1
|
Dong J, Wang L, Sullivan BT, Sun L, Martinez Smith VM, Chang L, Ding J, Le W, Gerfen CR, Cai H. Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion. Nat Commun 2025; 16:2710. [PMID: 40108161 PMCID: PMC11923167 DOI: 10.1038/s41467-025-58007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Striatonigral neurons, traditionally known for promoting locomotion, comprise diverse subtypes with distinct transcriptomic profiles. However, their specific contributions to locomotor regulation remain incompletely understood. Using the genetic markers Kremen1 and Calb1, we demonstrate in mouse models that Kremen1+ and Calb1+ striatonigral neurons exerted opposing effects on locomotion. Kremen1+ neurons displayed delayed activation at locomotion onset but exhibited increasing activity during locomotion offset. In contrast, Calb1+ neurons showed early activation at locomotion onset and decreasing activity during locomotion offset. Optogenetic activation of Kremen1+ neurons suppressed ongoing locomotion, whereas activation of Calb1+ neurons promoted locomotion. Activation of Kremen1+ neurons induced a greater reduction in dopamine release than Calb1+ neurons, followed by a post-stimulation rebound. Conversely, activation of Calb1+ neurons triggered an initial increase in dopamine release. Furthermore, genetic knockdown of GABA-B receptor Gabbr1 in Aldh1a1+ nigrostriatal dopaminergic neurons (DANs) reduced DAN inhibition and completely abolished the locomotion-suppressing effect of Kremen1+ neurons. Together, these findings reveal a cell type-specific mechanism within striatonigral neuron subtypes: Calb1+ neurons promote locomotion, while Kremen1+ neurons terminate ongoing movement by inhibiting Aldh1a1+ DAN activity via GABBR1 receptors.
Collapse
Affiliation(s)
- Jie Dong
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lupeng Wang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Breanna T Sullivan
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Victor M Martinez Smith
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116011, China
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Medical School of University of Electronics & Technology of China, Chengdu, Sichuan, 610045, China
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
An D, You Y, Ma Q, Xu Z, Liu Z, Liao R, Chen H, Wang Y, Wang Y, Dai H, Li H, Jiang L, Chen Z, Hu W. Deficiency of histamine H 2 receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention. Neuron 2025; 113:572-589.e6. [PMID: 39788124 DOI: 10.1016/j.neuron.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H2 receptor (H2R) in parvalbumin-positive neurons in substantia nigra pars recticulata (PVSNr) attenuates PV+ neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased H2R expression was observed in PVSNr in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by H2R agonist treatment. Dysfunction of PVSNr efferents to the substantia nigra pars compacta dopaminergic neurons and superior colliculus differently contributes to H2R-deficiency-induced behavioral disorders. Collectively, our results demonstrate that H2R deficiency in PV+ neurons contributes to hyperactivity, impulsivity, and inattention by dampening PVSNr activity and involving different efferents in mice. It may enhance understanding of the molecular and circuit-level basis of ADHD and afford new potential therapeutic targets for ADHD-like psychiatric diseases.
Collapse
Affiliation(s)
- Dadao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengyi Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zonghan Liu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruichu Liao
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiquan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou 310013, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haohong Li
- The MOE Frontier Research Center of Brain and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
Ehara A, Ito N, Nakadate K, Tokuda N. Localization of Melanocortin 1 Receptor in the Substantia Nigra. Int J Mol Sci 2024; 26:236. [PMID: 39796093 PMCID: PMC11720287 DOI: 10.3390/ijms26010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry. Our findings reveal that MC1R was slightly present in dopaminergic neurons in the ventral tier of SN pars compacta dorsal (vSNCD), a region particularly vulnerable to PD-related neurodegeneration. Notably, we discovered that MC1R is highly present in parvalbumin (PV)-positive neurons, which were also vesicular GABA transporter messenger RNA-expressing inhibitory neurons of the lateral SN pars reticulata (lSNR). Intracellular analysis demonstrated that MC1R was present not only in the plasma membrane but also in mitochondrial and endoplasmic reticulum membranes. Furthermore, MC1R co-localized with attractin (Atrn), a known MC1R modulator, in nearly all MC1R-positive neurons. Therefore, it has been suggested that MC1R and Atrn work together to regulate dopaminergic neurons in the SN through both direct expression and indirect modulation via PV-positive inhibitory neurons. These findings provide new insights into MC1R's role in the SN and its potential contribution to PD pathophysiology.
Collapse
Affiliation(s)
- Ayuka Ehara
- Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan;
| | - Nozomi Ito
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan; (N.I.); (K.N.)
| | - Kazuhiko Nakadate
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan; (N.I.); (K.N.)
| | - Nobuko Tokuda
- Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan;
| |
Collapse
|
4
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Sitzia G, Bariselli S, Gracias A, Lovinger DM. Chronic alcohol induces subcircuit-specific striatonigral plasticity enhancing the sensorimotor basal ganglia role in action execution. SCIENCE ADVANCES 2024; 10:eadm6951. [PMID: 38941461 PMCID: PMC11212723 DOI: 10.1126/sciadv.adm6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Functional deficits in basal ganglia (BG) circuits contribute to cognitive and motor dysfunctions in alcohol use disorder. Chronic alcohol exposure alters synaptic function and neuronal excitability in the dorsal striatum, but it remains unclear how it affects BG output that is mediated by the substantia nigra pars reticulata (SNr). Here, we describe a neuronal subpopulation-specific synaptic organization of striatal and subthalamic (STN) inputs to the medial and lateral SNr. Chronic alcohol exposure (CIE) potentiated dorsolateral striatum (DLS) inputs but did not change dorsomedial striatum and STN inputs to the SNr. Chemogenetic inhibition of DLS direct pathway neurons revealed an enhanced role for DLS direct pathway neurons in execution of an instrumental lever-pressing task. Overall, we reveal a subregion-specific organization of striatal and subthalamic inputs onto the medial and lateral SNr and find that potentiated DLS-SNr inputs are accompanied by altered BG control of action execution following CIE.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastiano Bariselli
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alexa Gracias
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
6
|
Cai H, Dong J, Wang L, Sullivan B, Sun L, Chang L, Smith VM, Ding J, Le W, Gerfen C. Patch and matrix striatonigral neurons differentially regulate locomotion. RESEARCH SQUARE 2024:rs.3.rs-4468830. [PMID: 38978598 PMCID: PMC11230471 DOI: 10.21203/rs.3.rs-4468830/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The striatonigral neurons are known to promote locomotion1,2. These neurons reside in both the patch (also known as striosome) and matrix compartments of the dorsal striatum3-5. However, the specific contribution of patch and matrix striatonigral neurons to locomotion remain largely unexplored. Using molecular identifier Kringle-Containing Protein Marking the Eye and the Nose (Kremen1) and Calbidin (Calb1)6, we showed in mouse models that patch and matrix striatonigral neurons exert opposite influence on locomotion. While a reduction in neuronal activity in matrix striatonigral neurons precedes the cessation of locomotion, fiber photometry recording during self-paced movement revealed an unexpected increase of patch striatonigral neuron activity, indicating an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed locomotion, contrasting with the locomotion-promoting effect of matrix striatonigral neurons. Consistently, patch striatonigral neuron activation markedly inhibited dopamine release, whereas matrix striatonigral neuron activation initially promoted dopamine release. Moreover, the genetic deletion of inhibitory GABA-B receptor Gabbr1 in Aldehyde dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neurons (DANs) completely abolished the locomotion-suppressing effect caused by activating patch striatonigral neurons. Together, our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting the activity of ALDH1A1+ nigrostriatal DANs.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Sun
- National Institute on Aging, National Institutes of Health
| | - Lisa Chang
- National Institute on Aging, National Institutes of Health
| | | | - Jinhui Ding
- National Institute on Aging, National Institutes of Health
| | | | | |
Collapse
|
7
|
Aristieta A, Parker JE, Gao YE, Rubin JE, Gittis AH. Dopamine depletion weakens direct pathway modulation of SNr neurons. Neurobiol Dis 2024; 196:106512. [PMID: 38670278 PMCID: PMC11969385 DOI: 10.1016/j.nbd.2024.106512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Neurons in the substantia nigra reticulata (SNr) transmit information about basal ganglia output to dozens of brain regions in thalamocortical and brainstem motor networks. Activity of SNr neurons is regulated by convergent input from upstream basal ganglia nuclei, including GABAergic inputs from the striatum and the external globus pallidus (GPe). GABAergic inputs from the striatum convey information from the direct pathway, while GABAergic inputs from the GPe convey information from the indirect pathway. Chronic loss of dopamine, as occurs in Parkinson's disease, disrupts the balance of direct and indirect pathway neurons at the level of the striatum, but the question of how dopamine loss affects information propagation along these pathways outside of the striatum is less well understood. Using a combination of in vivo and slice electrophysiology, we find that dopamine depletion selectively weakens the direct pathway's influence over neural activity in the SNr due to changes in the decay kinetics of GABA-mediated synaptic currents. GABAergic signaling from GPe neurons in the indirect pathway was not affected, resulting in an inversion of the normal balance of inhibitory control over basal ganglia output through the SNr. These results highlight the contribution of cellular mechanisms outside of the striatum that impact the responses of basal ganglia output neurons to the direct and indirect pathways in disease.
Collapse
Affiliation(s)
- Asier Aristieta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John E Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ya Emma Gao
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Dong J, Wang L, Sullivan BT, Sun L, Chang L, Martinez Smith VM, Ding J, Le W, Gerfen CR, Cai H. Patch and matrix striatonigral neurons differentially regulate locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598675. [PMID: 38915717 PMCID: PMC11195204 DOI: 10.1101/2024.06.12.598675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Striatonigral neurons, known to promote locomotion, reside in both the patch and matrix compartments of the dorsal striatum. However, their compartment-specific contributions to locomotion remain largely unexplored. Using molecular identifier Kremen1 and Calb1 , we showed in mouse models that patch and matrix striatonigral neurons exert opposite influences on locomotion. Matrix striatonigral neurons reduced their activity before the cessation of self-paced locomotion, while patch striatonigral neuronal activity increased, suggesting an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed ongoing locomotion with reduced striatal dopamine release, contrasting with the locomotion-promoting effect of matrix striatonigral neurons, which showed an initial increase in dopamine release. Furthermore, genetic deletion of the GABA-B receptor in Aldehyde dehydrogenase 1A1-positive (ALDH1A1 + ) nigrostriatal dopaminergic neurons completely abolished the locomotion-suppressing effect of patch striatonigral neurons. Our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting ALDH1A1 + nigrostriatal dopaminergic neurons.
Collapse
|
9
|
Hou JF, Nayeem MOG, Caplan KA, Ruesch EA, Caban-Murillo A, Criado-Hidalgo E, Ornellas SB, Williams B, Pearce AA, Dagdeviren HE, Surets M, White JA, Shapiro MG, Wang F, Ramirez S, Dagdeviren C. An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation. Nat Commun 2024; 15:4601. [PMID: 38834558 PMCID: PMC11150473 DOI: 10.1038/s41467-024-48748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.
Collapse
Affiliation(s)
- Jason F Hou
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Kian A Caplan
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, 02215, MA, USA
| | - Albit Caban-Murillo
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, 02215, MA, USA
| | - Ernesto Criado-Hidalgo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sarah B Ornellas
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brandon Williams
- Center for Systems Neuroscience, Neurophotonics Center, Department of Biomedical Engineering, Boston University, 610 Commonwealth Ave., Boston, MA, 02215, USA
| | - Ayeilla A Pearce
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huseyin E Dagdeviren
- Department of Neurosurgery, Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Michelle Surets
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, 02215, MA, USA
| | - John A White
- Center for Systems Neuroscience, Neurophotonics Center, Department of Biomedical Engineering, Boston University, 610 Commonwealth Ave., Boston, MA, 02215, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Fan Wang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, 02215, MA, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Cregg JM, Sidhu SK, Leiras R, Kiehn O. Basal ganglia-spinal cord pathway that commands locomotor gait asymmetries in mice. Nat Neurosci 2024; 27:716-727. [PMID: 38347200 PMCID: PMC11001584 DOI: 10.1038/s41593-024-01569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/05/2024] [Indexed: 04/10/2024]
Abstract
The basal ganglia are essential for executing motor actions. How the basal ganglia engage spinal motor networks has remained elusive. Medullary Chx10 gigantocellular (Gi) neurons are required for turning gait programs, suggesting that turning gaits organized by the basal ganglia are executed via this descending pathway. Performing deep brainstem recordings of Chx10 Gi Ca2+ activity in adult mice, we show that striatal projection neurons initiate turning gaits via a dominant crossed pathway to Chx10 Gi neurons on the contralateral side. Using intersectional viral tracing and cell-type-specific modulation, we uncover the principal basal ganglia-spinal cord pathway for locomotor asymmetries in mice: basal ganglia → pontine reticular nucleus, oral part (PnO) → Chx10 Gi → spinal cord. Modulating the restricted PnO → Chx10 Gi pathway restores turning competence upon striatal damage, suggesting that dysfunction of this pathway may contribute to debilitating turning deficits observed in Parkinson's disease. Our results reveal the stratified circuit architecture underlying a critical motor program.
Collapse
Affiliation(s)
- Jared M Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Simrandeep K Sidhu
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
12
|
Abstract
Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
13
|
Cai H, Zhang P, Li T, Li M, Zhang L, Cui C, Lei J, Yang J, Ren K, Ming J, Tian B. Amygdalo-nigral circuit mediates stress-induced vulnerability to the parkinsonian toxin MPTP. CNS Neurosci Ther 2023. [PMID: 36914579 DOI: 10.1111/cns.14151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/16/2023] Open
Abstract
AIMS The aim was to investigate the effect of mood disorders on parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor disability, substantia nigra pars compacta (SNc) dopaminergic (DA) neurons loss. Also, the neural circuit mechanism was elucidated. METHODS The depression-like (physical stress, PS) and anxiety-like (emotional stress, ES) mouse models were established by the three-chamber social defeat stress (SDS). The features of Parkinson's disease were reproduced by MPTP injection. Viral-based whole-brain mapping was utilized to resolve the stress-induced global changes in direct inputs onto SNc DA neurons. Calcium imaging and chemogenetic techniques were applied to verify the function of the related neural pathway. RESULTS We found that PS mice, but not ES mice, showed worse movement performance and more SNc DA neuronal loss than control mice after MPTP administration. The projection from the central amygdala (CeA) to the SNcDA was significantly increased in PS mice. The activity of SNc-projected CeA neurons was enhanced in PS mice. Activating or inhibiting the CeA-SNcDA pathway could mimic or block PS-induced vulnerability to MPTP. CONCLUSIONS These results indicated that projections from CeA to SNc DA neurons contribute to SDS-induced vulnerability to MPTP in mice.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
14
|
Sitzia G, Lovinger DM. Circuit dysfunctions of associative and sensorimotor basal ganglia loops in alcohol use disorder: insights from animal models. ADDICTION NEUROSCIENCE 2023; 5:100056. [PMID: 36567745 PMCID: PMC9788651 DOI: 10.1016/j.addicn.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persons that develop Alcohol Use Disorder (AUD) experience behavioral changes that include compulsion to seek and take alcohol despite its negative consequences on the person's psychosocial, health and economic spheres, inability to limit alcohol intake and a negative emotional/ motivational state that emerges during withdrawal. During all the stages of AUD executive functions, i.e. the person's ability to direct their behavior towards a goal, working memory and cognitive flexibility are eroded. Animal models of AUD recapitulate aspects of action selection impairment and offer the opportunity to benchmark the underlying circuit mechanisms. Here we propose a circuit-based approach to AUD research focusing on recent advances in behavioral analysis, neuroanatomy, genetics, and physiology to guide future research in the field.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Current Address: Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, USA
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - David M. Lovinger
- Current Address: Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, USA
| |
Collapse
|
15
|
Nishimaru H, Matsumoto J, Setogawa T, Nishijo H. Neuronal structures controlling locomotor behavior during active and inactive motor states. Neurosci Res 2022; 189:83-93. [PMID: 36549389 DOI: 10.1016/j.neures.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Animal behaviors can be divided into two states according to their motor activity: the active motor state, which involves significant body movements, and the inactive motor state, which refers to when the animal is stationary. The timing and duration of these states are determined by the activity of the neuronal circuits involved in motor control. Among these motor circuits, those that generate locomotion are some of the most studied neuronal networks and are widely distributed from the spinal cord to the cerebral cortex. In this review, we discuss recent discoveries, mainly in rodents using state-of-the-art experimental approaches, of the neuronal mechanisms underlying the initiation and termination of locomotion in the brainstem, basal ganglia, and prefrontal cortex. These findings is discussed with reference to studies on the neuronal mechanism of motor control during sleep and the modulation of cortical states in these structures. Accumulating evidence has unraveled the complex yet highly structured network that controls the transition between motor states.
Collapse
Affiliation(s)
- Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan.
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Chang S, Fermani F, Lao CL, Huang L, Jakovcevski M, Di Giaimo R, Gagliardi M, Menegaz D, Hennrich AA, Ziller M, Eder M, Klein R, Cai N, Deussing JM. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. SCIENCE ADVANCES 2022; 8:eabo1023. [PMID: 36383658 PMCID: PMC9668302 DOI: 10.1126/sciadv.abo1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.
Collapse
Affiliation(s)
- Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Federica Fermani
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Chu-Lan Lao
- Collaborative Research Centre/Sonderforschungsbereich (SFB) 870, Viral Vector Facility, Munich, Germany
| | - Lianyun Huang
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Mira Jakovcevski
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples Italy
| | - Miriam Gagliardi
- Genomics of Complex Diseases, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Ziller
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rüdiger Klein
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Na Cai
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
17
|
Neuronal Firing and Glutamatergic Synapses in the Substantia Nigra Pars Reticulata of LRRK2-G2019S Mice. Biomolecules 2022; 12:biom12111635. [DOI: 10.3390/biom12111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are frequent causes of familial Parkinson’s Disease (PD), an increasingly prevalent neurodegenerative disease that affects basal ganglia circuitry. The cellular effects of the G2019S mutation in the LRRK2 gene, the most common pathological mutation, have not been thoroughly investigated. In this study we used middle-aged mice carrying the LRRK2-G2019S mutation (G2019S mice) to identify potential alterations in the neurophysiological properties and characteristics of glutamatergic synaptic transmission in basal ganglia output neurons, i.e., substantia nigra pars reticulata (SNr) GABAergic neurons. We found that the intrinsic membrane properties and action potential properties were unaltered in G2019S mice compared to wild-type (WT) mice. The spontaneous firing frequency was similar, but we observed an increased regularity in the firing of SNr neurons recorded from G2019S mice. We examined the short-term plasticity of glutamatergic synaptic transmission, and we found an increased paired-pulse depression in G2019S mice compared to WT mice, indicating an increased probability of glutamate release in SNr neurons from G2019S mice. We measured synaptic transmission mediated by NMDA receptors and we found that the kinetics of synaptic responses mediated by these receptors were unaltered, as well as the contribution of the GluN2B subunit to these responses, in SNr neurons of G2019S mice compared to WT mice. These results demonstrate an overall maintenance of basic neurophysiological and synaptic characteristics, and subtle changes in the firing pattern and in glutamatergic synaptic transmission in basal ganglia output neurons that precede neurodegeneration of dopaminergic neurons in the LRRK2-G2019S mouse model of late-onset PD.
Collapse
|
18
|
Evans R. Dendritic involvement in inhibition and disinhibition of vulnerable dopaminergic neurons in healthy and pathological conditions. Neurobiol Dis 2022; 172:105815. [PMID: 35820645 PMCID: PMC9851599 DOI: 10.1016/j.nbd.2022.105815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson's Disease, with the ventral region degenerating more severely than the dorsal region. Compared with the dorsal neurons, the ventral neurons in the SNc have distinct dendritic morphology, electrophysiological characteristics, and circuit connections with the basal ganglia. These characteristics shape information processing in the ventral SNc and structure the balance of inhibition and disinhibition in the striatonigral circuitry. In this paper, I review foundational studies and recent work comparing the circuitry of the ventral and dorsal SNc neurons and discuss how loss of the ventral neurons early in Parkinson's Disease could affect the overall balance of inhibition and disinhibition of dopamine signals.
Collapse
Affiliation(s)
- R.C. Evans
- Georgetown University Medical Center, Department of Neuroscience, United States of America
| |
Collapse
|
19
|
Partanen J, Achim K. Neurons gating behavior—developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata. Front Neurosci 2022; 16:976209. [PMID: 36148148 PMCID: PMC9485944 DOI: 10.3389/fnins.2022.976209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNpr) is the major information output site of the basal ganglia network and instrumental for the activation and adjustment of movement, regulation of the behavioral state and response to reward. Due to both overlapping and unique input and output connections, the SNpr might also have signal integration capacity and contribute to action selection. How the SNpr regulates these multiple functions remains incompletely understood. The SNpr is located in the ventral midbrain and is composed primarily of inhibitory GABAergic projection neurons that are heterogeneous in their properties. In addition, the SNpr contains smaller populations of other neurons, including glutamatergic neurons. Here, we discuss regionalization of the SNpr, in particular the division of the SNpr neurons to anterior (aSNpr) and posterior (pSNpr) subtypes, which display differences in many of their features. We hypothesize that unique developmental and molecular characteristics of the SNpr neuron subtypes correlate with both region-specific connections and notable functional specializations of the SNpr. Variation in both the genetic control of the SNpr neuron development as well as signals regulating cell migration and axon guidance may contribute to the functional diversity of the SNpr neurons. Therefore, insights into the various aspects of differentiation of the SNpr neurons can increase our understanding of fundamental brain functions and their defects in neurological and psychiatric disorders, including movement and mood disorders, as well as epilepsy.
Collapse
|
20
|
Tekriwal A, Felsen G, Ojemann SG, Abosch A, Thompson JA. Motor context modulates substantia nigra pars reticulata spike activity in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:386-394. [PMID: 35193951 PMCID: PMC10593310 DOI: 10.1136/jnnp-2021-326962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The severity of motor symptoms in Parkinson's disease (PD) depends on environmental conditions. For example, the presence of external patterns such as a rhythmic tone can attenuate bradykinetic impairments. However, the neural mechanisms for this context-dependent attenuation (e.g., paradoxical kinesis) remain unknown. Here, we investigate whether context-dependent symptom attenuation is reflected in single-unit activity recorded in the operating room from the substantia nigra pars reticulata (SNr) of patients with PD undergoing deep brain stimulation surgery. The SNr is known to influence motor planning and execution in animal models, but its role in humans remains understudied. METHODS We recorded SNr activity while subjects performed cued directional movements in response to auditory stimuli under interleaved 'patterned' and 'unpatterned' contexts. SNr localisation was independently confirmed with expert intraoperative assessment as well as post hoc imaging-based reconstructions. RESULTS As predicted, we found that motor performance was improved in the patterned context, reflected in increased reaction speed and accuracy compared with the unpatterned context. These behavioural differences were associated with enhanced responsiveness of SNr neurons-that is, larger changes in activity from baseline-in the patterned context. Unsupervised clustering analysis revealed two distinct subtypes of SNr neurons: one exhibited context-dependent enhanced responsiveness exclusively during movement preparation, whereas the other showed enhanced responsiveness during portions of the task associated with both motor and non-motor processes. CONCLUSIONS Our findings indicate the SNr participates in motor planning and execution, as well as warrants greater attention in the study of human sensorimotor integration and as a target for neuromodulatory therapies.
Collapse
Affiliation(s)
- Anand Tekriwal
- Departments of Neurosurgery and Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John A Thompson
- Departments of Neurosurgery and Neurology, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
A nigra-subthalamic circuit is involved in acute and chronic pain states. Pain 2022; 163:1952-1966. [PMID: 35082251 DOI: 10.1097/j.pain.0000000000002588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The basal ganglia modulate somatosensory pain pathways but it is unclear whether a common circuit exists to mitigate hyperalgesia in pain states induced by peripheral nociceptive stimuli. As a key output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNr) may be a candidate for this role. To test this possibility, we optogenetically modulated SNr GABAergic neurons and examined pain thresholds in freely behaving male mice in inflammatory and neuropathic pain states as well as comorbid depression in chronic pain. We observed that stimulation of either SNr GABAergic neurons or their projections to the subthalamic nucleus (STN) significantly alleviated nociceptive responses in all pain states on the contralateral side and comorbid depression in chronic pain, and that this analgesic effect was eliminated when SNr-STN GABAergic projection was blocked. However, SNr modulation did not affect baseline pain thresholds. We also found that SNr-STN GABAergic projection was attenuated in pain states, resulting in disinhibition of STN neurons. Thus, impairment of the SNr-STN GABAergic circuit may be a common pathophysiology for the maintenance of hyperalgesia in both inflammatory and neuropathic pain states and the comorbid depression in chronic pain; compensating this circuit has potential to effectively treat related pain conditions.
Collapse
|
22
|
Abstract
Locomotion is a universal motor behavior that is expressed as the output of many integrated brain functions. Locomotion is organized at several levels of the nervous system, with brainstem circuits acting as the gate between brain areas regulating innate, emotional, or motivational locomotion and executive spinal circuits. Here we review recent advances on brainstem circuits involved in controlling locomotion. We describe how delineated command circuits govern the start, speed, stop, and steering of locomotion. We also discuss how these pathways interface between executive circuits in the spinal cord and diverse brain areas important for context-specific selection of locomotion. A recurrent theme is the need to establish a functional connectome to and from brainstem command circuits. Finally, we point to unresolved issues concerning the integrated function of locomotor control. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jared M. Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
24
|
Gordon-Fennell A, Stuber GD. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology 2021; 198:108725. [PMID: 34375625 DOI: 10.1016/j.neuropharm.2021.108725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Reinforcement, reward, and aversion are fundamental processes for guiding appropriate behaviors. Longstanding theories have pointed to dopaminergic neurons of the ventral tegmental area (VTA) and the limbic systems' descending pathways as crucial systems for modulating these behaviors. The application of optogenetic techniques in neurotransmitter- and projection-specific circuits has supported and enhanced many preexisting theories but has also revealed many unexpected results. Here, we review the past decade of optogenetic experiments to study the neural circuitry of reinforcement and reward/aversion with a focus on the mesolimbic dopamine system and brain areas along the medial forebrain bundle (MFB). The cumulation of these studies to date has revealed generalizable findings across molecularly defined cell types in areas of the basal forebrain and anterior hypothalamus. Optogenetic stimulation of GABAergic neurons in these brain regions drives reward and can support positive reinforcement and optogenetic stimulation of glutamatergic neurons in these regions drives aversion. We also review studies of the activity dynamics of neurotransmitter defined populations in these areas which have revealed varied response patterns associated with motivated behaviors.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA.
| |
Collapse
|
25
|
Cover KK, Mathur BN. Rostral Intralaminar Thalamus Engagement in Cognition and Behavior. Front Behav Neurosci 2021; 15:652764. [PMID: 33935663 PMCID: PMC8082140 DOI: 10.3389/fnbeh.2021.652764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
The thalamic rostral intralaminar nuclei (rILN) are a contiguous band of neurons that include the central medial, paracentral, and central lateral nuclei. The rILN differ from both thalamic relay nuclei, such as the lateral geniculate nucleus, and caudal intralaminar nuclei, such as the parafascicular nucleus, in afferent and efferent connectivity as well as physiological and synaptic properties. rILN activity is associated with a range of neural functions and behaviors, including arousal, pain, executive function, and action control. Here, we review this evidence supporting a role for the rILN in integrating arousal, executive and motor feedback information. In light of rILN projections out to the striatum, amygdala, and sensory as well as executive cortices, we propose that such a function enables the rILN to modulate cognitive and motor resources to meet task-dependent behavioral engagement demands.
Collapse
Affiliation(s)
- Kara K Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Dong J, Hawes S, Wu J, Le W, Cai H. Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease. Front Neural Circuits 2021; 15:645287. [PMID: 33737869 PMCID: PMC7960779 DOI: 10.3389/fncir.2021.645287] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.
Collapse
Affiliation(s)
- Jie Dong
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Hawes
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Junbing Wu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases & Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Medical School of University of Electronic Science and Technology of China, Institute of Neurology, Sichuan Provincial Hospital, Sichuan Academy of Medical Science, Chengdu, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Ikawa F, Tanaka S, Harada K, Hide I, Maruyama H, Sakai N. Detailed neuronal distribution of GPR3 and its co-expression with EF-hand calcium-binding proteins in the mouse central nervous system. Brain Res 2020; 1750:147166. [PMID: 33075309 DOI: 10.1016/j.brainres.2020.147166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The G-protein coupled receptor 3 (GPR3), a member of the class A rhodopsin-type GPR family, constitutively activates Gαs proteins without any ligands. Although there have been several reports concerning the functions of GPR3 in neurons, the physiological roles of GPR3 have not been fully elucidated. To address this issue, we analyzed GPR3 distribution in detail using fluorescence-based X-gal staining in heterozygous GPR3 knockout/LacZ knock-in mice, and further investigated the types of GPR3-expressing neurons using fluorescent double labeling with various EF-hand Ca2+-binding proteins. In addition to the previously reported GPR3-expressing areas, we identified GPR3 expression in the basal ganglia and in many nuclei of the cranial nerves, in regions related to olfactory, auditory, emotional, and motor functions. In addition, GPR3 was not only observed in excitatory neurons in layer V of the cerebral cortex, the CA2 region of the hippocampus, and the lateral nucleus of the thalamus, but also in γ-aminobutyric acid (GABA)-ergic interneurons in the cortex, hippocampus, thalamus, striatum, and cerebellum. GPR3 was frequently co-expressed with neuronal Ca2+-binding protein 2 (NECAB2) in neurons in various regions of the central nervous system, especially in the hippocampal CA2, medial habenular nucleus, lateral thalamic nucleus, dorsolateral striatum, brainstem, and spinal cord anterior horn. Furthermore, GPR3 also co-localized with NECAB2 at the tips of neurites in differentiated PC12 cells. These results suggest that GPR3 and NECAB2 are highly co-expressed in specific neurons, and that GPR3 may modulate Ca2+ signaling by interacting with NECAB2 in specific areas of the central nervous system.
Collapse
Affiliation(s)
- Fumiaki Ikawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
28
|
Evans RC, Twedell EL, Zhu M, Ascencio J, Zhang R, Khaliq ZM. Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons. Cell Rep 2020; 32:108156. [PMID: 32937133 PMCID: PMC9887718 DOI: 10.1016/j.celrep.2020.108156] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023] Open
Abstract
Substantia nigra (SNc) dopaminergic neurons respond to aversive stimuli with inhibitory pauses in firing followed by transient rebound activation. We tested integration of inhibitory synaptic inputs onto SNc neurons from genetically defined populations in dorsal striatum (striosome and matrix) and external globus pallidus (GPe; parvalbumin- and Lhx6-positive), and examined their contribution to pause-rebound firing. Activation of striosome projections, which target "dendron bouquets" in the pars reticulata (SNr), consistently quiets firing and relief from striosome inhibition triggers rebound activity. Striosomal inhibitory postsynaptic currents (IPSCs) display a prominent GABA-B receptor-mediated component that strengthens the impact of SNr dendrite synapses on somatic excitability and enables rebounding. By contrast, GPe projections activate GABA-A receptors on the soma and proximal dendrites but do not result in rebounding. Lastly, optical mapping shows that dorsal striatum selectively inhibits the ventral population of SNc neurons, which are intrinsically capable of rebounding. Therefore, we define a distinct striatonigral circuit for generating dopamine rebound.
Collapse
Affiliation(s)
- Rebekah C. Evans
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily L. Twedell
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manhua Zhu
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jefferson Ascencio
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,Lead Contact,Correspondence:
| |
Collapse
|
29
|
NMDA receptors are altered in the substantia nigra pars reticulata and their blockade ameliorates motor deficits in experimental parkinsonism. Neuropharmacology 2020; 174:108136. [DOI: 10.1016/j.neuropharm.2020.108136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
30
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|
31
|
Liu D, Li W, Ma C, Zheng W, Yao Y, Tso CF, Zhong P, Chen X, Song JH, Choi W, Paik SB, Han H, Dan Y. A common hub for sleep and motor control in the substantia nigra. Science 2020; 367:440-445. [PMID: 31974254 DOI: 10.1126/science.aaz0956] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/29/2019] [Indexed: 01/09/2023]
Abstract
The arousal state of the brain covaries with the motor state of the animal. How these state changes are coordinated remains unclear. We discovered that sleep-wake brain states and motor behaviors are coregulated by shared neurons in the substantia nigra pars reticulata (SNr). Analysis of mouse home-cage behavior identified four states with different levels of brain arousal and motor activity: locomotion, nonlocomotor movement, quiet wakefulness, and sleep; transitions occurred not randomly but primarily between neighboring states. The glutamic acid decarboxylase 2 but not the parvalbumin subset of SNr γ-aminobutyric acid (GABA)-releasing (GABAergic) neurons was preferentially active in states of low motor activity and arousal. Their activation or inactivation biased the direction of natural behavioral transitions and promoted or suppressed sleep, respectively. These GABAergic neurons integrate wide-ranging inputs and innervate multiple arousal-promoting and motor-control circuits through extensive collateral projections.
Collapse
Affiliation(s)
- Danqian Liu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Weifu Li
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Weitong Zheng
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yuanyuan Yao
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Chak Foon Tso
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Peng Zhong
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Xi Chen
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ho Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hua Han
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, which causes a tremendous socioeconomic burden. PD patients are suffering from debilitating motor and nonmotor symptoms. Cardinal motor symptoms of PD, including akinesia, bradykinesia, resting tremor, and rigidity, are caused by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. In addition, decreased amounts of dopamine (DA) level in the basal ganglia induces numerous adaptive changes at the cellular and synaptic levels in the basal ganglia circuits. These cellular and synaptic adaptations are believed to underlie the emergence and propagation of correlated, rhythmic pattern of activity throughout the interconnected cortico-basal ganglia-thalamocortical network. The widespread pathological pattern of brain activity is closely linked to the devastating motor symptoms of PD. Accumulating evidence suggests that both dopaminergic degeneration and the associated abnormal cellular and circuit activity in the basal ganglia drive the motor symptoms of PD. In this short review I summarize the recent advances in our understanding of synaptic and cellular alterations in two basal ganglia nuclei (i.e. the striatum and the subthalamic nucleus) following a complete loss of DA, and in our conceptual understanding of the cellular and circuit bases for the pathological pattern of brain activity in parkinsonian state.
Collapse
|
33
|
Lerner TN. Interfacing behavioral and neural circuit models for habit formation. J Neurosci Res 2020; 98:1031-1045. [PMID: 31916623 DOI: 10.1002/jnr.24581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Habits are an important mechanism by which organisms can automate the control of behavior to alleviate cognitive demand. However, transitions to habitual control are risky because they lead to inflexible responding in the face of change. The question of how the brain controls transitions into habit is thus an intriguing one. How do we regulate when our repeated actions become automated? When is it advantageous or disadvantageous to release actions from cognitive control? Decades of research have identified a variety of methods for eliciting habitual responding in animal models. Progress has also been made to understand which brain areas and neural circuits control transitions into habit. Here, I discuss existing research on behavioral and neural circuit models for habit formation (with an emphasis on striatal circuits), and discuss strategies for combining information from different paradigms and levels of analysis to prompt further progress in the field.
Collapse
Affiliation(s)
- Talia N Lerner
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|