1
|
Pachinger C, Dobbelaere J, Rumpf-Kienzl C, Raina S, Garcia-Baucells J, Sarantseva M, Brauneis A, Dammermann A. A conserved role for centriolar satellites in translation of centrosomal and ciliary proteins. J Cell Biol 2025; 224:e202408042. [PMID: 40396915 DOI: 10.1083/jcb.202408042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/30/2025] [Accepted: 03/18/2025] [Indexed: 05/22/2025] Open
Abstract
Centriolar satellites are cytoplasmic particles found in the vicinity of centrosomes and cilia whose specific functional contribution has long been unclear. Here, we identify Combover as the Drosophila ortholog of the main scaffolding component of satellites, PCM1. Like PCM1, Combover localizes to cytoplasmic foci containing centrosomal proteins and its depletion or mutation results in centrosomal and ciliary phenotypes. Strikingly, however, the concentration of satellites near centrosomes and cilia is not a conserved feature, nor do Combover foci display directed movement. Proximity interaction analysis revealed not only centrosomal and ciliary proteins, but also RNA-binding proteins and proteins involved in quality control. Further work in Drosophila and vertebrate cells found satellites to be associated with centrosomal and ciliary mRNAs, as well as evidence for protein synthesis occurring directly at satellites. Given that PCM1 depletion does not affect overall protein levels, we propose that satellites instead promote the coordinate synthesis of centrosomal and ciliary proteins, thereby facilitating the formation of protein complexes.
Collapse
Affiliation(s)
- Claudia Pachinger
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | - Jeroen Dobbelaere
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
| | | | - Shiviya Raina
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | - Júlia Garcia-Baucells
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | - Marina Sarantseva
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
| | - Andrea Brauneis
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
| | | |
Collapse
|
2
|
Begar E, Seyrek E, Firat‐Karalar EN. Navigating centriolar satellites: the role of PCM1 in cellular and organismal processes. FEBS J 2025; 292:688-708. [PMID: 38825736 PMCID: PMC11839937 DOI: 10.1111/febs.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Centriolar satellites are ubiquitous membrane-less organelles that play critical roles in numerous cellular and organismal processes. They were initially discovered through electron microscopy as cytoplasmic granules surrounding centrosomes in vertebrate cells. These structures remained enigmatic until the identification of pericentriolar material 1 protein (PCM1) as their molecular marker, which has enabled their in-depth characterization. Recently, centriolar satellites have come into the spotlight due to their links to developmental and neurodegenerative disorders. This review presents a comprehensive summary of the major advances in centriolar satellite biology, with a focus on studies that investigated their biology associated with the essential scaffolding protein PCM1. We begin by exploring the molecular, cellular, and biochemical properties of centriolar satellites, laying the groundwork for a deeper understanding of their functions and mechanisms at both cellular and organismal levels. We then examine the implications of their dysregulation in various diseases, particularly highlighting their emerging roles in neurodegenerative and developmental disorders, as revealed by organismal models of PCM1. We conclude by discussing the current state of knowledge and posing questions about the adaptable nature of these organelles, thereby setting the stage for future research.
Collapse
Affiliation(s)
- Efe Begar
- Department of Molecular Biology and GeneticsKoç UniversityIstanbulTurkey
| | - Ece Seyrek
- Department of Molecular Biology and GeneticsKoç UniversityIstanbulTurkey
| | - Elif Nur Firat‐Karalar
- Department of Molecular Biology and GeneticsKoç UniversityIstanbulTurkey
- School of MedicineKoç UniversityIstanbulTurkey
| |
Collapse
|
3
|
Renaud CC, Nicolau CA, Maghe C, Trillet K, Jardine J, Escot S, David N, Gavard J, Bidère N. Necrosulfonamide causes oxidation of PCM1 and impairs ciliogenesis and autophagy. iScience 2024; 27:109580. [PMID: 38600973 PMCID: PMC11004361 DOI: 10.1016/j.isci.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Centriolar satellites are high-order assemblies, scaffolded by the protein PCM1, that gravitate as particles around the centrosome and play pivotal roles in fundamental cellular processes notably ciliogenesis and autophagy. Despite stringent control mechanisms involving phosphorylation and ubiquitination, the landscape of post-translational modifications shaping these structures remains elusive. Here, we report that necrosulfonamide (NSA), a small molecule known for binding and inactivating the pivotal effector of cell death by necroptosis MLKL, intersects with centriolar satellites, ciliogenesis, and autophagy independently of MLKL. NSA functions as a potent redox cycler and triggers the oxidation and aggregation of PCM1 alongside select partners, while minimally impacting the overall distribution of centriolar satellites. Additionally, NSA-mediated ROS production disrupts ciliogenesis and leads to the accumulation of autophagy markers, partially alleviated by PCM1 deletion. Together, these results identify PCM1 as a redox sensor protein and provide new insights into the interplay between centriolar satellites and autophagy.
Collapse
Affiliation(s)
- Clotilde C.N. Renaud
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Carolina Alves Nicolau
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Clément Maghe
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kilian Trillet
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jane Jardine
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sophie Escot
- Laboratoire d’Optique et de Biosciences LOB, Ecole Polytechnique, Palaiseau, France
| | - Nicolas David
- Laboratoire d’Optique et de Biosciences LOB, Ecole Polytechnique, Palaiseau, France
| | - Julie Gavard
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Institut de Cancérologie de l’Ouest (ICO), Saint-Herblain, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
4
|
Renaud CCN, Trillet K, Jardine J, Merlet L, Renoult O, Laurent-Blond M, Catinaud Z, Pecqueur C, Gavard J, Bidère N. The centrosomal protein 131 participates in the regulation of mitochondrial apoptosis. Commun Biol 2023; 6:1271. [PMID: 38102401 PMCID: PMC10724242 DOI: 10.1038/s42003-023-05676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Centriolar satellites are multiprotein aggregates that orbit the centrosome and govern centrosome homeostasis and primary cilia formation. In contrast to the scaffold PCM1, which nucleates centriolar satellites and has been linked to microtubule dynamics, autophagy, and intracellular trafficking, the functions of its interactant CEP131 beyond ciliogenesis remain unclear. Using a knockout strategy in a non-ciliary T-cell line, we report that, although dispensable for centriolar satellite assembly, CEP131 participates in optimal tubulin glycylation and polyglutamylation, and microtubule regrowth. Our unsupervised label-free proteomic analysis by quantitative mass spectrometry further uncovered mitochondrial and apoptotic signatures. CEP131-deficient cells showed an elongated mitochondrial network. Upon cell death inducers targeting mitochondria, knockout cells displayed delayed cytochrome c release from mitochondria, subsequent caspase activation, and apoptosis. This mitochondrial permeabilization defect was intrinsic, and replicable in vitro with isolated organelles. These findings extend CEP131 functions to life-and-death decisions and propose ways to interfere with mitochondrial apoptosis.
Collapse
Affiliation(s)
- Clotilde C N Renaud
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Kilian Trillet
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Jane Jardine
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Laura Merlet
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Ophélie Renoult
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Mélanie Laurent-Blond
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Zoé Catinaud
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Claire Pecqueur
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
- Institut de Cancérologie de l'Ouest (ICO), Saint-Herblain, France
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France.
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France.
| |
Collapse
|
5
|
Barroso-Gomila O, Merino-Cacho L, Muratore V, Perez C, Taibi V, Maspero E, Azkargorta M, Iloro I, Trulsson F, Vertegaal ACO, Mayor U, Elortza F, Polo S, Barrio R, Sutherland JD. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun 2023; 14:7656. [PMID: 37996419 PMCID: PMC10667490 DOI: 10.1038/s41467-023-43326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Hundreds of E3 ligases play a critical role in recognizing specific substrates for modification by ubiquitin (Ub). Separating genuine targets of E3s from E3-interactors remains a challenge. We present BioE3, a powerful approach for matching substrates to Ub E3 ligases of interest. Using BirA-E3 ligase fusions and bioUb, site-specific biotinylation of Ub-modified substrates of particular E3s facilitates proteomic identification. We show that BioE3 identifies both known and new targets of two RING-type E3 ligases: RNF4 (DNA damage response, PML bodies), and MIB1 (endocytosis, autophagy, centrosome dynamics). Versatile BioE3 identifies targets of an organelle-specific E3 (MARCH5) and a relatively uncharacterized E3 (RNF214). Furthermore, BioE3 works with NEDD4, a HECT-type E3, identifying new targets linked to vesicular trafficking. BioE3 detects altered specificity in response to chemicals, opening avenues for targeted protein degradation, and may be applicable for other Ub-likes (UbLs, e.g., SUMO) and E3 types. BioE3 applications shed light on cellular regulation by the complex UbL network.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Laura Merino-Cacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Coralia Perez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Vincenzo Taibi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ibon Iloro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Fredrik Trulsson
- Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333, ZA, Leiden, The Netherlands
| | - Ugo Mayor
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| |
Collapse
|
6
|
Huang Y, Lu C, Wang H, Gu L, Fu YX, Li GM. DNAJA2 deficiency activates cGAS-STING pathway via the induction of aberrant mitosis and chromosome instability. Nat Commun 2023; 14:5246. [PMID: 37640708 PMCID: PMC10462666 DOI: 10.1038/s41467-023-40952-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Molecular chaperone HSP70s are attractive targets for cancer therapy, but their substrate broadness and functional non-specificity have limited their role in therapeutical success. Functioning as HSP70's cochaperones, HSP40s determine the client specificity of HSP70s, and could be better targets for cancer therapy. Here we show that tumors defective in HSP40 member DNAJA2 are benefitted from immune-checkpoint blockade (ICB) therapy. Mechanistically, DNAJA2 maintains centrosome homeostasis by timely degrading key centriolar satellite proteins PCM1 and CEP290 via HSC70 chaperone-mediated autophagy (CMA). Tumor cells depleted of DNAJA2 or CMA factor LAMP2A exhibit elevated levels of centriolar satellite proteins, which causes aberrant mitosis characterized by abnormal spindles, chromosome missegregation and micronuclei formation. This activates the cGAS-STING pathway to enhance ICB therapy response in tumors derived from DNAJA2-deficient cells. Our study reveals a role for DNAJA2 to regulate mitotic division and chromosome stability and suggests DNAJA2 as a potential target to enhance cancer immunotherapy, thereby providing strategies to advance HSPs-based cancer therapy.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changzheng Lu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hanzhi Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China.
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
7
|
Brandes D, Yasin L, Nebral K, Ebler J, Schinnerl D, Picard D, Bergmann AK, Alam J, Köhrer S, Haas OA, Attarbaschi A, Marschall T, Stanulla M, Borkhardt A, Brozou T, Fischer U, Wagener R. Optical Genome Mapping Identifies Novel Recurrent Structural Alterations in Childhood ETV6::RUNX1+ and High Hyperdiploid Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e925. [PMID: 37469802 PMCID: PMC10353714 DOI: 10.1097/hs9.0000000000000925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/21/2023] Open
Abstract
The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL.
Collapse
Affiliation(s)
- Danielle Brandes
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- Dusseldorf School of Oncology (DSO), Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
| | - Layal Yasin
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Karin Nebral
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
- Center for Digital Medicine, Heinrich-Heine University, Dusseldorf, Germany
| | - Dagmar Schinnerl
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Daniel Picard
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Anke K. Bergmann
- Institute of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jubayer Alam
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Stefan Köhrer
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Oskar A. Haas
- St. Anna Children’s Hospital, Department of Pediatric Hematology/Oncology, Pediatric Clinic, Medical University, Vienna, Austria
| | - Andishe Attarbaschi
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatric Hematology/Oncology, Pediatric Clinic, Medical University, Vienna, Austria
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
- Center for Digital Medicine, Heinrich-Heine University, Dusseldorf, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Arndt Borkhardt
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Triantafyllia Brozou
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Ute Fischer
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Rabea Wagener
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| |
Collapse
|
8
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
9
|
Tsai M, Rayner RE, Chafin L, Farkas D, Adair J, Mishan C, Mallampalli RK, Kim SH, Cormet-Boyaka E, Londino JD. Influenza virus reduces ubiquitin E3 ligase MARCH10 expression to decrease ciliary beat frequency. Am J Physiol Lung Cell Mol Physiol 2023; 324:L666-L676. [PMID: 36852930 PMCID: PMC10151042 DOI: 10.1152/ajplung.00191.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Respiratory viruses, such as influenza, decrease airway cilia function and expression, which leads to reduced mucociliary clearance and inhibited overall immune defense. Ubiquitination is a posttranslational modification using E3 ligases, which plays a role in the assembly and disassembly of cilia. We examined the role of membrane-associated RING-CH (MARCH) family of E3 ligases during influenza infection and determined that MARCH10, specifically expressed in ciliated epithelial cells, is significantly decreased during influenza infection in mice, human lung epithelial cells, and human lung tissue. Cellular depletion of MARCH10 in differentiated human bronchial epithelial cells (HBECs) using CRISPR/Cas9 showed a decrease in ciliary beat frequency. Furthermore, MARCH10 cellular knockdown in combination with influenza infection selectively decreased immunoreactive levels of the ciliary component, dynein axonemal intermediate chain 1. Cellular overexpression of MARCH10 significantly decreased influenza hemagglutinin protein levels in the differentiated HBECs and knockdown of MARCH10 increased IL-1β cytokine expression, whereas overexpression had the reciprocal effect. These findings suggest that MARCH10 may have a protective role in airway pulmonary host defense and innate immunity during influenza infection.
Collapse
Affiliation(s)
- MuChun Tsai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - Lexie Chafin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Daniela Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jessica Adair
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Chelsea Mishan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rama K Mallampalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - James D Londino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
10
|
Aslanyan MG, Doornbos C, Diwan GD, Anvarian Z, Beyer T, Junger K, van Beersum SEC, Russell RB, Ueffing M, Ludwig A, Boldt K, Pedersen LB, Roepman R. A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome. Front Cell Dev Biol 2023; 11:1113656. [PMID: 36776558 PMCID: PMC9908615 DOI: 10.3389/fcell.2023.1113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.
Collapse
Affiliation(s)
- Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cenna Doornbos
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Zeinab Anvarian
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Alexander Ludwig
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lotte B. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
Habeck G, Schweiggert J. Proteolytic control in ciliogenesis: Temporal restriction or early initiation? Bioessays 2022; 44:e2200087. [PMID: 35739619 DOI: 10.1002/bies.202200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022]
Abstract
Cellular processes are highly dependent on a dynamic proteome that undergoes structural and functional rearrangements to allow swift conversion between different cellular states. By inducing proteasomal degradation of inhibitory or stimulating factors, ubiquitylation is particularly well suited to trigger such transitions. One prominent example is the remodelling of the centrosome upon cell cycle exit, which is required for the formation of primary cilia - antenna-like structures on the surface of most cells that act as integrative hubs for various extracellular signals. Over the last decade, many reports on ubiquitin-related events involved in the regulation of ciliogenesis have emerged. Very often, these processes are considered to be initiated ad hoc, that is, directly before its effect on cilia biogenesis becomes evident. While such a temporal restriction may hold true for the majority of events, there is evidence that some of them are initiated earlier during the cell cycle. Here, we provide an overview of ubiquitin-dependent processes in ciliogenesis and discuss available data that indicate such an early onset of proteolytic regulation within preceding cell cycle stages.
Collapse
Affiliation(s)
- Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
12
|
Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nat Cell Biol 2022; 24:483-496. [PMID: 35411088 PMCID: PMC9033585 DOI: 10.1038/s41556-022-00869-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Protein degradation is critical to maintaining cellular homeostasis, and perturbation of the ubiquitin proteasome system leads to the accumulation of protein aggregates. These aggregates are either directed towards autophagy for destruction or sequestered into an inclusion, termed the aggresome, at the centrosome. Utilizing high-resolution quantitative analysis, here, we define aggresome assembly at the centrosome in human cells. Centriolar satellites are proteinaceous granules implicated in the trafficking of proteins to the centrosome. During aggresome assembly, satellites were required for the growth of the aggresomal structure from an initial ring of phosphorylated HSP27 deposited around the centrioles. The seeding of this phosphorylated HSP27 ring depended on the centrosomal proteins CP110, CEP97 and CEP290. Owing to limiting amounts of CP110, senescent cells, which are characterized by the accumulation of protein aggregates, were defective in aggresome formation. Furthermore, satellites and CP110–CEP97–CEP290 were required for the aggregation of mutant huntingtin. Together, these data reveal roles for CP110–CEP97–CEP290 and satellites in the control of cellular proteostasis and the aggregation of disease-relevant proteins. Prosser et al. report that centriolar satellite and centrosomal proteins seed aggresomes, perinuclear inclusions of misfolded proteins, and may play a role in aggresome formation during senescence and huntingtin aggregation.
Collapse
|
13
|
Saraswathy VM, Kurup AJ, Sharma P, Polès S, Poulain M, Fürthauer M. The E3 Ubiquitin Ligase Mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation. eLife 2022; 11:71928. [PMID: 35142609 PMCID: PMC8937233 DOI: 10.7554/elife.71928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrate Delta/Notch signaling involves multiple ligands, receptors and transcription factors. Delta endocytosis - a critical event for Notch activation - is however essentially controlled by the E3 Ubiquitin ligase Mindbomb1 (Mib1). Mib1 inactivation is therefore often used to inhibit Notch signaling. However, recent findings indicate that Mib1 function extends beyond the Notch pathway. We report a novel Notch-independent role of Mib1 in zebrafish gastrulation. mib1 null mutants and morphants display impaired Convergence Extension (CE) movements. Comparison of different mib1 mutants and functional rescue experiments indicate that Mib1 controls CE independently of Notch. Mib1-dependent CE defects can be rescued using the Planar Cell Polarity (PCP) downstream mediator RhoA, or enhanced through knock-down of the PCP ligand Wnt5b. Mib1 regulates CE through its RING Finger domains that have been implicated in substrate ubiquitination, suggesting that Mib1 may control PCP protein trafficking. Accordingly, we show that Mib1 controls the endocytosis of the PCP component Ryk and that Ryk internalization is required for CE. Numerous morphogenetic processes involve both Notch and PCP signaling. Our observation that during zebrafish gastrulation Mib1 exerts a Notch-independent control of PCP-dependent CE movements suggest that Mib1 loss of function phenotypes should be cautiously interpreted depending on the biological context.
Collapse
Affiliation(s)
| | | | | | - Sophie Polès
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
14
|
Renaud CCN, Bidère N. Function of Centriolar Satellites and Regulation by Post-Translational Modifications. Front Cell Dev Biol 2021; 9:780502. [PMID: 34888313 PMCID: PMC8650133 DOI: 10.3389/fcell.2021.780502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Centriolar satellites are small membrane-less granules that gravitate around the centrosome. Recent advances in defining the satellite proteome and interactome have unveiled hundreds of new satellite components thus illustrating the complex nature of these particles. Although initially linked to the homeostasis of centrosome and the formation of primary cilia, these composite and highly dynamic structures appear to participate in additional cellular processes, such as proteostasis, autophagy, and cellular stress. In this review, we first outline the main features and many roles of centriolar satellites. We then discuss how post-translational modifications, such as phosphorylation and ubiquitination, shape their composition and functions. This is of particular interest as interfering with these processes may provide ways to manipulate these structures.
Collapse
Affiliation(s)
| | - Nicolas Bidère
- CNRS, CRCINA, INSERM, Université de Nantes, Nantes, France
| |
Collapse
|
15
|
Wang H, Huang Q, Xia J, Cheng S, Pei D, Zhang X, Shu X. The E3 Ligase MIB1 Promotes Proteasomal Degradation of NRF2 and Sensitizes Lung Cancer Cells to Ferroptosis. Mol Cancer Res 2021; 20:253-264. [PMID: 34670864 DOI: 10.1158/1541-7786.mcr-21-0342] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Dysregulation of Notch signaling has been implicated in cellular transformation and tumorigenesis in a variety of cancers while potential roles of MIB1, an E3 ubiquitin ligase required for efficient Notch activation, remains to be investigated. We analyzed MIB1 expression levels in tumor samples and performed gain-of-function and loss-of-function studies in cell lines to investigate potential roles of MIB1 in epithelial-to-mesenchymal transition (EMT), cell migration, and cell survival. We found that overexpression of MIB1 is detected in a subset of lung squamous carcinoma and adenocarcinoma samples and negative correlation is observed between MIB1 expression and overall patient survival. Ectopic expression of MIB1 in A549 cells induces EMT and stimulates cell migration via a Notch-dependent pathway. Meanwhile, MIB1 stimulates the degradation of nuclear factor erythroid 2-related factor 2 (NRF2) in a Notch-independent manner and disrupts the antioxidant capacity of cells, rendering them more sensitive to inducers of ferroptosis. On the other hand, MIB1 knockout induces accumulation of NRF2 and resistance to ferroptosis. Collectively, these results indicate that MIB1 may function as a positive regulator of ferroptosis through targeted degradation of the master antioxidant transcription factor NRF2. IMPLICATIONS: This study identifies a MIB1-induced proteasomal degradation pathway for NRF2 and reveals elevated ferroptosis sensitivity in MIB1-overexpressing cells which may provide novel insights into the treatment of MIB1-overexpressing cancers.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Qiuling Huang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, P.R. China
| | - Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, P.R. China
| | - Shan Cheng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, P.R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, P.R. China
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, P.R. China.,Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
16
|
Gonçalves AB, Hasselbalch SK, Joensen BB, Patzke S, Martens P, Ohlsen SK, Quinodoz M, Nikopoulos K, Suleiman R, Damsø Jeppesen MP, Weiss C, Christensen ST, Rivolta C, Andersen JS, Farinelli P, Pedersen LB. CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels. eLife 2021; 10:63731. [PMID: 34259627 PMCID: PMC8354638 DOI: 10.7554/elife.63731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.
Collapse
Affiliation(s)
- André Brás Gonçalves
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Kirstine Hasselbalch
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Beinta Biskopstø Joensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Pernille Martens
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Krogh Ohlsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Reem Suleiman
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Per Damsø Jeppesen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Catja Weiss
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Bang Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Nishimura Y, Inagaki M. [Targeting the ubiquitin system for treatment of cilia-related diseases]. Nihon Yakurigaku Zasshi 2021; 156:4-8. [PMID: 33390480 DOI: 10.1254/fpj.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ubiquitin system regulates a wide variety of cellular functions. Not surprisingly, dysregulation of the ubiquitin system is associated with various disorders. Therefore, drugs that can modulate the functions of the ubiquitin system have been actively developed to treat these disorders. Chemical knockdown of pathogenic proteins using the ubiquitin-proteasome system is also a promising approach. The ubiquitin system regulates the assemble and disassemble of primary cilia through balanced control over the ubiquitination and deubiquitination of ciliary proteins. Primary cilia are antenna-like structures present in many vertebrate cells that sense and transduce extracellular cues to control cellular processes such as proliferation and differentiation. Impairment of primary cilia is associated with many diseases, including cancer and ciliopathy, a group of multisystem developmental disorders. In this review, we focus on the role of the ubiquitin system on cilia-related disorders and discuss the possibility of the ubiquitin system as therapeutic targets for these diseases through regulation of primary cilia formation.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine.,Glocal Center for Advanced Medical Research, Mie University
| | - Masaki Inagaki
- Glocal Center for Advanced Medical Research, Mie University.,Department of Physiology, Mie University Graduate School of Medicine
| |
Collapse
|
18
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
19
|
The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. Int J Mol Sci 2020; 21:ijms21124196. [PMID: 32545524 PMCID: PMC7352190 DOI: 10.3390/ijms21124196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) have an essential role in several cell biological processes via removing the various ubiquitin patterns as posttranslational modification forms from the target proteins. These enzymes also contribute to the normal cytoplasmic ubiquitin pool during the recycling of this molecule. Autophagy, a summary name of the lysosome dependent self-degradative processes, is necessary for maintaining normal cellular homeostatic equilibrium. Numerous forms of autophagy are known depending on how the cellular self-material is delivered into the lysosomal lumen. In this review we focus on the colorful role of DUBs in autophagic processes and discuss the mechanistic contribution of these molecules to normal cellular homeostasis via the possible regulation forms of autophagic mechanisms.
Collapse
|
20
|
Douanne T, Chapelier S, Rottapel R, Gavard J, Bidère N. The LUBAC participates in lysophosphatidic acid-induced NF-κB activation. Cell Immunol 2020; 353:104133. [PMID: 32450431 DOI: 10.1016/j.cellimm.2020.104133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM complex has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF-κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165. The expression of a MALT1-insensitive version of HOIL1 reveals that this processing is involved in the optimal production of the NF-κB target cytokine interleukin-6. Lastly, we provide evidence that the guanine exchange factor GEF-H1 favors MALT1-mediated cleavage of HOIL1 and NF-κB signaling in this context. Together, our results unveil a critical role for the LUBAC as a positive regulator of NF-κB signaling downstream of LPA receptors.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France
| | - Sarah Chapelier
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie Gavard
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France; Institut de Cancérologie de l'Ouest, Site René Gauducheau, 44800 Saint-Herblain, France
| | - Nicolas Bidère
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France.
| |
Collapse
|
21
|
Nicolau CA, Gavard J, Bidère N. TAK1 lessens the activity of the paracaspase MALT1 during T cell receptor signaling. Cell Immunol 2020; 353:104115. [PMID: 32388054 DOI: 10.1016/j.cellimm.2020.104115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 04/26/2020] [Indexed: 01/03/2023]
Abstract
The CARMA1-BCL10-MALT1 (CBM) complex couples antigen receptors to the activation of Nuclear Factor κB (NF-κB) transcription factors in T/B lymphocytes. Within this signalosome, the MALT1 paracaspase serves dual roles: it is a crucial adaptor for signal transduction to NF-κB signaling, and a protease that shapes NF-κB activity and lymphocyte activation. Although a subtle choreography of ubiquitination and phosphorylation orchestrate the CBM, how precisely this complex and MALT1 enzyme are regulated continue to be elucidated. Here, we report that the chemical inhibition or the siRNA-based silencing of transforming growth factor beta-activated kinase 1 (TAK1), a known partner of the CBM complex required for NF-κB activation, enhanced the processing of MALT1 substrates. We further show that the assembly of the CBM as well as the ubiquitination of MALT1 was augmented when TAK1 was inhibited. Thus, TAK1 may initiate a negative feedback loop to finely tune the CBM complex activity.
Collapse
Affiliation(s)
- Carolina Alves Nicolau
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, Nantes 44007, France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS, Nantes, France
| | - Julie Gavard
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, Nantes 44007, France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS, Nantes, France; Institut de Cancérologie de l'Ouest, Site René Gauducheau, 44800 Saint-Herblain, France
| | - Nicolas Bidère
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, Nantes 44007, France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS, Nantes, France.
| |
Collapse
|
22
|
Prosser SL, Pelletier L. Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci 2020; 133:133/1/jcs239566. [PMID: 31896603 DOI: 10.1242/jcs.239566] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Centriolar satellites are non-membranous cytoplasmic granules that concentrate in the vicinity of the centrosome, the major microtubule-organizing centre (MTOC) in animal cells. Originally assigned as conduits for the transport of proteins towards the centrosome and primary cilium, the complexity of satellites is starting to become apparent. Recent studies defined the satellite proteome and interactomes, placing hundreds of proteins from diverse pathways in association with satellites. In addition, studies on cells lacking satellites have revealed that the centrosome can assemble in their absence, whereas studies on acentriolar cells have demonstrated that satellite assembly is independent from an intact MTOC. A role for satellites in ciliogenesis is well established; however, their contribution to other cellular functions is poorly understood. In this Review, we discuss the developments in our understanding of centriolar satellite assembly and function, and why satellites are rapidly becoming established as governors of multiple cellular processes. We highlight the composition and biogenesis of satellites and what is known about the regulation of these aspects. Furthermore, we discuss the evolution from thinking of satellites as mere facilitators of protein trafficking to the centrosome to thinking of them being key regulators of protein localization and cellular proteostasis for a diverse set of pathways, making them of broader interest to fields beyond those focused on centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
23
|
BAG6 is a novel microtubule-binding protein that regulates ciliogenesis by modulating the cell cycle and interacting with γ-tubulin. Exp Cell Res 2019; 387:111776. [PMID: 31838060 DOI: 10.1016/j.yexcr.2019.111776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Microtubule-binding proteins provide an alternative and vital pathway to the functional diversity of microtubules. Considerable work is still required to understand the complexities of microtubule-associated cellular processes and to identify novel microtubule-binding proteins. In this study, we identify Bcl2-associated athanogene cochaperone 6 (BAG6) as a novel microtubule-binding protein and reveal that it is crucial for primary ciliogenesis. By immunofluorescence we show that BAG6 largely colocalizes with intracellular microtubules and by co-immunoprecipitation we demonstated that it can interact with α-tubulin. Additionally, both the UBL and BAG domains of BAG6 are indispensable for its interaction with α-tubulin. Moreover, the assembly of primary cilia in RPE-1 cells is significantly inhibited upon the depletion of BAG6. Notably, BAG6 inhibition leads to an abnormal G0/G1 transition during the cell cycle. In addition, BAG6 colocalizes and interactes with the centrosomal protein γ-tubulin, suggesting that BAG6 might regulate primary ciliogenesis through its action in centrosomal function. Collectively, our findings suggest that BAG6 is a novel microtubule-bindng protein crucial for primary ciliogenesis.
Collapse
|
24
|
Wang P, Xia J, Zhang L, Zhao S, Li S, Wang H, Cheng S, Li H, Yin W, Pei D, Shu X. SNX17 Recruits USP9X to Antagonize MIB1-Mediated Ubiquitination and Degradation of PCM1 during Serum-Starvation-Induced Ciliogenesis. Cells 2019; 8:cells8111335. [PMID: 31671755 PMCID: PMC6912348 DOI: 10.3390/cells8111335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Centriolar satellites are non-membrane cytoplasmic granules that deliver proteins to centrosome during centrosome biogenesis and ciliogenesis. Centriolar satellites are highly dynamic during cell cycle or ciliogenesis and how they are regulated remains largely unknown. We report here that sorting nexin 17 (SNX17) regulates the homeostasis of a subset of centriolar satellite proteins including PCM1, CEP131, and OFD1 during serum-starvation-induced ciliogenesis. Mechanistically, SNX17 recruits the deubiquitinating enzyme USP9X to antagonize the mindbomb 1 (MIB1)-induced ubiquitination and degradation of PCM1. SNX17 deficiency leads to enhanced degradation of USP9X as well as PCM1 and disrupts ciliogenesis upon serum starvation. On the other hand, SNX17 is dispensable for the homeostasis of PCM1 and USP9X in serum-containing media. These findings reveal a SNX17/USP9X mediated pathway essential for the homeostasis of centriolar satellites under serum starvation, and provide insight into the mechanism of USP9X in ciliogenesis, which may lead to a better understating of USP9X-deficiency-related human diseases such as X-linked mental retardation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengtao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Leilei Zhang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Shaoyang Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Shengbiao Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Haiyun Wang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Shan Cheng
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Wenguang Yin
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
25
|
Douanne T, André‐Grégoire G, Trillet K, Thys A, Papin A, Feyeux M, Hulin P, Chiron D, Gavard J, Bidère N. Pannexin-1 limits the production of proinflammatory cytokines during necroptosis. EMBO Rep 2019; 20:e47840. [PMID: 31410978 PMCID: PMC6776911 DOI: 10.15252/embr.201947840] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.
Collapse
Affiliation(s)
- Tiphaine Douanne
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
| | - Gwennan André‐Grégoire
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
- Institut de Cancérologie de l'OuestSite René GauducheauSaint‐HerblainFrance
| | - Kilian Trillet
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
| | - An Thys
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
| | - Antonin Papin
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
| | - Magalie Feyeux
- MicroPICell Imaging Core FacilitySFR Santé F. Bonamy UMS016INSERM, CNRSUniversité de NantesNantesFrance
| | - Philippe Hulin
- MicroPICell Imaging Core FacilitySFR Santé F. Bonamy UMS016INSERM, CNRSUniversité de NantesNantesFrance
| | - David Chiron
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
| | - Julie Gavard
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
- Institut de Cancérologie de l'OuestSite René GauducheauSaint‐HerblainFrance
| | - Nicolas Bidère
- CRCINA, INSERM, CNRSUniversité de NantesUniversité d'AngersNantesFrance
- GDR3697 MicronitCNRSNantesFrance
- L'Héma‐NexT, i‐Site NexTNantesFrance
| |
Collapse
|