1
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
3
|
Atkins M, Wurmser M, Darmon M, Roche F, Nicol X, Métin C. CXCL12 targets the primary cilium cAMP/cGMP ratio to regulate cell polarity during migration. Nat Commun 2023; 14:8003. [PMID: 38049397 PMCID: PMC10695954 DOI: 10.1038/s41467-023-43645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Directed cell migration requires sustained cell polarisation. In migrating cortical interneurons, nuclear movements are directed towards the centrosome that organises the primary cilium signalling hub. Primary cilium-elicited signalling, and how it affects migration, remain however ill characterised. Here, we show that altering cAMP/cGMP levels in the primary cilium by buffering cAMP, cGMP or by locally increasing cAMP, influences the polarity and directionality of migrating interneurons, whereas buffering cAMP or cGMP in the apposed centrosome compartment alters their motility. Remarkably, we identify CXCL12 as a trigger that targets the ciliary cAMP/cGMP ratio to promote sustained polarity and directed migration. We thereby uncover cAMP/cGMP levels in the primary cilium as a major target of extrinsic cues and as the steering wheel of neuronal migration.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| | - Maud Wurmser
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Michèle Darmon
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fiona Roche
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
4
|
Speigel I, Patel K, Osman V, Hemmings HC. Volatile anesthetics inhibit presynaptic cGMP signaling to depress presynaptic excitability in rat hippocampal neurons. Neuropharmacology 2023; 240:109705. [PMID: 37683886 PMCID: PMC10772825 DOI: 10.1016/j.neuropharm.2023.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Volatile anesthetics alter presynaptic function through effects on Ca2+ influx and neurotransmitter release. These actions are proposed to play important roles in their pleiotropic neurophysiological effects including immobility, unconsciousness and amnesia. Nitric oxide and cyclic guanosine monophosphate (NO/cGMP) signaling has been implicated in presynaptic mechanisms, and disruption of NO/cGMP signaling has been shown to alter sensitivity to volatile anesthetics in vivo. We investigated volatile anesthetic actions NO/cGMP signaling in relation to presynaptic function in cultured rat hippocampal neurons using pharmacological tools and genetically encoded biosensors and sequestering probes of cGMP levels. Using the fluorescent cGMP biosensor cGull, we found that electrical stimulation-evoked NMDA-type glutamate receptor-independent presynaptic cGMP transients were inhibited 33.2% by isoflurane (0.51 mM) and 26.4% by sevoflurane (0.57 mM) (p < 0.0001) compared to control stimulation without anesthetic. Stimulation-evoked cGMP transients were blocked by the nonselective inhibitor of nitric oxide synthase N-ω-nitro-l-arginine, but not by the selective neuronal nitric oxide synthase inhibitor N5-(1-imino-3-butenyl)-l-ornithine. Isoflurane and sevoflurane inhibition of stimulation-evoked increases in presynaptic Ca2+ concentration, measured with synaptophysin-GCaMP6f, and of synaptic vesicle exocytosis, measured with synaptophysin-pHlourin, was attenuated in neurons expressing the cGMP scavenger protein sponge (inhibition of exocytosis reduced by 54% for isoflurane and by 53% for sevoflurane). The anesthetic-induced reduction in presynaptic excitability was partially occluded by inhibition of HCN channels, a cGMP-modulated excitatory ion channel that can facilitate glutamate release. We propose that volatile anesthetics depress presynaptic cGMP signaling and downstream effectors like HCN channels that are essential to presynaptic function and excitability. These findings identify novel mechanisms by which volatile anesthetics depress synaptic transmission via second messenger signaling involving the NO/cGMP pathway in hippocampal neurons.
Collapse
Affiliation(s)
- Iris Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kishan Patel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Vanessa Osman
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Bécret J, Belle M, Vougny J, Uthayasuthan S, Ros O, Nicol X. Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat Commun 2023; 14:3809. [PMID: 37369692 PMCID: PMC10300027 DOI: 10.1038/s41467-023-39516-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Second messengers, including cAMP, cGMP and Ca2+ are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca2+ changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals. These guidance molecules activate subcellular-specific second messenger crosstalk, each signaling network controlling distinct axonal morphology changes in vitro and pathfinding decisions in vivo.
Collapse
Affiliation(s)
- Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Vougny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | | | - Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
6
|
Dumoulin A, Stoeckli ET. Looking for Guidance - Models and Methods to Study Axonal Navigation. Neuroscience 2023; 508:30-39. [PMID: 35940454 DOI: 10.1016/j.neuroscience.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms of neural circuit formation have been of interest to Santiago Ramón y Cajal and thousands of neuroscientists sharing his passion for neural circuits ever since. Cajal was a brilliant observer and taught us about the connections and the morphology of neurons in the adult and developing nervous system. Clearly, we will not learn about molecular mechanisms by just looking at brain sections or cells in culture. Technically, we had to come a long way to today's possibilities that allow us to perturb target gene expression and watch the consequences of our manipulations on navigating axons in situ. In this review, we summarize landmark steps towards modern live-imaging approaches used to study the molecular basis of axon guidance.
Collapse
Affiliation(s)
- Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Fieblinger T, Perez-Alvarez A, Lamothe-Molina PJ, Gee CE, Oertner TG. Presynaptic cGMP sets synaptic strength in the striatum and is important for motor learning. EMBO Rep 2022; 23:e54361. [PMID: 35735260 PMCID: PMC9346481 DOI: 10.15252/embr.202154361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
The striatum is a subcortical brain region responsible for the initiation and termination of voluntary movements. Striatal spiny projection neurons receive major excitatory synaptic input from neocortex and thalamus, and cyclic nucleotides have long been known to play important roles in striatal function. Yet, the precise mechanism of action is unclear. Here, we combine optogenetic stimulation, 2‐photon imaging, and genetically encoded scavengers to dissect the regulation of striatal synapses in mice. Our data show that excitatory striatal inputs are tonically depressed by phosphodiesterases (PDEs), in particular PDE1. Blocking PDE activity boosts presynaptic calcium entry and glutamate release, leading to strongly increased synaptic transmission. Although PDE1 degrades both cAMP and cGMP, we uncover that the concentration of cGMP, not cAMP, controls the gain of striatal inputs. Disturbing this gain control mechanism in vivo impairs motor skill learning in mice. The tight dependence of striatal excitatory synapses on PDE1 and cGMP offers a new perspective on the molecular mechanisms regulating striatal activity.
Collapse
Affiliation(s)
- Tim Fieblinger
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alberto Perez-Alvarez
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Rapp OptoElectronic GmbH, Wedel, Germany
| | - Paul J Lamothe-Molina
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine E Gee
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
9
|
Kawata S, Mukai Y, Nishimura Y, Takahashi T, Saitoh N. Green fluorescent cAMP indicator of high speed and specificity suitable for neuronal live-cell imaging. Proc Natl Acad Sci U S A 2022; 119:e2122618119. [PMID: 35867738 PMCID: PMC9282276 DOI: 10.1073/pnas.2122618119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.
Collapse
Affiliation(s)
- Seiko Kawata
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuki Mukai
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yumi Nishimura
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Naoto Saitoh
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| |
Collapse
|
10
|
Schmidt H, Böttcher A, Gross T, Schmidtko A. cGMP signalling in dorsal root ganglia and the spinal cord: Various functions in development and adulthood. Br J Pharmacol 2021; 179:2361-2377. [PMID: 33939841 DOI: 10.1111/bph.15514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways.
Collapse
Affiliation(s)
- Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexandra Böttcher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tilman Gross
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Ros O, Baudet S, Zagar Y, Loulier K, Roche F, Couvet S, Aghaie A, Atkins M, Louail A, Petit C, Metin C, Mechulam Y, Nicol X. SpiCee: A Genetic Tool for Subcellular and Cell-Specific Calcium Manipulation. Cell Rep 2021; 32:107934. [PMID: 32697983 DOI: 10.1016/j.celrep.2020.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.
Collapse
Affiliation(s)
- Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Alain Aghaie
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France
| | - Melody Atkins
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Alice Louail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Christine Petit
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France; Collège de France, 75005 Paris, France
| | - Christine Metin
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS UMR 7654, 91128 Palaiseau, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
12
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger, which critically regulates cardiac pump function and protects from the development of cardiac hypertrophy by acting in various subcellular microdomains. Although clinical studies testing the potential of cGMP elevating drugs in patients suffering from cardiac disease showed promising results, deeper insight into the local actions of these drugs at the subcellular level are indispensable to inspire novel therapeutic strategies. Detailed information on the spatio-temporal dynamics of cGMP production and degradation can be provided by the use of fluorescent biosensors that are capable of monitoring this second messenger at different locations inside the cell with high temporal and spatial resolution. In this review, we will summarize how these emerging new tools have improved our understanding of cardiac cGMP signaling in health and disease, and attempt to anticipate future challenges in the field.
Collapse
|
14
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
15
|
Gao F, Hu Y, Li G, Liu S, Quan L, Yang Z, Wei Y, Pan C. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioact Mater 2020; 5:611-623. [PMID: 32405576 PMCID: PMC7212186 DOI: 10.1016/j.bioactmat.2020.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloy is considered as one of the ideal cardiovascular stent materials owing to its good mechanical properties and biodegradability. However, the in vivo rapid degradation rate and the insufficient biocompatibility restrict its clinical applications. In this study, the magnesium alloy (AZ31B) was modified by combining the surface chemical treatment and in-situ self-assembly of 16-phosphonyl-hexadecanoic acid, followed by the immobilization of chitosan-functionalized graphene oxide (GOCS). Heparin (Hep) and GOCS were alternatively immobilized on the GOCS-modified surface through layer by layer (LBL) to construct the GOCS/Hep bioactive multilayer coating, and the corrosion resistance and biocompatibility were extensively explored. The results showed that the GOCS/Hep bioactive multilayer coating can endow magnesium alloys with an excellent in vitro corrosion resistance. The GOCS/Hep multilayer coating can significantly reduce the hemolysis rate and the platelet adhesion and activation, resulting in an excellent blood compatibility. In addition, the multilayer coating can not only enhance the adhesion and proliferation of the endothelial cells, but also promote the vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression of the attached endothelial cells on the surfaces. Therefore, the method of the present study can be used to simultaneously control the corrosion resistance and improve the biocompatibility of the magnesium alloys, which is expected to promote the application of magnesium alloys in biomaterials or medical devices, especially cardiovascular stent. The multilayer coating of GOCS and heparin was constructed on magnesium surface. The coating can obviously improve the corrosion resistance of magnesium alloys. The coating can enhance the hemocompatibility and endothelial cell growth behaviors.
Collapse
Affiliation(s)
- Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Guicai Li
- Jiangsu Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, China
| | - Sen Liu
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Quan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanchun Wei
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Corresponding author.
| |
Collapse
|