate that S. sonnei differs from S. flexneri in key aspects of infection and that more attention should be given to characterization of S. sonnei infection.
Collapse
Affiliation(s)
- Jayne L Watson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Julia Sanchez-Garrido
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Philippa J Goddard
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avinash R Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Abigail Clements
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|
30
|
Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR, Frickel E. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J 2019; 38:e100926. [PMID: 31268602 PMCID: PMC6600649 DOI: 10.15252/embj.2018100926] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
The guanylate binding protein (GBP) family of interferon-inducible GTPases promotes antimicrobial immunity and cell death. During bacterial infection, multiple mouse Gbps, human GBP2, and GBP5 support the activation of caspase-1-containing inflammasome complexes or caspase-4 which trigger pyroptosis. Whether GBPs regulate other forms of cell death is not known. The apicomplexan parasite Toxoplasma gondii causes macrophage death through unidentified mechanisms. Here we report that Toxoplasma-induced death of human macrophages requires GBP1 and its ability to target Toxoplasma parasitophorous vacuoles through its GTPase activity and prenylation. Mechanistically, GBP1 promoted Toxoplasma detection by AIM2, which induced GSDMD-independent, ASC-, and caspase-8-dependent apoptosis. Identical molecular determinants targeted GBP1 to Salmonella-containing vacuoles. GBP1 facilitated caspase-4 recruitment to Salmonella leading to its enhanced activation and pyroptosis. Notably, GBP1 could be bypassed by the delivery of Toxoplasma DNA or bacterial LPS into the cytosol, pointing to its role in liberating microbial molecules. GBP1 thus acts as a gatekeeper of cell death pathways, which respond specifically to infecting microbes. Our findings expand the immune roles of human GBPs in regulating not only pyroptosis, but also apoptosis.
Collapse
Affiliation(s)
- Daniel Fisch
- Host‐Toxoplasma Interaction LaboratoryThe Francis Crick InstituteLondonUK
- MRC Centre for Molecular Bacteriology & InfectionImperial CollegeLondonUK
| | - Hironori Bando
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of ImmunoparasitologyWPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Barbara Clough
- Host‐Toxoplasma Interaction LaboratoryThe Francis Crick InstituteLondonUK
| | - Veit Hornung
- Gene Center and Department of Biochemistry & Center for Integrated Protein Science (CIPSM)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Masahiro Yamamoto
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of ImmunoparasitologyWPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & InfectionImperial CollegeLondonUK
- The Francis Crick InstituteLondonUK
| | - Eva‐Maria Frickel
- Host‐Toxoplasma Interaction LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|