1
|
Lim B, Kamal A, Gomez Ramos B, Adrian Segarra JM, Ibarra IL, Dignas L, Kindinger T, Volz K, Rahbari M, Rahbari N, Poisel E, Kafetzopoulou K, Böse L, Breinig M, Heide D, Gallage S, Barragan Avila JE, Wiethoff H, Berest I, Schnabellehner S, Schneider M, Becker J, Helm D, Grimm D, Mäkinen T, Tschaharganeh DF, Heikenwalder M, Zaugg JB, Mall M. Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumorigenesis. Nat Genet 2025; 57:668-679. [PMID: 39948437 PMCID: PMC11906372 DOI: 10.1038/s41588-025-02081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Cell fate plasticity enables development, yet unlocked plasticity is a cancer hallmark. While transcription master regulators induce lineage-specific genes to restrict plasticity, it remains unclear whether plasticity is actively suppressed by lineage-specific repressors. Here we computationally predict so-called safeguard repressors for 18 cell types that block phenotypic plasticity lifelong. We validated hepatocyte-specific candidates using reprogramming, revealing that prospero homeobox protein 1 (PROX1) enhanced hepatocyte identity by direct repression of alternative fate master regulators. In mice, Prox1 was required for efficient hepatocyte regeneration after injury and was sufficient to prevent liver tumorigenesis. In line with patient data, Prox1 depletion caused hepatocyte fate loss in vivo and enabled the transition of hepatocellular carcinoma to cholangiocarcinoma. Conversely, overexpression promoted cholangiocarcinoma to hepatocellular carcinoma transdifferentiation. Our findings provide evidence for PROX1 as a hepatocyte-specific safeguard and support a model where cell-type-specific repressors actively suppress plasticity throughout life to safeguard lineage identity and thus prevent disease.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aryan Kamal
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Borja Gomez Ramos
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juan M Adrian Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ignacio L Ibarra
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Lennart Dignas
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tim Kindinger
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Volz
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kanela Kafetzopoulou
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lio Böse
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Marco Breinig
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University Tuebingen, Tübingen, Germany
| | | | - Hendrik Wiethoff
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Ivan Berest
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Sarah Schnabellehner
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Jonas Becker
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Heidelberg University, Center for Integrative Infectious Diseases Research (CIID), BioQuant, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Heidelberg University, Center for Integrative Infectious Diseases Research (CIID), BioQuant, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Darjus F Tschaharganeh
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University Tuebingen, Tübingen, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2025; 155:461-478. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
3
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
4
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
5
|
Zhang W, Wang F, Yin L, Tang Y, Wang X, Huang C. Cadherin-5 facilitated the differentiation of human induced pluripotent stem cells into sinoatrial node-like pacemaker cells by regulating β-catenin. J Cell Physiol 2024; 239:212-226. [PMID: 38149479 DOI: 10.1002/jcp.31161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of β-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of β-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
6
|
Spurlock B, Liu J, Qian L. Can we stop one heart from breaking: triumphs and challenges in cardiac reprogramming. Curr Opin Genet Dev 2023; 83:102116. [PMID: 37797568 PMCID: PMC10872832 DOI: 10.1016/j.gde.2023.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2023]
Abstract
Ischemic cardiac injury causes irreversible muscle loss and scarring, but recent years have seen dramatic advances in cardiac reprogramming, the field focused on regenerating cardiac muscle. With SARS-CoV2 increasing the age-adjusted cardiovascular disease mortality rate, it is worth evaluating the state of this field. Here, we summarize novel innovations in reprogramming strategies, insights into their mechanisms, and technologies for factor delivery. We also propose a broad model of reprogramming to suggest directions for future research. Poet Emily Dickinson wrote, "If I can stop one heart from breaking, I shall not live in vain." Today, researchers studying cardiac reprogramming view this line as a call to action to translate this revolutionary approach into life-saving treatments for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Brian Spurlock
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
8
|
Bhattacharyya S, Kollipara RK, Orquera-Tornakian G, Goetsch S, Zhang M, Perry C, Li B, Shelton JM, Bhakta M, Duan J, Xie Y, Xiao G, Evers BM, Hon GC, Kittler R, Munshi NV. Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm. J Clin Invest 2023; 133:e153635. [PMID: 36454649 PMCID: PMC9888383 DOI: 10.1172/jci153635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.
Collapse
Affiliation(s)
| | | | | | - Sean Goetsch
- Department of Internal Medicine, Division of Cardiology
| | - Minzhe Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Cameron Perry
- Department of Internal Medicine, Division of Cardiology
| | - Boxun Li
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | | | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology
| | - Jialei Duan
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Bret M. Evers
- Department of Internal Medicine, Division of Cardiology
| | - Gary C. Hon
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
- Department of Bioinformatics
- Hamon Center for Regenerative Science and Medicine, and
| | - Ralf Kittler
- McDermott Center for Human Growth and Development
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology
- McDermott Center for Human Growth and Development
- Hamon Center for Regenerative Science and Medicine, and
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Bosada FM, van Duijvenboden K, Giovou AE, Rivaud MR, Uhm JS, Verkerk AO, Boukens BJ, Christoffels VM. An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility. eLife 2023; 12:80317. [PMID: 36715501 PMCID: PMC9928424 DOI: 10.7554/elife.80317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5. In both lines, we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Cardiology, Severance Hospital, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Physiology, University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastrichtNetherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
10
|
Beucher A, Miguel-Escalada I, Balboa D, De Vas MG, Maestro MA, Garcia-Hurtado J, Bernal A, Gonzalez-Franco R, Vargiu P, Heyn H, Ravassard P, Ortega S, Ferrer J. The HASTER lncRNA promoter is a cis-acting transcriptional stabilizer of HNF1A. Nat Cell Biol 2022; 24:1528-1540. [PMID: 36202974 PMCID: PMC9586874 DOI: 10.1038/s41556-022-00996-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A. Using mouse and human models, we show that HASTER maintains cell-specific physiological HNF1A concentrations through positive and negative feedback loops. Pancreatic β cells from Haster mutant mice consequently showed variegated HNF1A silencing or overexpression, resulting in hyperglycaemia. HASTER-dependent negative feedback was essential to prevent HNF1A binding to inappropriate genomic regions. We demonstrate that the HASTER promoter DNA, rather than the lncRNA, modulates HNF1A promoter-enhancer interactions in cis and thereby regulates HNF1A transcription. Our studies expose a cis-regulatory element that is unlike classic enhancers or silencers, it stabilizes the transcription of its target gene and ensures the fidelity of a cell-specific transcription factor program. They also show that disruption of a mammalian lncRNA promoter can cause diabetes mellitus.
Collapse
Affiliation(s)
- Anthony Beucher
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Irene Miguel-Escalada
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Diego Balboa
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Matías G De Vas
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Miguel Angel Maestro
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Javier Garcia-Hurtado
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Aina Bernal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Roser Gonzalez-Franco
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Holger Heyn
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Philippe Ravassard
- Biotechnology and Biotherapy Team, Institut du Cerveau et de la Moelle, CNRS UMR7225, INSERM U975, University Pierre et Marie Curie, Paris, France
| | - Sagrario Ortega
- Transgenics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jorge Ferrer
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.
| |
Collapse
|
11
|
Haridhasapavalan KK, Sundaravadivelu PK, Joshi N, Das NJ, Mohapatra A, Voorkara U, Kaveeshwar V, Thummer RP. Generation of a recombinant version of a biologically active cell-permeant human HAND2 transcription factor from E. coli. Sci Rep 2022; 12:16129. [PMID: 36167810 PMCID: PMC9515176 DOI: 10.1038/s41598-022-19745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription factor HAND2 has a significant role in vascularization, angiogenesis, and cardiac neural crest development. It is one of the key cardiac factors crucial for the enhanced derivation of functional and mature myocytes from non-myocyte cells. Here, we report the generation of the recombinant human HAND2 fusion protein from the heterologous system. First, we cloned the full-length human HAND2 gene (only protein-coding sequence) after codon optimization along with the fusion tags (for cell penetration, nuclear translocation, and affinity purification) into the expression vector. We then transformed and expressed it in Escherichia coli strain, BL21(DE3). Next, the effect (in terms of expression) of tagging fusion tags with this recombinant protein at two different terminals was also investigated. Using affinity chromatography, we established the one-step homogeneous purification of recombinant human HAND2 fusion protein; and through circular dichroism spectroscopy, we established that this purified protein had retained its secondary structure. We then showed that this purified human protein could transduce the human cells and translocate to its nucleus. The generated recombinant HAND2 fusion protein showed angiogenic potential in the ex vivo chicken embryo model. Following transduction in MEF2C overexpressing cardiomyoblast cells, this purified recombinant protein synergistically activated the α-MHC promoter and induced GFP expression in the α-MHC-eGFP reporter assay. Prospectively, the purified bioactive recombinant HAND2 protein can potentially be a safe and effective molecular tool in the direct cardiac reprogramming process and other biological applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nayan Jyoti Das
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Udayashree Voorkara
- Department of Obstetrics and Gynaecology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
13
|
George RM, Guo S, Firulli BA, Rubart M, Firulli AB. Neonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasis. J Cardiovasc Dev Dis 2022; 9:214. [PMID: 35877576 PMCID: PMC9324487 DOI: 10.3390/jcdd9070214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiac conduction system, a network of specialized cells, is required for the functioning of the heart. The basic helix loop helix factors Hand1 and Hand2 are required for cardiac morphogenesis and have been implicated in cardiac conduction system development and maintenance. Here we use embryonic and post-natal specific Cre lines to interrogate the role of Hand1 and Hand2 in the function of the murine cardiac conduction system. Results demonstrate that loss of HAND1 in the post-natal conduction system does not result in any change in electrocardiogram parameters or within the ventricular conduction system as determined by optical voltage mapping. Deletion of Hand2 within the post-natal conduction system results in sex-dependent reduction in PR interval duration in these mice, suggesting a novel role for HAND2 in regulating the atrioventricular conduction. Surprisingly, results show that loss of both HAND factors within the post-natal conduction system does not cause any consistent changes in cardiac conduction system function. Deletion of Hand2 in the embryonic left ventricle results in inconsistent prolongation of PR interval and susceptibility to atrial arrhythmias. Thus, these results suggest a novel role for HAND2 in homeostasis of the murine cardiac conduction system and that HAND1 loss potentially rescues the shortened HAND2 PR phenotype.
Collapse
Affiliation(s)
- Rajani M. George
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| | - Shuai Guo
- Division of Cardiology, Department of Medicine, The Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| | - Michael Rubart
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
- Division of Cardiology, Department of Medicine, The Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| |
Collapse
|
14
|
D'Souza A, Boink GJJ, Toyoda F, Mesirca P. Editorial: Cardiac Pacemaking in Health and Disease: From Genes to Function. Front Physiol 2022; 13:913506. [PMID: 35711314 PMCID: PMC9197676 DOI: 10.3389/fphys.2022.913506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gerard J J Boink
- Departments of Cardiology and Medical Biology, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Research Program: Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| |
Collapse
|
15
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Houweling AC, Scholman KT, Wakker V, Allaart CP, Uhm JS, Mathijssen IB, Baartscheer T, Postma AV, Barnett P, Verkerk AO, Boukens BJ, Christoffels VM. Patient-specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation 2022; 145:606-619. [PMID: 35113653 PMCID: PMC8860223 DOI: 10.1161/circulationaha.121.054347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The pathogenic missense variant p.G125R in TBX5 causes Holt-Oram syndrome (HOS; hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. Methods: We analyzed electrocardiograms (ECGs) of an extended family pedigree of HOS patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiological analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single nuclei and tissue RNA sequencing) and epigenetic profiling (ATAC-sequencing, H3K27ac CUT&RUN-sequencing). Results: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in HOS patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared to controls. Transcriptional profiling of atria revealed most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and non-coding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R sensitive putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA binding motifs of members of the SP- and KLF families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, altered transcriptional regulation and changed cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. Conclusions: Our data reveal how a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Aix-Marseille University, INSERM, TAGC, U1090, Marseille, France
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge B Mathijssen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ton Baartscheer
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Liu L, Guo Y, Li Z, Wang Z. Improving Cardiac Reprogramming for Heart Regeneration in Translational Medicine. Cells 2021; 10:cells10123297. [PMID: 34943805 PMCID: PMC8699771 DOI: 10.3390/cells10123297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Direct reprogramming of fibroblasts into CM-like cells has emerged as an attractive strategy to generate induced CMs (iCMs) in heart regeneration. However, low conversion rate, poor purity, and the lack of precise conversion of iCMs are still present as significant challenges. In this review, we summarize the recent development in understanding the molecular mechanisms of cardiac reprogramming with various strategies to achieve more efficient iCMs. reprogramming. Specifically, we focus on the identified critical roles of transcriptional regulation, epigenetic modification, signaling pathways from the cellular microenvironment, and cell cycling regulation in cardiac reprogramming. We also discuss the progress in delivery system optimization and cardiac reprogramming in human cells related to preclinical applications. We anticipate that this will translate cardiac reprogramming-based heart therapy into clinical applications. In addition to optimizing the cardiogenesis related transcriptional regulation and signaling pathways, an important strategy is to modulate the pathological microenvironment associated with heart injury, including inflammation, pro-fibrotic signaling pathways, and the mechanical properties of the damaged myocardium. We are optimistic that cardiac reprogramming will provide a powerful therapy in heart regenerative medicine.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
| | - Yijing Guo
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zhaokai Li
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Correspondence:
| |
Collapse
|
17
|
Mandla R, Jung C, Vedantham V. Transcriptional and Epigenetic Landscape of Cardiac Pacemaker Cells: Insights Into Cellular Specialization in the Sinoatrial Node. Front Physiol 2021; 12:712666. [PMID: 34335313 PMCID: PMC8322687 DOI: 10.3389/fphys.2021.712666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiac pacemaker cells differentiate and functionally specialize early in embryonic development through activation of critical gene regulatory networks. In general, cellular specification and differentiation require that combinations of cell type-specific transcriptional regulators activate expression of key effector genes by binding to DNA regulatory elements including enhancers and promoters. However, because genomic DNA is tightly packaged by histones that must be covalently modified in order to render DNA regulatory elements and promoters accessible for transcription, the process of development and differentiation is intimately connected to the epigenetic regulation of chromatin accessibility. Although the difficulty of obtaining sufficient quantities of pure populations of pacemaker cells has limited progress in this field, the advent of low-input genomic technologies has the potential to catalyze a rapid growth of knowledge in this important area. The goal of this review is to outline the key transcriptional networks that control pacemaker cell development, with particular attention to our emerging understanding of how chromatin accessibility is modified and regulated during pacemaker cell differentiation. In addition, we will discuss the relevance of these findings to adult sinus node function, sinus node diseases, and origins of genetic variation in heart rhythm. Lastly, we will outline the current challenges facing this field and promising directions for future investigation.
Collapse
Affiliation(s)
- Ravi Mandla
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Catherine Jung
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Vasanth Vedantham
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Mantri S, Wu SM, Goodyer WR. Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Curr Cardiol Rep 2021; 23:103. [PMID: 34196831 DOI: 10.1007/s11886-021-01536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Sruthi Mantri
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Electrophysiology, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University School of Medicine, Room G1105 Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Bosada FM, Rivaud MR, Uhm JS, Verheule S, van Duijvenboden K, Verkerk AO, Christoffels VM, Boukens BJ. A Variant Noncoding Region Regulates Prrx1 and Predisposes to Atrial Arrhythmias. Circ Res 2021; 129:420-434. [PMID: 34092116 DOI: 10.1161/circresaha.121.319146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fernanda M Bosada
- Department of Medical Biology (F.M.B., J.-S.U., K.v.D., A.O.V., V.M.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Mathilde R Rivaud
- Department of Experimental Cardiology (M.R.R., A.O.V., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Jae-Sun Uhm
- Department of Medical Biology (F.M.B., J.-S.U., K.v.D., A.O.V., V.M.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands.,Department of Cardiology, Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea (J.-S.U.)
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (S.V.)
| | - Karel van Duijvenboden
- Department of Medical Biology (F.M.B., J.-S.U., K.v.D., A.O.V., V.M.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology (F.M.B., J.-S.U., K.v.D., A.O.V., V.M.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands.,Department of Experimental Cardiology (M.R.R., A.O.V., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (F.M.B., J.-S.U., K.v.D., A.O.V., V.M.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology (F.M.B., J.-S.U., K.v.D., A.O.V., V.M.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands.,Department of Experimental Cardiology (M.R.R., A.O.V., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| |
Collapse
|
20
|
Man JCK, Bosada FM, Scholman KT, Offerhaus JA, Walsh R, van Duijvenboden K, van Eif VWW, Bezzina CR, Verkerk AO, Boukens BJ, Barnett P, Christoffels VM. Variant Intronic Enhancer Controls SCN10A-short Expression and Heart Conduction. Circulation 2021; 144:229-242. [PMID: 33910361 DOI: 10.1161/circulationaha.121.054083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent W W van Eif
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Phil Barnett
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
21
|
van Eif VW, Protze S, Bosada FM, Yuan X, Sinha T, van Duijvenboden K, Ernault AC, Mohan RA, Wakker V, de Gier-de Vries C, Hooijkaas IB, Wilson MD, Verkerk AO, Bakkers J, Boukens BJ, Black BL, Scott IC, Christoffels VM. Genome-Wide Analysis Identifies an Essential Human TBX3 Pacemaker Enhancer. Circ Res 2020; 127:1522-1535. [PMID: 33040635 PMCID: PMC8153223 DOI: 10.1161/circresaha.120.317054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE The development and function of the pacemaker cardiomyocytes of the sinoatrial node (SAN), the leading pacemaker of the heart, are tightly controlled by a conserved network of transcription factors, including TBX3 (T-box transcription factor 3), ISL1 (ISL LIM homeobox 1), and SHOX2 (short stature homeobox 2). Yet, the regulatory DNA elements (REs) controlling target gene expression in the SAN pacemaker cells have remained undefined. OBJECTIVE Identification of the regulatory landscape of human SAN-like pacemaker cells and functional assessment of SAN-specific REs potentially involved in pacemaker cell gene regulation. METHODS AND RESULTS We performed Assay for Transposase-Accessible Chromatin using sequencing on human pluripotent stem cell-derived SAN-like pacemaker cells and ventricle-like cells and identified thousands of putative REs specific for either human cell type. We validated pacemaker cell-specific elements in the SHOX2 and TBX3 loci. CRISPR-mediated homozygous deletion of the mouse ortholog of a noncoding region with candidate pacemaker-specific REs in the SHOX2 locus resulted in selective loss of Shox2 expression from the developing SAN and embryonic lethality. Putative pacemaker-specific REs were identified up to 1 Mbp upstream of TBX3 in a region close to MED13L harboring variants associated with heart rate recovery after exercise. The orthologous region was deleted in mice, which resulted in selective loss of expression of Tbx3 from the SAN and (cardiac) ganglia and in neonatal lethality. Expression of Tbx3 was maintained in other tissues including the atrioventricular conduction system, lungs, and liver. Heterozygous adult mice showed increased SAN recovery times after pacing. The human REs harboring the associated variants robustly drove expression in the SAN of transgenic mouse embryos. CONCLUSIONS We provided a genome-wide collection of candidate human pacemaker-specific REs, including the loci of SHOX2, TBX3, and ISL1, and identified a link between human genetic variants influencing heart rate recovery after exercise and a variant RE with highly conserved function, driving SAN expression of TBX3.
Collapse
Affiliation(s)
- Vincent W.W. van Eif
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Xuefei Yuan
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Tanvi Sinha
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Auriane C. Ernault
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Aix-Marseille Université, INSERM, MMG - U1251, Marseille, France
| | - Rajiv A. Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg B. Hooijkaas
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael D. Wilson
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Brian L. Black
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Ian C. Scott
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
The genetic structure and adaptation of Andean highlanders and Amazonians are influenced by the interplay between geography and culture. Proc Natl Acad Sci U S A 2020; 117:32557-32565. [PMID: 33277433 DOI: 10.1073/pnas.2013773117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Western South America was one of the worldwide cradles of civilization. The well-known Inca Empire was the tip of the iceberg of an evolutionary process that started 11,000 to 14,000 years ago. Genetic data from 18 Peruvian populations reveal the following: 1) The between-population homogenization of the central southern Andes and its differentiation with respect to Amazonian populations of similar latitudes do not extend northward. Instead, longitudinal gene flow between the northern coast of Peru, Andes, and Amazonia accompanied cultural and socioeconomic interactions revealed by archeology. This pattern recapitulates the environmental and cultural differentiation between the fertile north, where altitudes are lower, and the arid south, where the Andes are higher, acting as a genetic barrier between the sharply different environments of the Andes and Amazonia. 2) The genetic homogenization between the populations of the arid Andes is not only due to migrations during the Inca Empire or the subsequent colonial period. It started at least during the earlier expansion of the Wari Empire (600 to 1,000 years before present). 3) This demographic history allowed for cases of positive natural selection in the high and arid Andes vs. the low Amazon tropical forest: in the Andes, a putative enhancer in HAND2-AS1 (heart and neural crest derivatives expressed 2 antisense RNA1, a noncoding gene related to cardiovascular function) and rs269868-C/Ser1067 in DUOX2 (dual oxidase 2, related to thyroid function and innate immunity) genes and, in the Amazon, the gene encoding for the CD45 protein, essential for antigen recognition by T and B lymphocytes in viral-host interaction.
Collapse
|
23
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
24
|
Galang G, Mandla R, Ruan H, Jung C, Sinha T, Stone NR, Wu RS, Mannion BJ, Allu PKR, Chang K, Rammohan A, Shi MB, Pennacchio LA, Black BL, Vedantham V. ATAC-Seq Reveals an Isl1 Enhancer That Regulates Sinoatrial Node Development and Function. Circ Res 2020; 127:1502-1518. [PMID: 33044128 DOI: 10.1161/circresaha.120.317145] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Cardiac pacemaker cells (PCs) in the sinoatrial node (SAN) have a distinct gene expression program that allows them to fire automatically and initiate the heartbeat. Although critical SAN transcription factors, including Isl1 (Islet-1), Tbx3 (T-box transcription factor 3), and Shox2 (short-stature homeobox protein 2), have been identified, the cis-regulatory architecture that governs PC-specific gene expression is not understood, and discrete enhancers required for gene regulation in the SAN have not been identified. OBJECTIVE To define the epigenetic profile of PCs using comparative ATAC-seq (assay for transposase-accessible chromatin with sequencing) and to identify novel enhancers involved in SAN gene regulation, development, and function. METHODS AND RESULTS We used ATAC-seq on sorted neonatal mouse SAN to compare regions of accessible chromatin in PCs and right atrial cardiomyocytes. PC-enriched assay for transposase-accessible chromatin peaks, representing candidate SAN regulatory elements, were located near established SAN genes and were enriched for distinct sets of TF (transcription factor) binding sites. Among several novel SAN enhancers that were experimentally validated using transgenic mice, we identified a 2.9-kb regulatory element at the Isl1 locus that was active specifically in the cardiac inflow at embryonic day 8.5 and throughout later SAN development and maturation. Deletion of this enhancer from the genome of mice resulted in SAN hypoplasia and sinus arrhythmias. The mouse SAN enhancer also directed reporter activity to the inflow tract in developing zebrafish hearts, demonstrating deep conservation of its upstream regulatory network. Finally, single nucleotide polymorphisms in the human genome that occur near the region syntenic to the mouse enhancer exhibit significant associations with resting heart rate in human populations. CONCLUSIONS (1) PCs have distinct regions of accessible chromatin that correlate with their gene expression profile and contain novel SAN enhancers, (2) cis-regulation of Isl1 specifically in the SAN depends upon a conserved SAN enhancer that regulates PC development and SAN function, and (3) a corresponding human ISL1 enhancer may regulate human SAN function.
Collapse
Affiliation(s)
- Giselle Galang
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Ravi Mandla
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Hongmei Ruan
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Catherine Jung
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Tanvi Sinha
- Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco
| | - Nicole R Stone
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (N.R.S.)
| | - Roland S Wu
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco.,Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco
| | - Brandon J Mannion
- Environmental and Systems Biology Division, Lawrence Berkeley National Laboratory, CA (B.J.M., L.A.P.).,Department of Energy Joint Genome Institute, Berkeley, CA (B.J.M., L.A.P.).,Comparative Biochemistry Program, University of California, Berkeley (B.J.M., L.A.P.)
| | - Prasanna K R Allu
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Kevin Chang
- School of Medicine (K.C.), University of California, San Francisco
| | - Ashwin Rammohan
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Marie B Shi
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Len A Pennacchio
- Environmental and Systems Biology Division, Lawrence Berkeley National Laboratory, CA (B.J.M., L.A.P.).,Department of Energy Joint Genome Institute, Berkeley, CA (B.J.M., L.A.P.).,Comparative Biochemistry Program, University of California, Berkeley (B.J.M., L.A.P.)
| | - Brian L Black
- Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco.,Department of Biochemistry and Biophysics (B.L.B.), University of California, San Francisco
| | - Vasanth Vedantham
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco.,Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco
| |
Collapse
|