1
|
Saloner R, Staffaroni AM, Dammer EB, Johnson ECB, Paolillo EW, Wise A, Heuer HW, Forsberg LK, Lario-Lago A, Webb JD, Vogel JW, Santillo AF, Hansson O, Kramer JH, Miller BL, Li J, Loureiro J, Sivasankaran R, Worringer KA, Seyfried NT, Yokoyama JS, Spina S, Grinberg LT, Seeley WW, VandeVrede L, Ljubenkov PA, Bayram E, Bozoki A, Brushaber D, Considine CM, Day GS, Dickerson BC, Domoto-Reilly K, Faber K, Galasko DR, Gendron T, Geschwind DH, Ghoshal N, Graff-Radford N, Hales CM, Honig LS, Hsiung GYR, Huey ED, Kornak J, Kremers W, Lapid MI, Lee SE, Litvan I, McMillan CT, Mendez MF, Miyagawa T, Pantelyat A, Pascual B, Masdeu J, Paulson HL, Petrucelli L, Pressman P, Rademakers R, Ramos EM, Rascovsky K, Roberson ED, Savica R, Snyder A, Sullivan AC, Tartaglia MC, Vandebergh M, Boeve BF, Rosen HJ, Rojas JC, Boxer AL, Casaletto KB. Large-scale network analysis of the cerebrospinal fluid proteome identifies molecular signatures of frontotemporal lobar degeneration. NATURE AGING 2025:10.1038/s43587-025-00878-2. [PMID: 40380000 DOI: 10.1038/s43587-025-00878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/17/2025] [Indexed: 05/19/2025]
Abstract
The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. Here we leveraged aptamer-based proteomics (>4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN and MAPT) compared with 39 non-carrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of (1) sporadic progressive supranuclear palsy-Richardson syndrome and (2) frontotemporal dementia spectrum clinical syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily W Paolillo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wise
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Argentina Lario-Lago
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julia D Webb
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jingyao Li
- Novartis Institutes for Biomedical Research, Inc, Cambridge, MA, USA
| | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, Inc, Cambridge, MA, USA
| | | | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peter A Ljubenkov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ece Bayram
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Danielle Brushaber
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory S Day
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kelley Faber
- Indiana University School of Medicine, National Centralized Repository for Alzheimer's, Indianapolis, IN, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Tania Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | | | - Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ging-Yuek R Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Huey
- Department of Neurology, Columbia University, New York, NY, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Suzee E Lee
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Joseph Masdeu
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter Pressman
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Eliana Marisa Ramos
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Katya Rascovsky
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Allison Snyder
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Anna Campbell Sullivan
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Marijne Vandebergh
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Brad F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Howie J Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julio C Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Dergai O, Wuu J, Koziczak-Holbro M, Malaspina A, Granit V, Hernandez JP, Cooley A, Sachdev R, Yu L, Bidinosti M, Flotte L, Nash M, Jennings LL, Berry JD, Bruijn LI, Brachat S, Benatar M. Skeletal muscle biomarkers of amyotrophic lateral sclerosis: a large-scale, multi-cohort proteomic study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.23.25326161. [PMID: 40313273 PMCID: PMC12045418 DOI: 10.1101/2025.04.23.25326161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Biomarkers with clear contexts-of-use are important tools for ALS therapy development. Understanding their longitudinal trajectory in the untreated state is key to their use as potential markers of pharmacodynamic response. To this end, we undertook a large-scale proteomic study in well-phenotyped cohorts to identify biomarker candidates of ALS disease state and disease progression. Methods Clinical phenotypic data and biofluid samples, collected from patients with ALS and healthy controls through multiple longitudinal natural history studies, were used to identify biomarker candidates. SOMAmer (Slow Off-rate Modified Aptamer)-based relatively quantitative measurement of ~7,000 proteins was performed in plasma and CSF, with immunoassay validation of candidates of interest. Results We identified 329 plasma proteins significantly differentially regulated between ALS and controls (adjusted p-value <0.05), with 25 showing >40% relative abundance. PDLIM3, TNNT2, and MYL11 had the greatest log-fold elevation, while ANTXR2 and ART3 had the greatest log-fold reduction. A similar set of plasma proteins was found to increase (e.g. PDLIM3, TNNT2, MYL11) or decrease (e.g. ANTXR2, ART3, MSTN) with disease progression. CSF proteins with the greatest log-fold elevation included NEFL, NEFH, CHIT1, CA3, MYL11 and GPNMB. These results were confirmed in an independent replication cohort. Moreover, tissue-specific signature enrichment suggests a significant contribution of muscle as a source of these biomarkers. Immunoassays provided orthogonal validation of plasma TNNT2 and CSF GPNMB. Conclusion We identified an array of novel biomarkers with the potential to serve as response biomarkers to aid therapy development, as well as to shed light on the underlying biology of disease.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Joanne Wuu
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Magdalena Koziczak-Holbro
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Center, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Volkan Granit
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jessica P. Hernandez
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anne Cooley
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ruchika Sachdev
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Lili Yu
- Novartis Disease Area X, Novartis Biomedical Research, Cambridge, MA 02139, USA
| | - Michael Bidinosti
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Ludvine Flotte
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Mark Nash
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Lori L. Jennings
- Novartis Disease Area X, Novartis Biomedical Research, Cambridge, MA 02139, USA
| | - James D. Berry
- Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sophie Brachat
- Novartis Diseases of Aging and Regenerative Medicine, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Michael Benatar
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Grima N, Smith AN, Shepherd CE, Henden L, Zaw T, Carroll L, Rowe DB, Kiernan MC, Blair IP, Williams KL. Multi-region brain transcriptomic analysis of amyotrophic lateral sclerosis reveals widespread RNA alterations and substantial cerebellum involvement. Mol Neurodegener 2025; 20:40. [PMID: 40275359 PMCID: PMC12023386 DOI: 10.1186/s13024-025-00820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects the motor neurons, causing progressive muscle weakness and paralysis. While research has focused on understanding pathological mechanisms in the motor cortex and spinal cord, there is growing evidence that extra-motor brain regions may also play a role in the pathogenesis or progression of ALS. METHODS We generated 165 sample-matched post-mortem brain transcriptomes from 22 sporadic ALS patients with pTDP-43 pathological staging and 11 non-neurological controls. For each individual, five brain regions underwent mRNA sequencing: motor cortex (pTDP-43 inclusions always present), prefrontal cortex and hippocampus (pTDP-43 inclusions sometimes present), and occipital cortex and cerebellum (pTDP-43 inclusions rarely present). We examined gene expression, cell-type composition, transcript usage (% contribution of a transcript to total gene expression) and alternative splicing, comparing ALS-specific changes between brain regions. We also considered whether post-mortem pTDP-43 pathological stage classification defined ALS subgroups with distinct gene expression profiles. RESULTS Significant gene expression changes were observed in ALS cases for all five brain regions, with the cerebellum demonstrating the largest number of total (> 3,000) and unique (60%) differentially expressed genes. Pathway enrichment and predicted activity were largely concordant across brain regions, suggesting that ALS-linked mechanisms, including inflammation, mitochondrial dysfunction and oxidative stress, are also dysregulated in non-motor brain regions. Switches in transcript usage were identified for a small set of genes including increased usage of a POLDIP3 transcript, associated with TDP-43 loss-of-function, in the cerebellum and a XBP1 transcript, indicative of unfolded protein response activity, in the motor cortex. Extensive variation in RNA splicing was identified in the ALS brain, with 26-41% of alternatively spliced genes unique to a given brain region. This included detection of TDP-43-associated cryptic splicing events such as the STMN2 cryptic exon which was shown to have a pTDP-43 pathology-specific expression pattern. Finally, ALS patients with stage 4 pTDP-43 pathology demonstrated distinct gene and protein expression changes in the cerebellum. CONCLUSIONS Together our findings highlighted widespread transcriptome alterations in ALS post-mortem brain and showed that, despite the absence of pTDP-43 pathology in the cerebellum, extensive and pTDP-43 pathological stage-specific RNA changes are evident in this brain region.
Collapse
Affiliation(s)
- Natalie Grima
- Macquarie University Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Andrew N Smith
- Macquarie University Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Lyndal Henden
- Macquarie University Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thiri Zaw
- Australian Proteome Research Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Luke Carroll
- Australian Proteome Research Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dominic B Rowe
- Macquarie University Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Ian P Blair
- Macquarie University Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kelly L Williams
- Macquarie University Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Fernandez-Pombo A, Izquierdo AG, Canton-Blanco A, Garcia-Sobrino T, Hervás D, Martínez-Olmos MA, Pardo J, Crujeiras AB. Blood DNA Methylation in Nuclear and Mitochondrial Sequences Links to Malnutrition and Poor Prognosis in ALS: A Longitudinal Study. Nutrients 2025; 17:1295. [PMID: 40284160 PMCID: PMC12030252 DOI: 10.3390/nu17081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Malnutrition in amyotrophic lateral sclerosis (ALS) is associated with disease severity, and epigenetic regulation may be involved. The aim of this study was to assess the methylation levels of specific DNA sequences from the nuclear and mitochondrial genomes in a population with ALS to elucidate their relationship with nutritional status and the evolution of the disease. Methods: Patients with ALS were evaluated between 2013 and 2021 (n = 66). They were categorized according to their nutritional status, using the Global Leadership Initiative on Malnutrition (GLIM) criteria, and disease progression, using the ALS Functional Rating (ALSFRS-R) Scale. DNA samples were extracted from leukocytes at the time of diagnosis for analysis of DNA methylation levels of markers of oxidative stress, mitochondrial function and global methylation (D-loop, GSTP1, and LINE-1). Results: According to the GLIM criteria, 29 (43.9%) patients had malnutrition (22.7%-moderate; 21.2%-severe), which was positively correlated with ALS disease progression (r = 0.414; p < 0.01) and death (r = 0.687; p < 0.01). Mortality occurred in 43.9% of the patients (median time to death, 18.7 (1.7-82.7) months). A significant association was observed between DNA methylation levels of the D-loop, GSTP1, and the CpG1 site of LINE-1 and malnutrition, disease progression at diagnosis, and death. The D-loop was the best predictor of malnutrition (AUC, 0.79; p < 0.01), disease progression (AUC, 0.70; p < 0.01), and mortality (AUC, 0.71; p < 0.01). Conclusions: This study revealed, for the first time, the early detection of D-loop methylation levels as a potential biomarker of nutritional status in patients with ALS, which may be useful for personalized nutritional management aimed at counteracting disease progression.
Collapse
Affiliation(s)
- Antia Fernandez-Pombo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain;
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, A Coruña, Spain; (A.C.-B.); (M.A.M.-O.)
| | - Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| | - Ana Canton-Blanco
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, A Coruña, Spain; (A.C.-B.); (M.A.M.-O.)
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
- Molecular Endocrinology Group, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain
| | - Tania Garcia-Sobrino
- Department of Neurology, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, A Coruña, Spain; (T.G.-S.); (J.P.)
| | - David Hervás
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Valencia, Spain;
| | - Miguel A. Martínez-Olmos
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, A Coruña, Spain; (A.C.-B.); (M.A.M.-O.)
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
- Molecular Endocrinology Group, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain
| | - Julio Pardo
- Department of Neurology, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, A Coruña, Spain; (T.G.-S.); (J.P.)
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| |
Collapse
|
5
|
Scialò C, Zhong W, Jagannath S, Wilkins O, Caredio D, Hruska-Plochan M, Lurati F, Peter M, De Cecco E, Celauro L, Aguzzi A, Legname G, Fratta P, Polymenidou M. Seeded aggregation of TDP-43 induces its loss of function and reveals early pathological signatures. Neuron 2025:S0896-6273(25)00180-1. [PMID: 40157355 DOI: 10.1016/j.neuron.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) results from both gain of toxicity and loss of normal function of the RNA-binding protein TDP-43, but their mechanistic connection remains unclear. Increasing evidence suggests that TDP-43 aggregates act as self-templating seeds, propagating pathology through the central nervous system via a prion-like cascade. We developed a robust TDP-43-seeding platform for quantitative assessment of TDP-43 aggregate uptake, cell-to-cell spreading, and loss of function within living cells, while they progress toward pathology. We show that both patient-derived and recombinant TDP-43 pathological aggregates were abundantly internalized by human neuron-like cells, efficiently recruited endogenous TDP-43, and formed cytoplasmic inclusions reminiscent of ALS/FTD pathology. Combining a fluorescent reporter of TDP-43 function with RNA sequencing and proteomics, we demonstrated aberrant cryptic splicing and a loss-of-function profile resulting from TDP-43-templated aggregation. Our data highlight known and novel pathological signatures in the context of seed-induced TDP-43 loss of function.
Collapse
Affiliation(s)
- Carlo Scialò
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Weijia Zhong
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Somanath Jagannath
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Oscar Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK; The Francis Crick Institute, London, UK
| | - Davide Caredio
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Flavio Lurati
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Peter
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK; The Francis Crick Institute, London, UK
| | | |
Collapse
|
6
|
Megat S, Marques C, Hernán-Godoy M, Sellier C, Stuart-Lopez G, Dirrig-Grosch S, Gorin C, Brunet A, Fischer M, Keime C, Kessler P, Mendoza-Parra MA, Zwamborn RAJ, Veldink JH, Scholz SW, Ferrucci L, Ludolph A, Traynor B, Chio A, Dupuis L, Rouaux C. CREB3 gain of function variants protect against ALS. Nat Commun 2025; 16:2942. [PMID: 40140376 PMCID: PMC11947196 DOI: 10.1038/s41467-025-58098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly evolving neurodegenerative disease arising from the loss of glutamatergic corticospinal neurons (CSN) and cholinergic motoneurons (MN). Here, we performed comparative cross-species transcriptomics of CSN using published snRNA-seq data from the motor cortex of ALS and control postmortem tissues, and performed longitudinal RNA-seq on CSN purified from male Sod1G86R mice. We report that CSN undergo ER stress and altered mRNA translation, and identify the transcription factor CREB3 and its regulatory network as a resilience marker of ALS, not only amongst vulnerable neuronal populations, but across all neuronal populations as well as other cell types. Using genetic and epidemiologic analyses we further identify the rare variant CREB3R119G (rs11538707) as a positive disease modifier in ALS. Through gain of function, CREB3R119G decreases the risk of developing ALS and the motor progression rate of ALS patients.
Collapse
Affiliation(s)
- Salim Megat
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France.
| | - Christine Marques
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Marina Hernán-Godoy
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Chantal Sellier
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Geoffrey Stuart-Lopez
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Charlotte Gorin
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Aurore Brunet
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Mathieu Fischer
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Céline Keime
- Université de Strasbourg, Inserm UMR-S 1258, CNRS UMR-S 7104, Institut de Génétique, Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Pascal Kessler
- Université de Strasbourg, Inserm UMS 38, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Evry, France
| | - Ramona A J Zwamborn
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Bryan Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Adriano Chio
- ALS Center "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Caroline Rouaux
- Université de Strasbourg, Inserm, Strasbourg Translational Neuroscience and Psychiatry, Inserm UMR-S 1329, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
O'Neill K, Shaw R, Bolger I, Tam OH, Phatnani H, Gale Hammell M. ALS molecular subtypes are a combination of cellular and pathological features learned by deep multiomics classifiers. Cell Rep 2025; 44:115402. [PMID: 40067829 PMCID: PMC12011103 DOI: 10.1016/j.celrep.2025.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex syndrome with multiple genetic causes and wide variation in disease presentation. Despite this heterogeneity, large-scale genomics studies revealed that ALS postmortem samples can be grouped into a small number of subtypes, defined by transcriptomic signatures of mitochondrial dysfunction and oxidative stress (ALS-Ox), microglial activation and neuroinflammation (ALS-Glia), or TDP-43 pathology and associated transposable elements (ALS-TE). In this study, we present a deep ALS neural net classifier (DANCer) for ALS molecular subtypes. Applying DANCer to an expanded cohort from the NYGC ALS Consortium highlights two subtypes that strongly correlate with disease duration: ALS-TE in cortex and ALS-Glia in spinal cord. Finally, single-nucleus transcriptomes demonstrate that ALS subtypes are recapitulated in neurons and glia, with both ALS-wide and subtype-specific alterations in all cell types. In summary, ALS molecular subtypes represent a combination of cellular and pathological features that correlate with clinical features of ALS.
Collapse
Affiliation(s)
- Kathryn O'Neill
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Regina Shaw
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
| | - Isobel Bolger
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
| | - Oliver H Tam
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Hemali Phatnani
- New York Genome Center, New York, NY 10013, USA; Department of Neurology, Columbia University, New York, NY 10032, USA.
| | - Molly Gale Hammell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
9
|
Zhou Z, Luquette LJ, Dong G, Kim J, Ku J, Kim K, Bae M, Shao DD, Sahile B, Miller MB, Huang AY, Nathan WJ, Nussenzweig A, Park PJ, Lagier-Tourenne C, Lee EA, Walsh CA. Recurrent patterns of widespread neuronal genomic damage shared by major neurodegenerative disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641186. [PMID: 40093130 PMCID: PMC11908196 DOI: 10.1101/2025.03.03.641186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD) are common neurodegenerative disorders for which the mechanisms driving neuronal death remain unclear. Single-cell whole-genome sequencing of 429 neurons from three C9ORF72 ALS, six C9ORF72 FTD, seven AD, and twenty-three neurotypical control brains revealed significantly increased burdens in somatic single nucleotide variant (sSNV) and insertion/deletion (sIndel) in all three disease conditions. Mutational signature analysis identified a disease-associated sSNV signature suggestive of oxidative damage and an sIndel process, affecting 28% of ALS, 79% of FTD, and 65% of AD neurons but only 5% of control neurons (diseased vs. control: OR=31.20, p = 2.35×10-10). Disease-associated sIndels were primarily two-basepair deletions resembling signature ID4, which was previously linked to topoisomerase 1 (TOP1)-mediated mutagenesis. Duplex sequencing confirmed the presence of sIndels and identified similar single-strand events as potential precursor lesions. TOP1-associated sIndel mutagenesis and resulting genome instability may thus represent a common mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | | | - Guanlan Dong
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School; Boston, MA, USA
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University; Suwon, South Korea
| | - Jayoung Ku
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Kisong Kim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Mingyun Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Diane D. Shao
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital; Boston, MA, USA
| | - Bezawit Sahile
- Program in Neuroscience, Harvard Medical School; Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - William J. Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute; Boston, MA, USA
| |
Collapse
|
10
|
Wang HLV, Xiang JF, Yuan C, Veire AM, Gendron TF, Murray ME, Tansey MG, Hu J, Gearing M, Glass JD, Jin P, Corces VG, McEachin ZT. pTDP-43 levels correlate with cell type-specific molecular alterations in the prefrontal cortex of C9orf72 ALS/FTD patients. Proc Natl Acad Sci U S A 2025; 122:e2419818122. [PMID: 39999167 PMCID: PMC11892677 DOI: 10.1073/pnas.2419818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with C9orf72 ALS/FTD, we compared healthy controls with C9orf72 ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development. Loss of neurosurveillance microglia and activation of the complement cascade take place early, when pTDP-43 aggregates are absent or very low, and become more pronounced in late stages, suggesting an initial involvement of microglia in disease progression. Reduction of layer 2-3 cortical projection neurons with high expression of CUX2/LAMP5 also occurs early, and the reduction becomes more pronounced as pTDP-43 accumulates. Several unique features were observed only in samples with high levels of pTDP-43, including global alteration of chromatin accessibility in oligodendrocytes, microglia, and astrocytes; higher ratios of premature oligodendrocytes; increased levels of the noncoding RNA NEAT1 in astrocytes and neurons, and higher amount of phosphorylated ribosomal protein S6. Our findings reveal progressive functional changes in major cell types found in the prefrontal cortex of C9orf72 ALS/FTD patients that shed light on the mechanisms underlying the pathology of this disease.
Collapse
Affiliation(s)
- Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Chenyang Yuan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA30322
| | - Austin M. Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
| | | | | | - Malú G. Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL32607
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL32607
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA30322
| | - Marla Gearing
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Jonathan D. Glass
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA30322
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| | - Zachary T. McEachin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
11
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2025; 26:171-190. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Mamede LD, Hu M, Titus AR, Vaquer-Alicea J, French RL, Diamond MI, Miller TM, Ayala YM. TDP-43 Aggregate Seeding Impairs Autoregulation and Causes TDP-43 Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637743. [PMID: 39990366 PMCID: PMC11844547 DOI: 10.1101/2025.02.11.637743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The aggregation, cellular mislocalization and dysfunction of TDP-43 are hallmarks of multiple neurodegenerative disorders. We find that inducing TDP-43 aggregation through prion-like seeding gradually diminishes normal TDP-43 nuclear localization and function. Aggregate-affected cells show signature features of TDP-43 loss of function, such as DNA damage and dysregulated TDP-43-target expression. We also observe strong activation of TDP-43-controlled cryptic exons in cells, including human neurons treated with proteopathic seeds. Furthermore, aggregate seeding impairs TDP-43 autoregulation, an essential mechanism controlling TDP-43 homeostasis. Interestingly, proteins that normally interact with TDP-43 are not recruited to aggregates, while other factors linked to TDP-43 pathology, including Ataxin 2, specifically colocalize to inclusions and modify seeding-induced aggregation. Our findings indicate that TDP-43 aggregation, mislocalization and loss of function are strongly linked and suggest that disruption of TDP-43 autoregulation establishes a toxic feed-forward mechanism that amplifies aggregation and may be central in mediating this pathological connection.
Collapse
Affiliation(s)
- Lohany Dias Mamede
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO 63104, USA
| | - Miwei Hu
- Department of Neurology, Washington University in St. Louis, St. Louis MO 63110, USA
| | - Amanda R Titus
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO 63104, USA
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Timothy M Miller
- Department of Neurology, Washington University in St. Louis, St. Louis MO 63110, USA
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO 63104, USA
| |
Collapse
|
13
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic behavioral variant frontotemporal degeneration. Mol Neurodegener 2025; 20:17. [PMID: 39920674 PMCID: PMC11806866 DOI: 10.1186/s13024-025-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Cortical atrophy is a common manifestation in behavioral variant frontotemporal degeneration (bvFTD), exhibiting spatial heterogeneity across various genetic subgroups, which may be driven by distinct biological mechanisms. METHODS We employed an integrative imaging transcriptomics approach to identify both disparate and shared transcriptomic signatures associated with cortical thickness in bvFTD with C9orf72 repeat expansions or pathogenic variants in GRN or MAPT. Functional enrichment analyses were conducted on each gene list significantly associated with cortical thickness. Additionally, we mapped neurotransmitter receptor/transporter density maps to the cortical thickness maps, to uncover different correlation patterns for each genetic form. Furthermore, we examined whether the identified genes were enriched for pathology-related genes by using previously identified genes linked to TDP-43 positive neurons and genes associated with tau pathology. RESULTS For each genetic form of bvFTD, we identified cortical thickness signatures and gene sets associated with them. The cortical thickness associated genes for GRN-bvFTD were significantly involved in neurotransmitter system and circadian entrainment. The different patterns of spatial correlations between synaptic density and cortical thinning, further confirmed the critical role of neurotransmission and synaptic signaling in shaping brain structure, especially in the GRN-bvFTD group. Furthermore, we observed significant overlap between genes linked to TDP-43 pathology and the gene sets associated with cortical thickness in C9orf72-bvFTD and GRN-bvFTD but not the MAPT-bvFTD group providing specificity for our associations. C9orf72-bvFTD and GRN-bvFTD also shared genes displaying consistent directionality, with those exhibiting either positive or negative correlations with cortical thickness in C9orf72-bvFTD showing the same direction (positive or negative) in GRN-bvFTD. MAPT-bvFTD displayed more pronounced differences in transcriptomic signatures compared to the other two genetic forms. The genes that exhibited significantly positive or negative correlations with cortical thickness in MAPT-bvFTD showed opposing directionality in C9orf72-bvFTD and GRN-bvFTD. CONCLUSIONS Overall, this integrative transcriptomic approach identified several new shared and disparate genes associated with regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression. These findings illuminated the intricate molecular underpinnings contributing to the heterogeneous nature of disease distribution in bvFTD with distinct genetic backgrounds.
Collapse
Affiliation(s)
- Ting Shen
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laynie Dratch
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Miller MR, Bai J, Shahzad S, Nedumaran N, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier PM, Ward M, Todd PK, Barmada SJ. TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms. Cell Rep 2025; 44:115113. [PMID: 39792557 PMCID: PMC11848802 DOI: 10.1016/j.celrep.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a by-product of TDP43 autoregulation and cleared by nonsense-mediated RNA decay (NMD). sTDP43-encoding transcripts that escape NMD are rapidly degraded post-translationally via the proteasome and macroautophagy. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA-binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and underscore the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE, USA
| | - Nicolás B Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - M Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Morgan R Miller
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Neha Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - John J Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA, USA
| | | | - Michael Lucas
- Departments of Chemical Engineering and Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Departments of Chemical Engineering and Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michael Ward
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA
| | - Peter K Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Sami J Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Mustafin RN. Role of Retroelements in Frontotemporal Dementia Development. Front Biosci (Schol Ed) 2025; 17:25922. [PMID: 40150869 DOI: 10.31083/fbs25922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 03/29/2025]
Abstract
Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887).
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
16
|
Kõks S, Rallmann K, Muldmaa M, Price J, Pfaff AL, Taba P. Whole blood transcriptome profile identifies motor neurone disease RNA biomarker signatures. Exp Biol Med (Maywood) 2025; 249:10401. [PMID: 39844875 PMCID: PMC11750576 DOI: 10.3389/ebm.2024.10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Blood-based biomarkers for motor neuron disease are needed for better diagnosis, progression prediction, and clinical trial monitoring. We used whole blood-derived total RNA and performed whole transcriptome analysis to compare the gene expression profiles in (motor neurone disease) MND patients to the control subjects. We compared 42 MND patients to 42 aged and sex-matched healthy controls and described the whole transcriptome profile characteristic for MND. In addition to the formal differential analysis, we performed functional annotation of the genomics data and identified the molecular pathways that are differentially regulated in MND patients. We identified 12,972 genes differentially expressed in the blood of MND patients compared to age and sex-matched controls. Functional genomic annotation identified activation of the pathways related to neurodegeneration, RNA transcription, RNA splicing and extracellular matrix reorganisation. Blood-based whole transcriptomic analysis can reliably differentiate MND patients from controls and can provide useful information for the clinical management of the disease and clinical trials.
Collapse
Affiliation(s)
- Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Karin Rallmann
- Department of Neurology, Tartu University Hospital, Tartu, Estonia
| | - Mari Muldmaa
- Department of Neurology, North Estonia Medical Center, Tallinn, Estonia
- Institute of Clinical Medicine, University Tartu, Tartu, Estonia
| | - Jack Price
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Abigail L. Pfaff
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Pille Taba
- Institute of Clinical Medicine, University Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Sharma H, Koirala S, Chew YL, Konopka A. DNA Damage and Chromatin Rearrangement Work Together to Promote Neurodegeneration. Mol Neurobiol 2025; 62:1282-1290. [PMID: 38977621 PMCID: PMC11711770 DOI: 10.1007/s12035-024-04331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Neurodegenerative diseases have a complex origin and are composed of genetic and environmental factors. Both DNA damage and chromatin rearrangement are important processes that occur under pathological conditions and in neurons functioning properly. While numerous studies have demonstrated the inseparable relationship between DNA damage and chromatin organization, understanding of this relationship, especially in neurodegenerative diseases, requires further study. Interestingly, recent studies revealed that known hallmark proteins involved in neurodegenerative diseases function in both DNA damage and chromatin reorganization, and this review discusses the current knowledge of this relationship. This review focused on hallmark proteins involved in various neurodegenerative diseases, such as the microtubule-associated protein tau, TAR DNA/RNA binding protein 43 (TDP-43), superoxide dismutase 1 (SOD1), fused in sarcoma (FUS), huntingtin (HTT), α-synuclein, and β-amyloid precursor protein (APP). Hence, DNA damage and chromatin rearrangement are associated with disease mechanisms in distinct neurodegenerative diseases. Targeting common modulators of DNA repair and chromatin reorganization may lead to promising therapies for treating neurodegeneration.
Collapse
|
18
|
Zeng J, Luo C, Jiang Y, Hu T, Lin B, Xie Y, Lan J, Miao J. Decoding TDP-43: the molecular chameleon of neurodegenerative diseases. Acta Neuropathol Commun 2024; 12:205. [PMID: 39736783 DOI: 10.1186/s40478-024-01914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis. Particular emphasis is placed on recent discoveries regarding TDP-43's involvement in DNA interactions and chromatin dynamics, highlighting its broader impact on gene expression and genome stability. The review also examines the complex pathogenesis of TDP-43-related disorders, discussing the protein's propensity for aggregation, its effects on mitochondrial function, and its non-cell autonomous impacts on glial cells. We provide an in-depth analysis of TDP-43 pathology across various neurodegenerative conditions, from well-established associations in ALS and FTLD to emerging roles in diseases such as Huntington's disease and Niemann-Pick C disease. The potential of TDP-43 as a therapeutic target is explored, with a focus on recent developments in targeting cryptic exon inclusion and other TDP-43-mediated processes. This review synthesizes current knowledge on TDP-43 biology and pathology, offering insights into the protein's central role in neurodegeneration and highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Jixiang Zeng
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Chunmei Luo
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yang Jiang
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Tao Hu
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Bixia Lin
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yuanfang Xie
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Jiao Lan
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| | - Jifei Miao
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| |
Collapse
|
19
|
McKeever PM, Sababi AM, Sharma R, Xu Z, Xiao S, McGoldrick P, Ketela T, Sato C, Moreno D, Visanji N, Kovacs GG, Keith J, Zinman L, Rogaeva E, Goodarzi H, Bader GD, Robertson J. Single-nucleus transcriptome atlas of orbitofrontal cortex in amyotrophic lateral sclerosis with a deep learning-based decoding of alternative polyadenylation mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573083. [PMID: 38187588 PMCID: PMC10769403 DOI: 10.1101/2023.12.22.573083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two age-related and fatal neurodegenerative disorders that lie on a shared disease spectrum. While both disorders involve complex interactions between neuronal and glial cells, the specific cell-type alterations and their contributions to disease pathophysiology remain incompletely understood. Here, we applied single-nucleus RNA sequencing of the orbitofrontal cortex, a region affected in ALS-FTLD, to map cell-type specific transcriptional signatures in C9orf72-related ALS (with and without FTLD) and sporadic ALS cases. Our findings reveal disease- and cell-type-specific transcriptional changes, with neurons exhibiting the most pronounced alterations, primarily affecting mitochondrial function, protein homeostasis, and chromatin remodeling. A comparison with independent datasets from different cortical regions of C9orf72 and sporadic ALS cases showed concordance in several pathways, with neuronal STMN2 and NEFL showing consistent up-regulation between brain regions and disease subtypes. We also interrogated alternative polyadenylation (APA) as an additional layer of transcriptional regulation, demonstrating that APA events are not correlated with identified gene expression changes. To interpret these events, we developed APA-Net, a deep learning model that integrates transcript sequences with RNA-binding protein expression profiles, revealing cell type-specific patterns of APA regulation. Our atlas illuminates cell type-specific pathomechanisms of ALS/FTLD, providing a valuable resource for further investigation.
Collapse
|
20
|
Bai D, Deng F, Jia Q, Ou K, Wang X, Hou J, Zhu L, Guo M, Yang S, Jiang G, Li S, Li X, Yin P. Pathogenic TDP-43 accelerates the generation of toxic exon1 HTT in Huntington's disease knock-in mice. Aging Cell 2024; 23:e14325. [PMID: 39185703 PMCID: PMC11634733 DOI: 10.1111/acel.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein. Under normal conditions, TDP-43 is predominantly found in the nucleus, where it regulates gene expression. However, in various pathological conditions, TDP-43 is mislocalized in the cytoplasm. By investigating HD knock-in mice, we explore whether the pathogenic TDP-43 in the cytoplasm contributes to HD pathogenesis, through expressing the cytoplasmic TDP-43 without nuclear localization signal. We found that the cytoplasmic TDP-43 is increased in the HD mouse brain and that its mislocalization could deteriorate the motor and gait behavior. Importantly, the cytoplasmic TDP-43, via its binding to the intron1 sequence (GU/UG)n of the mouse Htt pre-mRNA, promotes the transport of exon1-intron1 Htt onto ribosome, resulting in the aberrant generation of exon1 Htt. Our findings suggest that cytoplasmic TDP-43 contributes to HD pathogenesis via its binding to and transport of nuclear un-spliced mRNA to the ribosome for the generation of a toxic protein product.
Collapse
Affiliation(s)
- Dazhang Bai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Fuyu Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical DevicesIn Vitro Diagnostic Reagents Testing DepartmentShenzhenGuangdongChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Mingwei Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
21
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
22
|
Feng Y, Yang X, Hou Y, Zhou Y, Leverenz JB, Eng C, Pieper AA, Goate A, Shen Y, Cheng F. Widespread transposable element dysregulation in human aging brains with Alzheimer's disease. Alzheimers Dement 2024; 20:7495-7517. [PMID: 39356058 PMCID: PMC11567813 DOI: 10.1002/alz.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION Transposable element (TE) dysregulation is associated with neuroinflammation in Alzheimer's disease (AD) brains. Yet, TE quantitative trait loci (teQTL) have not been well characterized in human aged brains with AD. METHODS We leveraged large-scale bulk and single-cell RNA sequencing, whole-genome sequencing (WGS), and xQTL from three human AD brain biobanks to characterize TE expression dysregulation and experimentally validate AD-associated TEs using CRISPR interference (CRISPRi) assays in human induced pluripotent stem cell (iPSC)-derived neurons. RESULTS We identified 26,188 genome-wide significant TE expression QTLs (teQTLs) in human aged brains. Subsequent colocalization analysis of teQTLs with AD genetic loci identified AD-associated teQTLs and linked locus TEs. Using CRISPRi assays, we pinpointed a neuron-specific suppressive role of the activated short interspersed nuclear element (SINE; chr11:47608036-47608220) on expression of C1QTNF4 via reducing neuroinflammation in human iPSC-derived neurons. DISCUSSION We identified widespread TE dysregulation in human AD brains and teQTLs offer a complementary analytic approach to identify likely AD risk genes. HIGHLIGHTS Widespread transposable element (TE) dysregulations are observed in human aging brains with degrees of neuropathology, apolipoprotein E (APOE) genotypes, and neuroinflammation in Alzheimer's disease (AD). A catalog of TE quantitative trait loci (teQTLs) in human aging brains was created using matched RNA sequencing and whole-genome sequencing data. CRISPR interference assays reveal that an upregulated intergenic TE from the MIR family (chr11: 47608036-47608220) suppresses expression of its nearest anti-inflammatory gene C1QTNF4 in human induced pluripotent stem cell-derived neurons.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Xiaoyu Yang
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yuan Hou
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Yadi Zhou
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - James B. Leverenz
- Lou Ruvo Center for Brain HealthNeurological InstituteCleveland ClinicClevelandOhioUSA
| | - Charis Eng
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Andrew A. Pieper
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Brain Health Medicines CenterHarrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Geriatric PsychiatryGRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular MedicineSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurosciencesCase Western Reserve UniversitySchool of MedicineClevelandOhioUSA
- Department of PathologyCase Western Reserve UniversitySchool of MedicineClevelandOhioUSA
| | - Alison Goate
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yin Shen
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
23
|
Koike Y. Molecular mechanisms linking loss of TDP-43 function to amyotrophic lateral sclerosis/frontotemporal dementia-related genes. Neurosci Res 2024; 208:1-7. [PMID: 38723906 DOI: 10.1016/j.neures.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including TARDBP. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we described novel mechanistic insights into the splicing of UNC13A, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in UNC13A are the most common risk factors for ALS/FTD. We found that TDP-43 represses "cryptic exon" inclusion during UNC13A RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of UNC13A retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of TARDBP mRNA. This review focused on that TARDBP methylation is altered by aging, thereby disrupting TDP-43 autoregulation. It was found that demethylation reduces the efficiency of alternative splicing and increases TARDBP mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Japan.
| |
Collapse
|
24
|
Deng W, Citu C, Liu A, Zhao Z. Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level. Genome Res 2024; 34:1687-1699. [PMID: 39424325 PMCID: PMC11529867 DOI: 10.1101/gr.279363.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wankun Deng
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
25
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
26
|
Wilkins OG, Chien MZ, Wlaschin JJ, Barattucci S, Harley P, Mattedi F, Mehta PR, Pisliakova M, Ryadnov E, Keuss MJ, Thompson D, Digby H, Knez L, Simkin RL, Diaz JA, Zanovello M, Brown AL, Darbey A, Karda R, Fisher EM, Cunningham TJ, Le Pichon CE, Ule J, Fratta P. Creation of de novo cryptic splicing for ALS and FTD precision medicine. Science 2024; 386:61-69. [PMID: 39361759 PMCID: PMC7616720 DOI: 10.1126/science.adk2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Loss of function of the RNA-binding protein TDP-43 (TDP-LOF) is a hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Here we describe TDP-REG, which exploits the specificity of cryptic splicing induced by TDP-LOF to drive protein expression when and where the disease process occurs. The SpliceNouveau algorithm combines deep learning with rational design to generate customizable cryptic splicing events within protein-coding sequences. We demonstrate that expression of TDP-REG reporters is tightly coupled to TDP-LOF in vitro and in vivo. TDP-REG enables genomic prime editing to ablate the UNC13A cryptic donor splice site specifically upon TDP-LOF. Finally, we design TDP-REG vectors encoding a TDP-43/Raver1 fusion protein that rescues key pathological cryptic splicing events, paving the way for the development of precision therapies for TDP43-related disorders.
Collapse
Affiliation(s)
- Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Max Z.Y.J. Chien
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Josette J. Wlaschin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Francesca Mattedi
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Maria Pisliakova
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Matthew J. Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute; Oxfordshire, OX11 0RD, UK
| | - Holly Digby
- The Francis Crick Institute; London, NW1 1AT, UK
- UK Dementia Research Institute at King’s College London, London, SE5 9RX, UK
| | - Lea Knez
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Rebecca L. Simkin
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Juan Antinao Diaz
- EGA-Institute for Women’s Health, University College London; London, WC1E 6HX, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Annalucia Darbey
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Rajvinder Karda
- EGA-Institute for Women’s Health, University College London; London, WC1E 6HX, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute; Oxfordshire, OX11 0RD, UK
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, W1W 7FF, UK
| | - Claire E. Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892, USA
| | - Jernej Ule
- The Francis Crick Institute; London, NW1 1AT, UK
- UK Dementia Research Institute at King’s College London, London, SE5 9RX, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| |
Collapse
|
27
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
28
|
Fisher RMA, Torrente MP. Histone post-translational modification and heterochromatin alterations in neurodegeneration: revealing novel disease pathways and potential therapeutics. Front Mol Neurosci 2024; 17:1456052. [PMID: 39346681 PMCID: PMC11427407 DOI: 10.3389/fnmol.2024.1456052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal Dementia (FTD), and Amyotrophic lateral sclerosis (ALS) are complex and fatal neurodegenerative diseases. While current treatments for these diseases do alleviate some symptoms, there is an imperative need for novel treatments able to stop their progression. For all of these ailments, most cases occur sporadically and have no known genetic cause. Only a small percentage of patients bear known mutations which occur in a multitude of genes. Hence, it is clear that genetic factors alone do not explain disease occurrence. Chromatin, a DNA-histone complex whose basic unit is the nucleosome, is divided into euchromatin, an open form accessible to the transcriptional machinery, and heterochromatin, which is closed and transcriptionally inactive. Protruding out of the nucleosome, histone tails undergo post-translational modifications (PTMs) including methylation, acetylation, and phosphorylation which occur at specific residues and are connected to different chromatin structural states and regulate access to transcriptional machinery. Epigenetic mechanisms, including histone PTMs and changes in chromatin structure, could help explain neurodegenerative disease processes and illuminate novel treatment targets. Recent research has revealed that changes in histone PTMs and heterochromatin loss or gain are connected to neurodegeneration. Here, we review evidence for epigenetic changes occurring in AD, PD, and FTD/ALS. We focus specifically on alterations in the histone PTMs landscape, changes in the expression of histone modifying enzymes and chromatin remodelers as well as the consequences of these changes in heterochromatin structure. We also highlight the potential for epigenetic therapies in neurodegenerative disease treatment. Given their reversibility and pharmacological accessibility, epigenetic mechanisms provide a promising avenue for novel treatments. Altogether, these findings underscore the need for thorough characterization of epigenetic mechanisms and chromatin structure in neurodegeneration.
Collapse
Affiliation(s)
- Raven M. A. Fisher
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, United States
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, United States
- PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, United States
| |
Collapse
|
29
|
Dunning EE, Decourt B, Zawia NH, Shill HA, Sabbagh MN. Pharmacotherapies for the Treatment of Progressive Supranuclear Palsy: A Narrative Review. Neurol Ther 2024; 13:975-1013. [PMID: 38743312 PMCID: PMC11263316 DOI: 10.1007/s40120-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder resulting from the deposition of misfolded and neurotoxic forms of tau protein in specific areas of the midbrain, basal ganglia, and cortex. It is one of the most representative forms of tauopathy. PSP presents in several different phenotypic variations and is often accompanied by the development of concurrent neurodegenerative disorders. PSP is universally fatal, and effective disease-modifying therapies for PSP have not yet been identified. Several tau-targeting treatment modalities, including vaccines, monoclonal antibodies, and microtubule-stabilizing agents, have been investigated and have had no efficacy. The need to treat PSP and other tauopathies is critical, and many clinical trials investigating tau-targeted treatments are underway. In this review, the PubMed database was queried to collect information about preclinical and clinical research on PSP treatment. Additionally, the US National Library of Medicine's ClinicalTrials.gov website was queried to identify past and ongoing clinical trials relevant to PSP treatment. This narrative review summarizes our findings regarding these reports, which include potential disease-modifying drug trials, modifiable risk factor management, and symptom treatments.
Collapse
Affiliation(s)
- Elise E Dunning
- Creighton University School of Medicine - Phoenix, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Laboratory on Neurodegeneration and Translational Research, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Nasser H Zawia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- Department of Biomedical and Pharmaceutical Sciences, Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
30
|
Frost B, Dubnau J. The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders. Annu Rev Neurosci 2024; 47:123-143. [PMID: 38663088 DOI: 10.1146/annurev-neuro-082823-020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, and Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA;
| | - Josh Dubnau
- Department of Anesthesiology and Department of Neurobiology and Behavior, Stony Brook School of Medicine, Stony Brook, New York, USA;
| |
Collapse
|
31
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic bvFTD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.25.24310894. [PMID: 39211858 PMCID: PMC11361203 DOI: 10.1101/2024.07.25.24310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cortical atrophy in behavioral variant frontotemporal degeneration (bvFTD) exhibits spatial heterogeneity across genetic subgroups, potentially driven by distinct biological mechanisms. Using an integrative imaging-transcriptomics approach, we identified disparate and shared transcriptomic signatures associated with cortical thickness in C9orf72 , GRN or MAPT -related bvFTD. Genes associated with cortical thinning in GRN -bvFTD were implicated in neurotransmission, further supported by mapping synaptic density maps to cortical thickness maps. Previously identified genes linked to TDP-43 positive neurons were significantly overlapped with genes associated with C9orf72 -bvFTD and GRN -bvFTD, but not MAPT -bvFTD providing specificity for our associations. C9orf72 -bvFTD and GRN -bvFTD shared genes displaying consistent directionality of correlations with cortical thickness, while MAPT -bvFTD displayed more pronounced differences in transcriptomic signatures with opposing directionality. Overall, we identified disparate and shared genes tied to regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression, illuminating intricate molecular underpinnings contributing to heterogeneities in bvFTD.
Collapse
|
32
|
O'Neill K, Shaw R, Bolger I, Tam O, Phatnani H, Hammell MG. ALS molecular subtypes are a combination of cellular, genetic, and pathological features learned by deep multiomics classifiers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.603731. [PMID: 39651269 PMCID: PMC11623686 DOI: 10.1101/2024.07.19.603731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex syndrome with multiple genetic causes and wide variation in disease presentation. Despite this general heterogeneity, several common factors have been identified. For example, nearly all patients show pathological accumulations of phosphorylated TDP-43 protein in affected regions of the motor cortex and spinal cord. Moreover, large patient cohort studies have revealed that most patient samples can be grouped into a small number of ALS subtypes, as defined by their transcriptomic profiles. These ALS molecular subtypes can be grouped by whether postmortem motor cortex samples display signatures of: mitochondrial dysfunction and oxidative stress (ALS-Ox), microglial activation and neuroinflammation (ALS-Glia), or dense TDP-43 pathology and associated transposable element de-silencing (ALS-TE). In this study, we have built a deep layer ALS neural network classifier (DANcer) that has learned to accurately assign patient samples to these ALS subtypes, and which can be run on either bulk or single-cell datasets. Upon applying this classifier to an expanded ALS patient cohort from the NYGC ALS Consortium, we show that ALS Molecular Subtypes are robust across clinical centers, with no new subtypes appearing in a cohort that has quadrupled in size. Signatures from two of these molecular subtypes strongly correlate with disease duration: ALS-TE signatures in cortex and ALS-Glia signatures in spinal cord, revealing molecular correlates of clinical features. Finally, we use single nucleus RNA sequencing to reveal the cell type-specific contributions to ALS subtype, as determined by our single-cell classifier (scDANCer). Single-cell transcriptomes reveal that ALS molecular subtypes are recapitulated in neurons and glia, with both ALS-wide shared alterations in each cell type as well as ALS subtype-specific alterations. In summary, ALS molecular subtypes: (1) are robust across large cohorts of sporadic and familial ALS patient samples, (2) represent a combination of cellular, genetic, and pathological features, and (3) correlate with clinical features of ALS. Abstract Figure
Collapse
|
33
|
Koike Y. Abnormal Splicing Events due to Loss of Nuclear Function of TDP-43: Pathophysiology and Perspectives. JMA J 2024; 7:313-318. [PMID: 39114608 PMCID: PMC11301021 DOI: 10.31662/jmaj.2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 08/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with a progressive and fatal course. They are often comorbid and share the same molecular spectrum. Their key pathological features are the formation of the aggregation of TDP-43, an RNA-binding protein, in the cytoplasm and its depletion from the nucleus in the central nervous system. In the nucleus, TDP-43 regulates several aspects of RNA metabolism, ranging from RNA transcription and alternative splicing to RNA transport. Suppressing the aberrant splicing events during RNA processing is one of the significant functions of TDP-43. This function is impaired when TDP-43 becomes depleted from the nucleus. Several critical cryptic splicing targets of TDP-43 have recently emerged, such as STMN2, UNC13A, and others. UNC13A is an important ALS/FTD risk gene, and the genetic variations, single nucleotide polymorphisms, cause disease via the increased susceptibility for cryptic exon inclusion under the TDP-43 dysfunction. Moreover, TDP-43 has an autoregulatory mechanism that regulates the splicing of its mRNA (TARDBP mRNA) in the healthy state. This study provides recent findings on the splicing regulatory function of TDP-43 and discusses the prospects of using these aberrant splicing events as efficient biomarkers.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Neuroscience, Mayo Clinic Florida, Florida, USA
| |
Collapse
|
34
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Bai J, Shahzad S, Nedumaran J, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier P, Ward M, Todd P, Barmada SJ. TDP43 autoregulation gives rise to shortened isoforms that are tightly controlled by both transcriptional and post-translational mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601776. [PMID: 39005384 PMCID: PMC11244999 DOI: 10.1101/2024.07.02.601776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M. Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE
| | - Nicolás B. Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - M. Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Juno Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John J. Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA
| | | | - Michael Lucas
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Peter Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Peter Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| | - Sami J. Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
35
|
Keuss MJ, Harley P, Ryadnov E, Jackson RE, Zanovello M, Wilkins OG, Barattucci S, Mehta PR, Oliveira MG, Parkes JE, Sinha A, Correa-Sánchez AF, Oliver PL, Fisher EM, Schiavo G, Shah M, Burrone J, Fratta P. Loss of TDP-43 induces synaptic dysfunction that is rescued by UNC13A splice-switching ASOs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599684. [PMID: 38979232 PMCID: PMC11230273 DOI: 10.1101/2024.06.20.599684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
TDP-43 loss of function induces multiple splicing changes, including a cryptic exon in the amyotrophic lateral sclerosis and fronto-temporal lobar degeneration risk gene UNC13A, leading to nonsense-mediated decay of UNC13A transcripts and loss of protein. UNC13A is an active zone protein with an integral role in coordinating pre-synaptic function. Here, we show TDP-43 depletion induces a severe reduction in synaptic transmission, leading to an asynchronous pattern of network activity. We demonstrate that these deficits are largely driven by a single cryptic exon in UNC13A. Antisense oligonucleotides targeting the UNC13A cryptic exon robustly rescue UNC13A protein levels and restore normal synaptic function, providing a potential new therapeutic approach for ALS and other TDP-43-related disorders.
Collapse
Affiliation(s)
- Matthew J. Keuss
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Rachel E. Jackson
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London; London SE1 1UL, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Marcio G. Oliveira
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London; London SE1 1UL, UK
| | | | - Aparna Sinha
- Nucleic Acid Therapy Accelerator; Harwell, Didcot OX11 0FA, UK
| | | | - Peter L. Oliver
- Nucleic Acid Therapy Accelerator; Harwell, Didcot OX11 0FA, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London; London, WC1N 3BG, UK
| | - Mala Shah
- Department of Pharmacology, School of Pharmacy, University College London; London, WC1N 4AX, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London; London SE1 1UL, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| |
Collapse
|
36
|
Zhang X, Das T, Chao TF, Trinh V, Carmen-Orozco RP, Ling JP, Kalab P, Hayes LR. Multivalent GU-rich oligonucleotides sequester TDP-43 in the nucleus by inducing high molecular weight RNP complexes. iScience 2024; 27:110109. [PMID: 38989321 PMCID: PMC11233918 DOI: 10.1016/j.isci.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt that contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tanuza Das
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tiffany F. Chao
- Johns Hopkins University Whiting School of Engineering, Baltiomre, MD 21218, USA
| | - Vickie Trinh
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Johns Hopkins University Whiting School of Engineering, Baltiomre, MD 21218, USA
| | - Lindsey R. Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Brain Science Institute, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Wang HLV, Xiang JF, Yuan C, Veire AM, Gendron TF, Murray ME, Tansey MG, Hu J, Gearing M, Glass JD, Jin P, Corces VG, McEachin ZT. pTDP-43 levels correlate with cell type specific molecular alterations in the prefrontal cortex of C9orf72 ALS/FTD patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.12.523820. [PMID: 36711601 PMCID: PMC9882184 DOI: 10.1101/2023.01.12.523820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with C9orf72 ALS/FTD, we compared healthy controls with C9orf72 ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development. Loss of neurosurveillance microglia and activation of the complement cascade take place early, when pTDP-43 aggregates are absent or very low, and become more pronounced in late stages, suggesting an initial involvement of microglia in disease progression. Reduction of layer 2-3 cortical projection neurons with high expression of CUX2/LAMP5 also occurs early, and the reduction becomes more pronounced as pTDP-43 accumulates. Several unique features were observed only in samples with high levels of pTDP-43, including global alteration of chromatin accessibility in oligodendrocytes, microglia, and astrocytes; higher ratios of premature oligodendrocytes; increased levels of the noncoding RNA NEAT1 in astrocytes and neurons, and higher amount of phosphorylated ribosomal protein S6. Our findings reveal previously unknown progressive functional changes in major cell types found in the frontal cortex of C9orf72 ALS/FTD patients that shed light on the mechanisms underlying the pathology of this disease.
Collapse
Affiliation(s)
- Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Chenyang Yuan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Austin M. Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | | | | | - Malú G. Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32607
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32607
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Marla Gearing
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Jonathan D. Glass
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Zachary T. McEachin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
38
|
König LE, Rodriguez S, Hug C, Daneshvari S, Chung A, Bradshaw GA, Sahin A, Zhou G, Eisert RJ, Piccioni F, Das S, Kalocsay M, Sokolov A, Sorger P, Root DE, Albers MW. TYK2 as a novel therapeutic target in Alzheimer's Disease with TDP-43 inclusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.595773. [PMID: 38895380 PMCID: PMC11185596 DOI: 10.1101/2024.06.04.595773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Neuroinflammation is a pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD)1,2 and amyotrophic lateral sclerosis (ALS)3, raising the possibility of common therapeutic targets. We previously established that cytoplasmic double-stranded RNA (cdsRNA) is spatially coincident with cytoplasmic pTDP-43 inclusions in neurons of patients with C9ORF72-mediated ALS4. CdsRNA triggers a type-I interferon (IFN-I)-based innate immune response in human neural cells, resulting in their death4. Here, we report that cdsRNA is also spatially coincident with pTDP-43 cytoplasmic inclusions in brain cells of patients with AD pathology and that type-I interferon response genes are significantly upregulated in brain regions affected by AD. We updated our machine-learning pipeline DRIAD-SP (Drug Repurposing In Alzheimer's Disease with Systems Pharmacology) to incorporate cryptic exon (CE) detection as a proxy of pTDP-43 inclusions and demonstrated that the FDA-approved JAK inhibitors baricitinib and ruxolitinib that block interferon signaling show a protective signal only in cortical brain regions expressing multiple CEs. Furthermore, the JAK family member TYK2 was a top hit in a CRISPR screen of cdsRNA-mediated death in differentiated human neural cells. The selective TYK2 inhibitor deucravacitinib, an FDA-approved drug for psoriasis, rescued toxicity elicited by cdsRNA. Finally, we identified CCL2, CXCL10, and IL-6 as candidate predictive biomarkers for cdsRNA-related neurodegenerative diseases. Together, we find parallel neuroinflammatory mechanisms between TDP-43 associated-AD and ALS and nominate TYK2 as a possible disease-modifying target of these incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Laura E. König
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Shayda Daneshvari
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Alexander Chung
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Gary A. Bradshaw
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Asli Sahin
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - George Zhou
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Robyn J. Eisert
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Federica Piccioni
- Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Peter Sorger
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - David E. Root
- Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA
| | - Mark W. Albers
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Buccellato FR, D'Anca M, Tartaglia GM, Del Fabbro M, Galimberti D. Frontotemporal dementia: from genetics to therapeutic approaches. Expert Opin Investig Drugs 2024; 33:561-573. [PMID: 38687620 DOI: 10.1080/13543784.2024.2349286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.
Collapse
Affiliation(s)
- Francesca R Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marianna D'Anca
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
40
|
Bravo JI, Mizrahi CR, Kim S, Zhang L, Suh Y, Benayoun BA. An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells. PLoS Genet 2024; 20:e1011311. [PMID: 38848448 PMCID: PMC11189215 DOI: 10.1371/journal.pgen.1011311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition, the overwhelming majority of copies are degenerate and immobile. Nevertheless, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability, inflammation, or cellular senescence) on their hosts, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, California, United States of America
| | - Chanelle R. Mizrahi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- USC Gerontology Enriching MSTEM to Enhance Diversity in Aging Program, University of Southern California, Los Angeles, California, United States of America
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California, United States of America
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California, United States of America
- USC Stem Cell Initiative, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Scherer NM, Maurel C, Graus M, McAlary L, Richter G, Radford RW, Hogan A, Don E, Lee A, Yerbury J, Francois M, Chung R, Morsch M. RNA-binding properties orchestrate TDP-43 homeostasis through condensate formation in vivo. Nucleic Acids Res 2024; 52:5301-5319. [PMID: 38381071 PMCID: PMC11109982 DOI: 10.1093/nar/gkae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.
Collapse
Affiliation(s)
- Natalie M Scherer
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Cindy Maurel
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Matthew S Graus
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, Centenary Institute, The University of Sydney, School of Medical Sciences, Sydney, NSW 2006, Australia
- Genome Imaging Centre, Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Grant Richter
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Rowan A W Radford
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Alison Hogan
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily K Don
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Justin Yerbury
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mathias Francois
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, Centenary Institute, The University of Sydney, School of Medical Sciences, Sydney, NSW 2006, Australia
- Genome Imaging Centre, Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger S Chung
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
42
|
Liuzzi G, Artimagnella O, Frisari S, Mallamaci A. Foxg1 bimodally tunes L1-mRNA and -DNA dynamics in the developing murine neocortex. Development 2024; 151:dev202292. [PMID: 38655654 PMCID: PMC11190451 DOI: 10.1242/dev.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Foxg1 masters telencephalic development via a pleiotropic control over its progression. Expressed within the central nervous system (CNS), L1 retrotransposons are implicated in progression of its histogenesis and tuning of its genomic plasticity. Foxg1 represses gene transcription, and L1 elements share putative Foxg1-binding motifs, suggesting the former might limit telencephalic expression (and activity) of the latter. We tested such a prediction, in vivo as well as in engineered primary neural cultures, using loss- and gain-of-function approaches. We found that Foxg1-dependent, transcriptional L1 repression specifically occurs in neopallial neuronogenic progenitors and post-mitotic neurons, where it is supported by specific changes in the L1 epigenetic landscape. Unexpectedly, we discovered that Foxg1 physically interacts with L1-mRNA and positively regulates neonatal neopallium L1-DNA content, antagonizing the retrotranscription-suppressing activity exerted by Mov10 and Ddx39a helicases. To the best of our knowledge, Foxg1 represents the first CNS patterning gene acting as a bimodal retrotransposon modulator, limiting transcription of L1 elements and promoting their amplification, within a specific domain of the developing mouse brain.
Collapse
Affiliation(s)
- Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, SISSA, Trieste 34136, Italy
| | | | - Simone Frisari
- Laboratory of Cerebral Cortex Development, SISSA, Trieste 34136, Italy
| | | |
Collapse
|
43
|
Saloner R, Staffaroni A, Dammer E, Johnson ECB, Paolillo E, Wise A, Heuer H, Forsberg L, Lago AL, Webb J, Vogel J, Santillo A, Hansson O, Kramer J, Miller B, Li J, Loureiro J, Sivasankaran R, Worringer K, Seyfried N, Yokoyama J, Seeley W, Spina S, Grinberg L, VandeVrede L, Ljubenkov P, Bayram E, Bozoki A, Brushaber D, Considine C, Day G, Dickerson B, Domoto-Reilly K, Faber K, Galasko D, Geschwind D, Ghoshal N, Graff-Radford N, Hales C, Honig L, Hsiung GY, Huey E, Kornak J, Kremers W, Lapid M, Lee S, Litvan I, McMillan C, Mendez M, Miyagawa T, Pantelyat A, Pascual B, Paulson H, Petrucelli L, Pressman P, Ramos E, Rascovsky K, Roberson E, Savica R, Snyder A, Sullivan AC, Tartaglia C, Vandebergh M, Boeve B, Rosen H, Rojas J, Boxer A, Casaletto K. Large-scale network analysis of the cerebrospinal fluid proteome identifies molecular signatures of frontotemporal lobar degeneration. RESEARCH SQUARE 2024:rs.3.rs-4103685. [PMID: 38585969 PMCID: PMC10996789 DOI: 10.21203/rs.3.rs-4103685/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics (> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39 noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Wise
- University of California, San Francisco
| | | | | | | | | | | | | | | | | | | | - Jingyao Li
- Novartis Institutes for Biomedical Research, Inc
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Suzee Lee
- University of California, San Francisco
| | | | - Corey McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | | |
Collapse
|
44
|
Zhang X, Das T, Chao TF, Trinh V, Carmen R, Ling JP, Kalab P, Hayes LR. Multivalent GU-rich oligonucleotides sequester TDP-43 in the nucleus by inducing high molecular weight RNP complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551528. [PMID: 37577513 PMCID: PMC10418175 DOI: 10.1101/2023.08.01.551528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt which contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.
Collapse
|
45
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Gomez N, Hsieh C, Li X, Dykstra M, Waksmacki J, Altheim C, Bechar Y, Klim J, Zaepfel B, Rothstein J, Tank EE, Barmada SJ. Counter-regulation of RNA stability by UPF1 and TDP43. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578310. [PMID: 38352350 PMCID: PMC10862862 DOI: 10.1101/2024.01.31.578310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
RNA quality control is crucial for proper regulation of gene expression. Disruption of nonsense mediated mRNA decay (NMD), the primary RNA decay pathway responsible for the degradation of transcripts containing premature termination codons (PTCs), can disrupt development and lead to multiple diseases in humans and other animals. Similarly, therapies targeting NMD may have applications in hematological, neoplastic and neurological disorders. As such, tools capable of accurately quantifying NMD status could be invaluable for investigations of disease pathogenesis and biomarker identification. Toward this end, we assemble, validate, and apply a next-generation sequencing approach (NMDq) for identifying and measuring the abundance of PTC-containing transcripts. After validating NMDq performance and confirming its utility for tracking RNA surveillance, we apply it to determine pathway activity in two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) characterized by RNA misprocessing and abnormal RNA stability. Despite the genetic and pathologic evidence implicating dysfunctional RNA metabolism, and NMD in particular, in these conditions, we detected no significant differences in PTC-encoding transcripts in ALS models or disease. Contrary to expectations, overexpression of the master NMD regulator UPF1 had little effect on the clearance of transcripts with PTCs, but rather restored RNA homeostasis through differential use and decay of alternatively poly-adenylated isoforms. Together, these data suggest that canonical NMD is not a significant contributor to ALS/FTD pathogenesis, and that UPF1 promotes neuronal survival by regulating transcripts with abnormally long 3'UTRs.
Collapse
|
47
|
Seddighi S, Qi YA, Brown AL, Wilkins OG, Bereda C, Belair C, Zhang YJ, Prudencio M, Keuss MJ, Khandeshi A, Pickles S, Kargbo-Hill SE, Hawrot J, Ramos DM, Yuan H, Roberts J, Sacramento EK, Shah SI, Nalls MA, Colón-Mercado JM, Reyes JF, Ryan VH, Nelson MP, Cook CN, Li Z, Screven L, Kwan JY, Mehta PR, Zanovello M, Hallegger M, Shantaraman A, Ping L, Koike Y, Oskarsson B, Staff NP, Duong DM, Ahmed A, Secrier M, Ule J, Jacobson S, Reich DS, Rohrer JD, Malaspina A, Dickson DW, Glass JD, Ori A, Seyfried NT, Maragkakis M, Petrucelli L, Fratta P, Ward ME. Mis-spliced transcripts generate de novo proteins in TDP-43-related ALS/FTD. Sci Transl Med 2024; 16:eadg7162. [PMID: 38277467 PMCID: PMC11325748 DOI: 10.1126/scitranslmed.adg7162] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.
Collapse
Affiliation(s)
- Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- Francis Crick Institute, London, UK
| | - Colleen Bereda
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Matthew J. Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Aditya Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah E. Kargbo-Hill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - James Hawrot
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel M. Ramos
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hebao Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Roberts
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Erika Kelmer Sacramento
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | | | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Jennifer M. Colón-Mercado
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel F. Reyes
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Veronica H. Ryan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P. Nelson
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y. Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Martina Hallegger
- Francis Crick Institute, London, UK
- UK Dementia Research Institute at King’s College London, London, UK
| | | | - Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Björn Oskarsson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Aisha Ahmed
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, UCL, London, UK
| | - Jernej Ule
- Francis Crick Institute, London, UK
- UK Dementia Research Institute at King’s College London, London, UK
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S. Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D. Rohrer
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jonathan D. Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- Francis Crick Institute, London, UK
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. PLoS Biol 2024; 22:e3002527. [PMID: 38422113 DOI: 10.1371/journal.pbio.3002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Patricia M Dos Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Erandika H Hemamali
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lohany D Mamede
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
49
|
Hruska-Plochan M, Wiersma VI, Betz KM, Mallona I, Ronchi S, Maniecka Z, Hock EM, Tantardini E, Laferriere F, Sahadevan S, Hoop V, Delvendahl I, Pérez-Berlanga M, Gatta B, Panatta M, van der Bourg A, Bohaciakova D, Sharma P, De Vos L, Frontzek K, Aguzzi A, Lashley T, Robinson MD, Karayannis T, Mueller M, Hierlemann A, Polymenidou M. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature 2024; 626:1073-1083. [PMID: 38355792 PMCID: PMC10901740 DOI: 10.1038/s41586-024-07042-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Katharina M Betz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Zuzanna Maniecka
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Hock
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Florent Laferriere
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Vanessa Hoop
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Beatrice Gatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Panatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- NCCR RNA and Disease Technology Platform, Bern, Switzerland
| | - Laura De Vos
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological diseases, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
50
|
Singh S, Borkar MR, Bhatt LK. Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotox Res 2024; 42:9. [PMID: 38270797 DOI: 10.1007/s12640-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered "junk DNA," play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.
Collapse
Affiliation(s)
- Shrishti Singh
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India.
| |
Collapse
|