1
|
Yang J, Zhao Y, Zou Y, Ban J, Li Z, Zhang Y, Yang J, Wang Y, Li C, Fu X, Gao X, Hu W, Wang X, Zhou Y, Ding X, He M, Zhang W, Cao T, Gao Z. Two homoeoallelic gene expression of TaCHLIs ensures normal chlorophyll biosynthesis in Hexaploid wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109795. [PMID: 40132508 DOI: 10.1016/j.plaphy.2025.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Being polyploid has a fitness advantage but is physically complex. During polyploid plant evolution, some duplicate genes retain their ancestral function, which affected the plant phenotype in allelic dosage or functional redundancy. However, how duplicated genes whose products needed to form functional complexes coped with deleterious mutations remained unclear. Here, we report a yellow green leaf-2 (ygl2) mutant with yellow-green leaves derived from a cross of Shaan 3025 (S3025) and Shi 4185 (S4185) that was controlled by a combination of Tachli-7A null and Tachli-7B truncation, whereas Tachli-7A null or Tachli-7B truncation individually resulted in normal leaf colour. Our results indicated genetic complementarity between TaCHLI-7A and TaCHLI-7B is responsible for normal chloroplast development. Furthermore, TaCHLI-7D was conserved in ygl2, S3025 and S4185 at both sequence and expression levels. Furthermore, two-thirds of the total mRNA abundance in S4185 with Tachli-7A null was sufficient for chlorophyll synthesis, indicating that redundant mRNA dosage was the reason for genetic complementarity. Particularly, Tachli-7A null can be retained in several modern cultivars with no disadvantage under field conditions, probably because the redundant mRNA dosage is expected to buffer the gene imbalance caused by the imperfect relationship between different copies of TaCHLIs and their molecular interactors. Furthermore, the loss of TaCHLI-7A seems to preserve the minimum dosage and maximise simplification. Our findings provide evidence of homoeologs loss and functional mechanism during polyploid evolution.
Collapse
Affiliation(s)
- Jian Yang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yankun Zhao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Yanmin Zou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Jinfu Ban
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Zhankun Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Yu'e Zhang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Junfeng Yang
- Hebei Wangfeng Seed Industry Co., Ltd, Xingtai, 054900, Hebei, China
| | - Yan Wang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Caihua Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Xinmei Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Weiguo Hu
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xicheng Wang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yanjie Zhou
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xin Ding
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Mingqi He
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Wensheng Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Science, 050022, Shijiazhuang, China.
| | - Tingjie Cao
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China.
| |
Collapse
|
2
|
Rachappanavar V. Utilizing CRISPR-based genetic modification for precise control of seed dormancy: progress, obstacles, and potential directions. Mol Biol Rep 2025; 52:204. [PMID: 39907946 DOI: 10.1007/s11033-025-10285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Seed dormancy, a complex trait that is influenced by both nuclear and cytoplasmic factors, poses a significant challenge to agricultural productivity. Conventional dormancy-breaking techniques, including mechanical, physiological, and chemical methods, often yield inconsistent results, impair seed quality, and lack precision. This has necessitated exploration of more targeted and efficient approaches. CRISPR-based gene editing has emerged as a promising tool for the precise regulation of seed dormancy without compromising seed viability or sustainability. Although CRISPR has been successfully applied to modify genes that govern physiological traits in various crops, its use in dormancy regulation remains in the early stages. This review examines recent advancements in CRISPR-based approaches for modulating seed dormancy and discusses key gene targets, modification techniques, and the resulting effects. We also consider the future potential of CRISPR to enhance dormancy control across diverse crop species.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University, Solan, Himachal Pradesh, 173230, India.
| |
Collapse
|
3
|
Jiang C, Kan J, Gao G, Dockter C, Li C, Wu W, Yang P, Stein N. Barley2035: A decadal vision for barley research and breeding. MOLECULAR PLANT 2025; 18:195-218. [PMID: 39690737 DOI: 10.1016/j.molp.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.
Collapse
Affiliation(s)
- Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinhong Kan
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqi Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen, Denmark
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
| | - Wenxue Wu
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
4
|
Saha D, Panda AK, Datta S. Critical considerations and computational tools in plant genome editing. Heliyon 2025; 11:e41135. [PMID: 39807514 PMCID: PMC11728886 DOI: 10.1016/j.heliyon.2024.e41135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies. To attempt genome editing in a plant, a high-quality genome sequence and a repeatable tissue culture protocol for in vitro regeneration are essential. One of the most important steps in plant genome editing is the designing of a CRISPR construct, which involves selecting the appropriate Cas protein, sgRNA sequence, and appropriate regulatory sequence to trigger expression. Computational tools and algorithms play a crucial role in construct design and gRNA selection to minimize off-target effects and also to optimize their delivery techniques. Researchers may need to select appropriate software tools capable of analyzing post-editing detection of mutation events and other DNA sequence abnormalities to identify off-target effects. To fully fulfill the potential of plant genome editing, continued advances in computational biology are essential to meet the challenges it faces today.
Collapse
Affiliation(s)
- Dipnarayan Saha
- Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India
| | - Alok Kumar Panda
- Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India
| | - Subhojit Datta
- Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India
| |
Collapse
|
5
|
Yuan P, Usman M, Liu W, Adhikari A, Zhang C, Njiti V, Xia Y. Advancements in Plant Gene Editing Technology: From Construct Design to Enhanced Transformation Efficiency. Biotechnol J 2024; 19:e202400457. [PMID: 39692063 DOI: 10.1002/biot.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Plant gene editing technology has significantly advanced in recent years, thereby transforming both biotechnological research and agricultural practices. This review provides a comprehensive summary of recent advancements in this rapidly evolving field, showcasing significant discoveries from improved transformation efficiency to advanced construct design. The primary focus is on the maturation of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)9 system, which has emerged as a powerful tool for precise gene editing in plants. Through a detailed exploration, we elucidate the intricacies of integrating genetic modifications into plant genomes, shedding light on transport mechanisms, transformation techniques, and optimization strategies specific to CRISPR constructs. Furthermore, we explore the initiatives aimed at extending the frontiers of gene editing to nonmodel plant species, showcasing the growing scope of this technology. Overall, this comprehensive review highlights the significant impact of recent advancements in plant gene editing, illuminating its transformative potential in driving agricultural innovation and biotechnological progress.
Collapse
Affiliation(s)
- Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Usman
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Victor Njiti
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Mamrutha HM, Zeenat W, Kapil D, Budhagatapalli N, Tikaniya D, Rakesh K, Krishnappa G, Singh G, Singh GP. Evidence and opportunities for developing non-transgenic genome edited crops using site-directed nuclease 1 approach. Crit Rev Biotechnol 2024; 44:1140-1150. [PMID: 37915126 DOI: 10.1080/07388551.2023.2270581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
The innovations and progress in genome editing/new breeding technologies have revolutionized research in the field of functional genomics and crop improvement. This revolution has expanded the horizons of agricultural research, presenting fresh possibilities for creating novel plant varieties equipped with desired traits that can effectively combat the challenges posed by climate change. However, the regulation and social acceptance of genome-edited crops still remain as major barriers. Only a few countries considered the site-directed nuclease 1 (SDN1) approach-based genome-edited plants under less or no regulation. Hence, the present review aims to comprise information on the research work conducted using SDN1 in crops by various genome editing tools. It also elucidates the promising candidate genes that can be used for editing and has listed the studies on non-transgenic crops developed through SDN1 either by Agrobacterium-mediated transformation or by ribo nucleoprotein (RNP) complex. The review also hoards the existing regulatory landscape of genome editing and provides an overview of globally commercialized genome-edited crops. These compilations will enable confidence in researchers and policymakers, across the globe, to recognize the full potential of this technology and reconsider the regulatory aspects associated with genome-edited crops. Furthermore, this compilation serves as a valuable resource for researchers embarking on the development of customized non-transgenic crops through the utilization of SDN1.
Collapse
Affiliation(s)
- H M Mamrutha
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, India
| | - Wadhwa Zeenat
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, India
| | - Deswal Kapil
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, India
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Nagaveni Budhagatapalli
- Institute of Plant Biochemistry, Center for Plant Genome Engineering, Heinrich-Heine-University, Düsseldorf, Germany
| | - Divya Tikaniya
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, India
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Kumar Rakesh
- Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Gyanendra Singh
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
7
|
Roychowdhury R, Ghatak A, Kumar M, Samantara K, Weckwerth W, Chaturvedi P. Accelerating wheat improvement through trait characterization: advances and perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14544. [PMID: 39360330 DOI: 10.1111/ppl.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Wheat (Triticum spp.) is a primary dietary staple food for humanity. Many wheat genetic resources with variable genomes have a record of domestication history and are widespread throughout the world. To develop elite wheat varieties, agronomical and stress-responsive trait characterization is foremost for evaluating existing germplasm to promote breeding. However, genomic complexity is one of the primary impediments to trait mining and characterization. Multiple reference genomes and cutting-edge technologies like haplotype mapping, genomic selection, precise gene editing tools, high-throughput phenotyping platforms, high-efficiency genetic transformation systems, and speed-breeding facilities are transforming wheat functional genomics research to understand the genomic diversity of polyploidy. This review focuses on the research achievements in wheat genomics, the available omics approaches, and bioinformatic resources developed in the past decades. Advances in genomics and system biology approaches are highlighted to circumvent bottlenecks in genomic and phenotypic selection, as well as gene transfer. In addition, we propose conducting precise functional genomic studies and developing sustainable breeding strategies for wheat. These developments in understanding wheat traits have speed up the creation of high-yielding, stress-resistant, and nutritionally enhanced wheat varieties, which will help in addressing global food security and agricultural sustainability in the era of climate change.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Manoj Kumar
- Department of Ornamental Biotechnology, Institute of Plant Sciences, Agricultural Research, Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Afonnikova SD, Kiseleva AA, Fedyaeva AV, Komyshev EG, Koval VS, Afonnikov DA, Salina EA. Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1309. [PMID: 38794380 PMCID: PMC11126043 DOI: 10.3390/plants13101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The association between pre-harvest sprouting (PHS) and seed coat color has long been recognized. Red-grained wheats generally exhibit greater PHS resistance compared to white-grained wheat, although variability in PHS resistance exists within red-grained varieties. Here, we conducted a genome-wide association study on a panel consisting of red-grained wheat varieties, aimed at uncovering genes that modulate PHS resistance and red color components of seed coat using digital image processing. Twelve loci associated with PHS traits were identified, nine of which were described for the first time. Genetic loci marked by SNPs AX-95172164 (chromosome 1B) and AX-158544327 (chromosome 7D) explained approximately 25% of germination index variance, highlighting their value for breeding PHS-resistant varieties. The most promising candidate gene for PHS resistance was TraesCS6B02G147900, encoding a protein involved in aleurone layer morphogenesis. Twenty-six SNPs were significantly associated with grain color, independently of the known Tamyb10 gene. Most of them were related to multiple color characteristics. Prioritization of genes within the revealed loci identified TraesCS1D03G0758600 and TraesCS7B03G1296800, involved in the regulation of pigment biosynthesis and in controlling pigment accumulation. In conclusion, our study identifies new loci associated with grain color and germination index, providing insights into the genetic mechanisms underlying these traits.
Collapse
Affiliation(s)
- Svetlana D. Afonnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Antonina A. Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna V. Fedyaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Evgenii G. Komyshev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vasily S. Koval
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Bhoite R, Han Y, Chaitanya AK, Varshney RK, Sharma DL. Genomic approaches to enhance adaptive plasticity to cope with soil constraints amidst climate change in wheat. THE PLANT GENOME 2024; 17:e20358. [PMID: 37265088 DOI: 10.1002/tpg2.20358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change.
Collapse
Affiliation(s)
- Roopali Bhoite
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yong Han
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Alamuru Krishna Chaitanya
- Grains Genetics Portfolio, University of Southern Queensland, Centre for Crop Health, Toowoomba, Queensland, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Darshan Lal Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Dallinger HG, Löschenberger F, Azrak N, Ametz C, Michel S, Bürstmayr H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. THE PLANT GENOME 2024; 17:e20301. [PMID: 36851839 DOI: 10.1002/tpg2.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.
Collapse
Affiliation(s)
- Hermann G Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | | | - Naim Azrak
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Hermann Bürstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| |
Collapse
|
11
|
Ng HM, Gondo T, Tanaka H, Akashi R. CRISPR/Cas9-mediated knockout of NYC1 gene enhances chlorophyll retention and reduces tillering in Zoysia matrella (L.) Merrill. PLANT CELL REPORTS 2024; 43:50. [PMID: 38305919 PMCID: PMC10837251 DOI: 10.1007/s00299-023-03130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE Genome editing by CRISPR/Cas9 can be applied to Z. matrella 'Wakaba', and knockout mutants of ZmNYC1 gene exhibited stay-green phenotype and reduced tillering. Zoysia matrella is a widely used C4 warm-season turfgrass for landscaping, golf courses, and sports fields. Here, we used the CRISPR/Cas9 system to target the Non-Yellow Coloring1 (ZmNYC1) gene in the highly heterozygous allotetraploid Z. matrella 'Wakaba', aiming to generate a novel stay-green variety. Of 441 Agrobacterium-infected calli, 22 (5.0%) were transformed, and 14 of these (63.6%) showed targeted mutations through cleaved amplified polymorphic sequences analysis. Sequencing analysis revealed mutations mostly consisting of 1 or 2 bp indels, occurring 2 to 4 bp upstream of the PAM sequence. Regenerated plants exhibited five ZmNYC1 target locus genotypes, including homozygous mutants with a complete knockout of all four alleles in the T0 generation. Under dark treatment, ZmNYC1-mutated plants displayed suppressed chlorophyll b (Chl b) degradation, leading to higher chlorophyll content and Chl b, with a lower chlorophyll a/chlorophyll b ratio compared to the wild type (WT). However, the ZmNYC1 mutation also inhibited plant growth in homozygous mutant genotypes, exhibiting reduced tillering compared to WT. Additionally, during winter simulation, mutant with a complete knockout retained greenness longer than the WT. This is the first successful use of CRISPR/Cas9 genome editing in zoysiagrass. The mutants of the ZmNYC1 gene would serve as valuable breeding material for developing improved zoysiagrass varieties that can maintain their green color for longer periods, even during winter dormancy.
Collapse
Affiliation(s)
- Hwan May Ng
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Gondo
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| | - Hidenori Tanaka
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
12
|
Sato K, Nakamura S, Fujita M. Regulation of Seed Dormancy Genes in Triticeae Species. Methods Mol Biol 2024; 2830:13-23. [PMID: 38977564 DOI: 10.1007/978-1-0716-3965-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Wild progenitors of Triticeae crops generally have long dormancy periods. Domesticated crops inherited these longer dormancy alleles from their wild progenitors, which have since been modified and selected during cultivation and utilization by humans. Thus, allelic combinations at different seed dormancy loci are currently represented in Triticeae germplasm preserved in seed repositories and gene banks as accessions and materials of breeding programs. Methods to evaluate seed dormancy are key to explore, analyze, and exploit optimal alleles in dormancy genes. Recent developments in genomics have accelerated the identification and analysis of seed dormancy loci in Triticeae species. Transgenic experiments have been conducted to validate if candidate genes affect seed dormancy and more recently have yielded an array of mutations derived from genome editing for practical applications. The information gathered on these seed dormancy loci provides a deeper knowledge of germplasm diversity and offers strategies to control seed dormancy in breeding programs in Triticeae crops.
Collapse
Affiliation(s)
- Kazuhiro Sato
- Institute of Plant Science & Resources, Okayama University, Kurashiki, Japan.
- Faculty of Agriculture, Setsunan University, Hirakata, Japan.
- Kazusa DNA Research Institute, Kisarazu, Japan.
| | | | | |
Collapse
|
13
|
Luo W, Liu Y, Imai R. In Planta Genome Editing in Commercial Wheat Varieties: Use of TaQsd1 to Lengthen Seed Dormancy. Methods Mol Biol 2024; 2830:163-171. [PMID: 38977577 DOI: 10.1007/978-1-0716-3965-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dependency on in vitro culture and regeneration limits the ability to use genome editing on elite wheat (Triticum aestivum L.) varieties. We recently developed an in planta particle bombardment (iPB) technique for gene editing in wheat that utilizes shoot apical meristems (SAMs) as a target tissue. Since the method does not require in vitro culture, it can therefore be used on recalcitrant varieties. In this chapter, we describe in detail the steps used in the iPB method. With this protocol, 3% to 5% of T0 plants grown from bombarded SAMs typically carry mutant alleles and approximately 1% to 2% of the T0 plants inherit mutant alleles in the next generation.
Collapse
Affiliation(s)
- Weifeng Luo
- Division of Crop Genome Editing, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yuelin Liu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ryozo Imai
- Division of Crop Genome Editing, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
| |
Collapse
|
14
|
Abe F, Kamiya Y, Ishida Y, Hisano H, Kawaura K, Komari T, Sato K. Genome Editing to Produce Knockout Mutations of Seed Dormancy Genes in Wheat. Methods Mol Biol 2024; 2830:137-148. [PMID: 38977575 DOI: 10.1007/978-1-0716-3965-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.
Collapse
Affiliation(s)
- Fumitaka Abe
- Institute of Crop Science, NARO, Tsukuba, Japan.
| | - Yoko Kamiya
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Yuji Ishida
- Plant Innovation Center, Japan Tobacco Inc. (currently Agri-Bio Research Center, KANEKA CORPORATION), Iwata, Japan
| | - Hiroshi Hisano
- Institute of Plant Science & Resources, Okayama University, Kurashiki, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Toshihiko Komari
- Plant Innovation Center, Japan Tobacco Inc. (currently Agri-Bio Research Center, KANEKA CORPORATION), Iwata, Japan
| | - Kazuhiro Sato
- Institute of Plant Science & Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Kazusa DNA research Institute, Kisarazu, Japan
| |
Collapse
|
15
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
16
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Kishi-Kaboshi M, Abe F, Kamiya Y, Kawaura K, Hisano H, Sato K. Optimizing genome editing efficiency in wheat: Effects of heat treatments and different promoters for single guide RNA expression. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:237-245. [PMID: 38420565 PMCID: PMC10901157 DOI: 10.5511/plantbiotechnology.23.0717a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/17/2023] [Indexed: 03/02/2024]
Abstract
Genome editing is a promising method for simultaneously mutagenizing homoeologs in the three subgenomes of wheat (Triticum aestivum L.). However, the mutation rate via genome editing must be improved in order to analyze gene function and to quickly modify agronomic traits in wheat. Here, we examined the Cas9-induced mutation rates in wheat plants using two promoters for single guide RNA (sgRNA) expression and applying heat treatment during Agrobacterium tumefaciens-mediated transformation. Using the TaU6 promoter instead of the OsU6 promoter from rice (Oryza sativa L.) to drive sgRNA expression greatly improved the Cas9-induced mutation rate. Moreover, a heat treatment of 30°C for 1 day during tissue culture increased the Cas9-induced mutation rate and the variety of mutations obtained compared to tissue culture at the normal temperature (25°C). The same heat treatment did not affect the regeneration rates of transgenic plants but tended to increase the number of transgene integration sites in each transgenic plant. These results lay the foundation for improving the Cas9-induced mutation rate in wheat to enhance research on gene function and crop improvement.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Yoko Kamiya
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
18
|
Thapliyal G, Bhandari MS, Vemanna RS, Pandey S, Meena RK, Barthwal S. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield. Crit Rev Biotechnol 2023; 43:884-903. [PMID: 35968912 DOI: 10.1080/07388551.2022.2092714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 11/03/2022]
Abstract
Dangers confronting forest ecosystems are many and the strength of these biological systems is deteriorating, thus substantially affecting tree physiology, phenology, and growth. The establishment of genetically engineered trees into degraded woodlands, which would be adaptive to changing climate, could help in subsiding ecological threats and bring new prospects. This should not be resisted due to the apprehension of transgene dispersal in forests. Consequently, it is important to have a deep insight into the genetic structure and phenotypic limits of the reproductive capability of tree stands/population(s) to endure tolerance and survival. Importantly, for a better understanding of genes and their functional mechanisms, gene editing (GeEd) technology is an excellent molecular tool to unravel adaptation progressions. Therefore, GeEd could be harnessed for resolving the allelic interactions for the creation of gene diversity, and transgene dispersal may be alleviated among the population or species in different bioclimatic zones around the globe. This review highlights the potential of the CRISPR/Cas tools in genomic, transcriptomic, and epigenomic-based assorted and programmable alterations of genes in trees that might be able to fix the trait-specific gene function. Also, we have discussed the application of diverse forms of GeEd to genetically improve several traits, such as wood density, phytochemical constituents, biotic and abiotic stress tolerance, and photosynthetic efficiency in trees. We believe that the technology encourages fundamental research in the forestry sector besides addressing key aspects, which might fasten tree breeding and germplasm improvement programs worldwide.
Collapse
Affiliation(s)
- Garima Thapliyal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| | - Ramu S Vemanna
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, Forest Research Institute, Dehradun, India
| | - Rajendra K Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| | - Santan Barthwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| |
Collapse
|
19
|
Yigider E, Taspinar MS, Agar G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. PLANTA 2023; 258:55. [PMID: 37522927 DOI: 10.1007/s00425-023-04199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
MAIN CONCLUSION This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.
Collapse
Affiliation(s)
- Esma Yigider
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
20
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
21
|
Dwivedi SL, Heslop-Harrison P, Spillane C, McKeown PC, Edwards D, Goldman I, Ortiz R. Evolutionary dynamics and adaptive benefits of deleterious mutations in crop gene pools. TRENDS IN PLANT SCIENCE 2023; 28:685-697. [PMID: 36764870 DOI: 10.1016/j.tplants.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 05/13/2023]
Abstract
Mutations with deleterious consequences in nature may be conditionally deleterious in crop plants. That is, while some genetic variants may reduce fitness under wild conditions and be subject to purifying selection, they can be under positive selection in domesticates. Such deleterious alleles can be plant breeding targets, particularly for complex traits. The difficulty of distinguishing favorable from unfavorable variants reduces the power of selection, while favorable trait variation and heterosis may be attributable to deleterious alleles. Here, we review the roles of deleterious mutations in crop breeding and discuss how they can be used as a new avenue for crop improvement with emerging genomic tools, including HapMaps and pangenome analysis, aiding the identification, removal, or exploitation of deleterious mutations.
Collapse
Affiliation(s)
| | - Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Irwin Goldman
- Department of Horticulture, College of Agricultural and Life Sciences, University of Wisconsin Madison, WI 53706, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, SE 23053, Sweden.
| |
Collapse
|
22
|
Tonutti P, Brizzolara S, Beckles DM. Reducing crop losses by gene-editing control of organ developmental physiology. Curr Opin Biotechnol 2023; 81:102925. [PMID: 37003167 DOI: 10.1016/j.copbio.2023.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Some physiological processes in reproductive organs, if not controlled, can lead to crop loss even in the absence of environmental stress. These processes may occur pre- or post- harvest, and in diverse species and include abscission processes in cereal grain, e.g., shattering and in immature fruit, e.g., preharvest drop, preharvest sprouting of cereals, and postharvest senescence in fruit. Some of the molecular mechanisms and genetic determinants underlying these processes are now better detailed, making it possible to refine them by gene editing. Here, we discuss using advanced genomics to identify genetic determinants underlying crop physiological traits. Examples of improved phenotypes developed for preharvest problems are provided, and suggestions for reducing postharvest fruit losses by gene and promoter editing were made.
Collapse
Affiliation(s)
- Pietro Tonutti
- Crop Science Research Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefano Brizzolara
- Crop Science Research Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Chang C, Zhang H, Lu J, Si H, Ma C. Genetic Improvement of Wheat with Pre-Harvest Sprouting Resistance in China. Genes (Basel) 2023; 14:genes14040837. [PMID: 37107595 PMCID: PMC10137347 DOI: 10.3390/genes14040837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Wheat pre-harvest sprouting (PHS) refers to the germination of seeds directly on the spike due to rainy weather before harvest, which often results in yield reduction, quality deterioration, and seed value loss. In this study, we reviewed the research progress in the quantitative trait loci (QTL) detection and gene excavation related to PHS resistance in wheat. Simultaneously, the identification and creation of germplasm resources and the breeding of wheat with PHS resistance were expounded in this study. Furthermore, we also discussed the prospect of molecular breeding during genetic improvement of PHS-resistant wheat.
Collapse
|
24
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
26
|
Errum A, Rehman N, Uzair M, Inam S, Ali GM, Khan MR. CRISPR/Cas9 editing of wheat Ppd-1 gene homoeologs alters spike architecture and grain morphometric traits. Funct Integr Genomics 2023; 23:66. [PMID: 36840774 DOI: 10.1007/s10142-023-00989-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
Mutations in Photoperiod-1 (Ppd-1) gene are known to modify flowering time and yield in wheat. We cloned TaPpd-1 from wheat and found high similarity among the three homoeologs of TaPpd-1. To clarify the characteristics of TaPpd-1 homoeologs in different photoperiod conditions for inflorescence architecture and yield, we used CRISPR/Cas9 system to generate Tappd-1 mutant plants by simultaneous modification of the three homoeologs of wheat Ppd-1. Tappd-1 mutant plants showed no off-target mutations. Four T0-edited lines under short-day length and three lines under long-day length conditions with the mutation frequency of 25% and 21%, respectively. These putative transgenic plants of all the lines were self-fertilized and generated T1 and T2 progenies and were evaluated by phenotypic and expression analysis. Results demonstrated that simultaneously edited TaPpd-1- A1, B1, and D1 homoeologs gene copies in T2_SDL-8-4, T2_SDL-4-5, T2_SDL-3-9, and T2_LDL-10-9 showed similar spike inflorescence, flowering time, and significantly increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike due to mutation in both alleles of Ppd-B1 and Ppd-D1 homoeologs but only spike length was decreased in T2_SDL-8-4, T2_SDL-4-5, and T2_LDL-13-3 mutant lines due to mutation in both alleles of Ppd-A1 homoeolog under both conditions. Our results indicate that all TaPpd1 gene homoeologs influence wheat spike development by affecting both late flowering and earlier flowering but single mutant TaPpd-A1 homoeolog affect lowest as compared to the combination with double mutants of TaPpd-B1 and TaPpd-D1, TaPpd-A1 and TaPpd-B1, and TaPpd-A1 and TaPpd-D1 homoeologs for yield enhancement. Our findings further raised the idea that the relative expression of the various genomic copies of TaPpd-1 homoeologs may have an impact on the spike inflorescence architecture and grain morphometric features in wheat cultivars.
Collapse
Affiliation(s)
- Aliya Errum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- PARC Institute of Advanced Studies in Agriculture (PIASA), Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | | | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
27
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
28
|
Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C, Chu C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet 2022; 54:1972-1982. [PMID: 36471073 DOI: 10.1038/s41588-022-01240-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Preharvest sprouting (PHS) due to lack of seed dormancy seriously threatens crop production worldwide. As a complex quantitative trait, breeding of crop cultivars with suitable seed dormancy is hindered by limited useful regulatory genes. Here by repeatable phenotypic characterization of fixed recombinant individuals, we report a quantitative genetic locus, Seed Dormancy 6 (SD6), from aus-type rice, encoding a basic helix-loop-helix (bHLH) transcription factor, which underlies the natural variation of seed dormancy. SD6 and another bHLH factor inducer of C-repeat binding factors expression 2 (ICE2) function antagonistically in controlling seed dormancy by directly regulating the ABA catabolism gene ABA8OX3, and indirectly regulating the ABA biosynthesis gene NCED2 via OsbHLH048, in a temperature-dependent manner. The weak-dormancy allele of SD6 is common in cultivated rice but undergoes negative selection in wild rice. Notably, by genome editing SD6 and its wheat homologs, we demonstrated that SD6 is a useful breeding target for alleviating PHS in cereals under field conditions.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Hongru Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
29
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. PLANT & CELL PHYSIOLOGY 2022; 63:1607-1623. [PMID: 36018059 DOI: 10.1093/pcp/pcac124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crop domestication has a tremendous impact on socioeconomic conditions and human civilization. Modern cultivars were domesticated from their wild progenitors thousands of years ago by the selection of natural variation by humans. New cultivars are being developed by crossing two or more compatible individuals. But the limited genetic diversity in the cultivars severely affects the yield and renders the crop susceptible to many biotic and abiotic stresses. Crop wild relatives (CWRs) are the rich reservoir for many valuable agronomic traits. The incorporation of useful genes from CWR is one of the sustainable approaches for enriching the gene pool of cultivated crops. However, CWRs are not suited for urban and intensive cultivation because of several undesirable traits. Researchers have begun to study the domestication traits in the CWRs and modify them using genome-editing tools to make them suitable for extensive cultivation. Growing evidence has shown that modification in these genes is not sufficient to bring the desired change in the neodomesticated crop. However, the other dynamic genetic factors such as microRNAs (miRNAs), transposable elements, cis-regulatory elements and epigenetic changes have reshaped the domesticated crops. The creation of allelic series for many valuable domestication traits through genome editing holds great potential for the accelerated development of neodomesticated crops. The present review describes the current understanding of the genetics of domestication traits that are responsible for the agricultural revolution. The targeted mutagenesis in these domestication genes via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 could be used for the rapid domestication of CWRs.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Swarupa Nanda Mandal
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79415, USA
| | - Bhubaneswar Pradhan
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
31
|
Liu S, Wang X, Li Q, Peng W, Zhang Z, Chu P, Guo S, Fan Y, Lyu S. AtGCS promoter-driven clustered regularly interspaced short palindromic repeats/Cas9 highly efficiently generates homozygous/biallelic mutations in the transformed roots by Agrobacterium rhizogenes-mediated transformation. FRONTIERS IN PLANT SCIENCE 2022; 13:952428. [PMID: 36330262 PMCID: PMC9623429 DOI: 10.3389/fpls.2022.952428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Agrobacterium rhizogenes-mediated (ARM) transformation is an efficient and powerful tool to generate transgenic roots to study root-related biology. For loss-of-function studies, transgenic-root-induced indel mutations by CRISPR/Cas9 only with homozygous/biallelic mutagenesis can exhibit mutant phenotype(s) (excluding recessive traits). However, a low frequency of homozygous mutants was produced by a constitutive promoter to drive Cas9 expression. Here, we identified a highly efficient Arabidopsis thaliana gamma-glutamylcysteine synthetase promoter, termed AtGCSpro, with strong activity in the region where the root meristem will initiate and in the whole roots in broad eudicots species. AtGCSpro achieved higher homozygous/biallelic mutation efficiency than the most widely used CaMV 35S promoter in driving Cas9 expression in soybean, Lotus japonicus, and tomato roots. Using the pAtGCSpro-Cas9 system, the average homozygous/biallelic mutation frequency is 1.7-fold and 8.3-fold higher than the p2 × 35Spro-Cas9 system for single and two target site(s) in the genome, respectively. Our results demonstrate the advantage of the pAtGCSpro-Cas9 system used in ARM transformation, especially its great potential in diploids with multiple-copy genes targeted mutations and polyploid plants with multiplex genome editing. AtGCSpro is conservatively active in various eudicots species, suggesting that AtGCSpro might be applied in a wide range of dicots species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yinglun Fan
- *Correspondence: Yinglun Fan, ; Shanhua Lyu, ;
| | - Shanhua Lyu
- *Correspondence: Yinglun Fan, ; Shanhua Lyu, ;
| |
Collapse
|
32
|
Gohar S, Sajjad M, Zulfiqar S, Liu J, Wu J, Rahman MU. Domestication of newly evolved hexaploid wheat—A journey of wild grass to cultivated wheat. Front Genet 2022; 13:1022931. [PMID: 36263418 PMCID: PMC9574122 DOI: 10.3389/fgene.2022.1022931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestication of wheat started with the dawn of human civilization. Since then, improvement in various traits including resistance to diseases, insect pests, saline and drought stresses, grain yield, and quality were improved through selections by early farmers and then planned hybridization after the discovery of Mendel’s laws. In the 1950s, genetic variability was created using mutagens followed by the selection of superior mutants. Over the last 3 decades, research was focused on developing superior hybrids, initiating marker-assisted selection and targeted breeding, and developing genetically modified wheat to improve the grain yield, tolerance to drought, salinity, terminal heat and herbicide, and nutritive quality. Acceptability of genetically modified wheat by the end-user remained a major hurdle in releasing into the environment. Since the beginning of the 21st century, changing environmental conditions proved detrimental to achieving sustainability in wheat production particularly in developing countries. It is suggested that high-tech phenotyping assays and genomic procedures together with speed breeding procedures will be instrumental in achieving food security beyond 2050.
Collapse
Affiliation(s)
- Sasha Gohar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jiajun Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| | - Mehboob-ur- Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| |
Collapse
|
33
|
Moullet O, Díaz Bermúdez G, Fossati D, Brabant C, Mascher F, Schori A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:60. [PMID: 37309488 PMCID: PMC10248708 DOI: 10.1007/s11032-022-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/07/2022] [Indexed: 06/14/2023]
Abstract
Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.
Collapse
Affiliation(s)
- Odile Moullet
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Gemma Díaz Bermúdez
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Dario Fossati
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Cécile Brabant
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Fabio Mascher
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | | |
Collapse
|
34
|
Jiang C, Lei M, Guo Y, Gao G, Shi L, Jin Y, Cai Y, Himmelbach A, Zhou S, He Q, Yao X, Kan J, Haberer G, Duan F, Li L, Liu J, Zhang J, Spannagl M, Liu C, Stein N, Feng Z, Mascher M, Yang P. A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. PLANT COMMUNICATIONS 2022; 3:100317. [PMID: 35605197 PMCID: PMC9284286 DOI: 10.1016/j.xplc.2022.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 05/26/2023]
Abstract
Barley is a diploid species with a genome smaller than those of other members of the Triticeae tribe, making it an attractive model for genetic studies in Triticeae crops. The recent development of barley genomics has created a need for a high-throughput platform to identify genetically uniform mutants for gene function investigations. In this study, we report an ethyl methanesulfonate (EMS)-mutagenized population consisting of 8525 M3 lines in the barley landrace "Hatiexi" (HTX), which we complement with a high-quality de novo assembly of a reference genome for this genotype. The mutation rate within the population ranged from 1.51 to 4.09 mutations per megabase, depending on the treatment dosage of EMS and the mutation discrimination platform used for genotype analysis. We implemented a three-dimensional DNA pooling strategy combined with multiplexed amplicon sequencing to create a highly efficient and cost-effective TILLING (targeting induced locus lesion in genomes) platform in barley. Mutations were successfully identified from 72 mixed amplicons within a DNA pool containing 64 individual mutants and from 56 mixed amplicons within a pool containing 144 individuals. We discovered abundant allelic mutants for dozens of genes, including the barley Green Revolution contributor gene Brassinosteroid insensitive 1 (BRI1). As a proof of concept, we rapidly determined the causal gene responsible for a chlorotic mutant by following the MutMap strategy, demonstrating the value of this resource to support forward and reverse genetic studies in barley.
Collapse
Affiliation(s)
- Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaomiao Lei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guangqi Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijie Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yanlong Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Cai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Shenghui Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuefeng Yao
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinhong Kan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Georg Haberer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chunming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Zongyun Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
35
|
Tanaka J, Minkenberg B, Poddar S, Staskawicz B, Cho MJ. Improvement of Gene Delivery and Mutation Efficiency in the CRISPR-Cas9 Wheat ( Triticum aestivum L.) Genomics System via Biolistics. Genes (Basel) 2022; 13:1180. [PMID: 35885963 PMCID: PMC9318839 DOI: 10.3390/genes13071180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Discovery of the CRISPR-Cas9 gene editing system revolutionized the field of plant genomics. Despite advantages in the ease of designing gRNA and the low cost of the CRISPR-Cas9 system, there are still hurdles to overcome in low mutation efficiencies, specifically in hexaploid wheat. In conjunction with gene delivery and transformation frequency, the mutation efficiency bottleneck has the potential to slow down advancements in genomic editing of wheat. In this study, nine bombardment parameter combinations using three gold particle sizes and three rupture disk pressures were tested to establish optimal stable transformation frequencies in wheat. Utilizing the best transformation protocol and a knockout cassette of the phytoene desaturase gene, we subjected transformed embryos to four temperature treatments and compared mutation efficiencies. The use of 0.6 μm gold particles for bombardment increased transformation frequencies across all delivery pressures. A heat treatment of 34 °C for 24 h resulted in the highest mutation efficiency with no or minimal reduction in transformation frequency. The 34 °C treatment produced two M0 mutant events with albino phenotypes, requiring biallelic mutations in all three genomes of hexaploid wheat. Utilizing optimal transformation and heat treatment parameters greatly increases mutation efficiency and can help advance research efforts in wheat genomics.
Collapse
Affiliation(s)
- Jaclyn Tanaka
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA; (J.T.); (B.M.); (S.P.); (B.S.)
| | - Bastian Minkenberg
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA; (J.T.); (B.M.); (S.P.); (B.S.)
| | - Snigdha Poddar
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA; (J.T.); (B.M.); (S.P.); (B.S.)
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brian Staskawicz
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA; (J.T.); (B.M.); (S.P.); (B.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA; (J.T.); (B.M.); (S.P.); (B.S.)
| |
Collapse
|
36
|
Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S. Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 2022; 60:108006. [PMID: 35732256 DOI: 10.1016/j.biotechadv.2022.108006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Common wheat is a major source of nutrition around the globe, but unlike maize and rice hybrids, no breakthrough has been made to enhance wheat yield since Green Revolution. With the availability of reference genome sequence of wheat and advancement of allied genomics technologies, understanding of genes involved in grain yield components and disease resistance/susceptibility has opened new avenues for crop improvement. Wheat has a huge hexaploidy genome of approximately 17 GB with 85% repetition, and it is a daunting task to induce any mutation across three homeologues that can be helpful for the enhancement of agronomic traits. The CRISPR-Cas9 system provides a promising platform for genome editing in a site-specific manner. In wheat, CRISPR-Cas9 is being used in the improvement of yield, grain quality, biofortification, resistance against diseases, and tolerance against abiotic factors. The promising outcomes of the CRISPR-based multiplexing approach circumvent the constraint of targeting merely one gene at a time. Deployment of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 endonuclease (CRISPR-Cas9) and Cas9 variant systems such as cytidine base editing, adenosine base editing, and prime editing in wheat has been used to induce point mutations more precisely. Scientists have acquired major events such as induction of male sterility, fertility restoration, and alteration of seed dormancy through Cas9 in wheat that can facilitate breeding programs for elite variety development. Furthermore, a recent discovery in tissue culturing enables scientists to significantly enhance regeneration efficiency in wheat by transforming the GRF4-GIF1 cassette. Rapid generation advancement by speed breeding technology provides the opportunity for the generation advancement of the desired plants to segregate out unwanted transgenes and allows rapid integration of gene-edited wheat into the breeding pipeline. The combination of these novel technologies addresses some of the most important limiting factors for sustainable and climate-smart wheat that should lead to the second "Green Revolution" for global food security.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Komal Pervaiz
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguanccun South Street, Beijing 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Kanwarpal S Dhugga
- Corteva Agriscience, Johnston, IA, USA; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
37
|
Gu M, Huang H, Hisano H, Ding G, Huang S, Mitani-Ueno N, Yokosho K, Sato K, Yamaji N, Ma JF. A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains. THE NEW PHYTOLOGIST 2022; 234:1249-1261. [PMID: 35218012 DOI: 10.1111/nph.18057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Grains are the major sink of phosphorus (P) in cereal crops, accounting for 60-85% of total plant P, but the mechanisms underlying P loading into the grains are poorly understood. We functionally characterized a transporter gene required for the distribution of P to the grains in barley (Hordeum vulgare), HvSPDT (SULTR-like phosphorus distribution transporter). HvSPDT encoded a plasma membrane-localized Pi/H+ cotransporter. It was mainly expressed in the nodes at both the vegetative and reproductive stages. Furthermore, its expression was induced by inorganic phosphate (Pi) deficiency. In the nodes, HvSPDT was expressed in both the xylem and phloem region of enlarged and diffuse vascular bundles. Knockout of HvSPDT decreased the distribution of P to new leaves, but increased the distribution to old leaves at the vegetative growth stage under low P supply. However, knockout of HvSPDT did not alter the redistribution of P from old to young organs. At the reproductive stage, knockout of HvSPDT significantly decreased P allocation to the grains, resulting in a considerable reduction in grain yield, especially under P-limited conditions. Our results indicate that node-based HvSPDT plays a crucial role in loading P into barley grains through preferentially distributing P from the xylem and further to the phloem.
Collapse
Affiliation(s)
- Mian Gu
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hengliang Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Guangda Ding
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
38
|
Genome sequencing-based coverage analyses facilitate high-resolution detection of deletions linked to phenotypes of gamma-irradiated wheat mutants. BMC Genomics 2022; 23:111. [PMID: 35139819 PMCID: PMC8827196 DOI: 10.1186/s12864-022-08344-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-irradiated mutants of Triticum aestivum L., hexaploid wheat, provide novel and agriculturally important traits and are used as breeding materials. However, the identification of causative genomic regions of mutant phenotypes is challenging because of the large and complicated genome of hexaploid wheat. Recently, the combined use of high-quality reference genome sequences of common wheat and cost-effective resequencing technologies has made it possible to evaluate genome-wide polymorphisms, even in complex genomes. RESULTS To investigate whether the genome sequencing approach can effectively detect structural variations, such as deletions, frequently caused by gamma irradiation, we selected a grain-hardness mutant from the gamma-irradiated population of Japanese elite wheat cultivar "Kitahonami." The Hardness (Ha) locus, including the puroindoline protein-encoding genes Pina-D1 and Pinb-D1 on the short arm of chromosome 5D, primarily regulates the grain hardness variation in common wheat. We performed short-read genome sequencing of wild-type and grain-hardness mutant plants, and subsequently aligned their short reads to the reference genome of the wheat cultivar "Chinese Spring." Genome-wide comparisons of depth-of-coverage between wild-type and mutant strains detected ~ 130 Mbp deletion on the short arm of chromosome 5D in the mutant genome. Molecular markers for this deletion were applied to the progeny populations generated by a cross between the wild-type and the mutant. A large deletion in the region including the Ha locus was associated with the mutant phenotype, indicating that the genome sequencing is a powerful and efficient approach for detecting a deletion marker of a gamma-irradiated mutant phenotype. In addition, we investigated a pre-harvest sprouting tolerance mutant and identified a 67.8 Mbp deletion on chromosome 3B where Viviparous-B1 and GRAS family transcription factors are located. Co-dominant markers designed to detect the deletion-polymorphism confirmed the association with low germination rate, leading to pre-harvest sprouting tolerance. CONCLUSIONS Short read-based genome sequencing of gamma-irradiated mutants facilitates the identification of large deletions linked to mutant phenotypes when combined with segregation analyses in progeny populations. This method allows effective application of mutants with agriculturally important traits in breeding using marker-assisted selection.
Collapse
|
39
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
40
|
Hisano H, Hoffie RE, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:37-46. [PMID: 34459083 PMCID: PMC8710902 DOI: 10.1111/pbi.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | | | - Hiromi Munemori
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Takakazu Matsuura
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Masaki Endo
- Institute of Agrobiological SciencesNAROTsukubaJapan
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | - Kazuhiro Sato
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
41
|
Hu J, Yu M, Chang Y, Tang H, Wang W, Du L, Wang K, Yan Y, Ye X. Functional analysis of TaPDI genes on storage protein accumulation by CRISPR/Cas9 edited wheat mutants. Int J Biol Macromol 2021; 196:131-143. [PMID: 34942204 DOI: 10.1016/j.ijbiomac.2021.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/05/2022]
Abstract
Wheat protein disulfide isomerase (PDI) is involved in the formation of glutenin macropolymers (GMP) and the correct folding and accumulation of storage proteins in endosperm. In present study, seven types of homozygous TaPDI gene edited mutants were obtained by CRISPR/Cas9 technology, which were confirmed by PCR-RE and sequencing. Compared with other mutants and wild type (WT), the grain length and width in mutant PDI-abd-6 which was edited for the three TaPDI homoeologous genes were reduced, and the grain middle parts were slumped. The GMP size in PDI-abd-6 was not significantly different from that in WT, whereas the accumulation of protein bodies (PBs) increased during grain development. The endosperm cells became denser in PDI-abd-6 without sheet-like structure, and the expression level of TaBiP gene was significantly decreased. Particularly, the GMP content in PDI-abd-6 is also decreased significantly. The basic bread and flour rheological parameters in the mutant were negatively changed compared with those in WT. Our results indicated that TaPDI genes affects wheat flour-processing quality by the order of TaPDI-4B, TaPDI-4D, and TaPDI-4A from high to low; the expression of either one TaPDI could be enough to maintain the GMP accumulation and processing properties of wheat dough.
Collapse
Affiliation(s)
- Jinxin Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Mei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Wanxin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, 100048 Beijing, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| |
Collapse
|
42
|
Dhariwal R, Hiebert CW, Sorrells ME, Spaner D, Graf RJ, Singh J, Randhawa HS. Mapping pre-harvest sprouting resistance loci in AAC Innova × AAC Tenacious spring wheat population. BMC Genomics 2021; 22:900. [PMID: 34911435 PMCID: PMC8675488 DOI: 10.1186/s12864-021-08209-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. Results Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. Conclusions Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08209-6.
Collapse
Affiliation(s)
- Raman Dhariwal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Mark E Sorrells
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, 240 Emerson Hall, Ithaca, NY, 14853, USA
| | - Dean Spaner
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Robert J Graf
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Harpinder S Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
43
|
Wheat Breeding, Fertilizers, and Pesticides: Do They Contribute to the Increasing Immunogenic Properties of Modern Wheat? GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Celiac disease (CD) is a small intestinal inflammatory condition where consumption of gluten induces a T-cell mediated immune response that damages the intestinal mucosa in susceptible individuals. CD affects at least 1% of the world’s population. The increasing prevalence of CD has been reported over the last few decades. However, the reason for this increase is not known so far. Certain factors such as increase in awareness and the development of advanced and highly sensitive diagnostic screening markers are considered significant factors for this increase. Wheat breeding strategies, fertilizers, and pesticides, particularly herbicides, are also thought to have a role in the increasing prevalence. However, less is known about this issue. In this review, we investigated the role of these agronomic practices in depth. Our literature-based results showed that wheat breeding, use of nitrogen-based fertilizers, and herbicides cannot be solely responsible for the increase in celiac prevalence. However, applying nitrogen fertilizers is associated with an increase in gluten in wheat, which increases the risk of developing celiac-specific symptoms in gluten-sensitive individuals. Additionally, clustered regularly interspaced short palindromic repeats (CRISPR) techniques can edit multiple gliadin genes, resulting in a low-immunogenic wheat variety that is safe for such individuals.
Collapse
|
44
|
Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. ABIOTECH 2021; 2:375-385. [PMID: 36304421 PMCID: PMC9590522 DOI: 10.1007/s42994-021-00042-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Common wheat (Triticum aestivum L.) is one of the three major food crops in the world; thus, wheat breeding programs are important for world food security. Characterizing the genes that control important agronomic traits and finding new ways to alter them are necessary to improve wheat breeding. Functional genomics and breeding in polyploid wheat has been greatly accelerated by the advent of several powerful tools, especially CRISPR/Cas9 genome editing technology, which allows multiplex genome engineering. Here, we describe the development of CRISPR/Cas9, which has revolutionized the field of genome editing. In addition, we emphasize technological breakthroughs (e.g., base editing and prime editing) based on CRISPR/Cas9. We also summarize recent applications and advances in the functional annotation and breeding of wheat, and we introduce the production of CRISPR-edited DNA-free wheat. Combined with other achievements, CRISPR and CRISPR-based genome editing will speed progress in wheat biology and promote sustainable agriculture.
Collapse
|
45
|
Wheat improvement using genome editing technology. Biotechniques 2021; 71:577-579. [PMID: 34809487 DOI: 10.2144/btn-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
47
|
Verma AK, Mandal S, Tiwari A, Monachesi C, Catassi GN, Srivastava A, Gatti S, Lionetti E, Catassi C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021; 10:2351. [PMID: 34681400 PMCID: PMC8534962 DOI: 10.3390/foods10102351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Wheat gluten contains epitopes that trigger celiac disease (CD). A life-long strict gluten-free diet is the only treatment accepted for CD. However, very low-gluten wheat may provide an alternative treatment to CD. Conventional plant breeding methods have not been sufficient to produce celiac-safe wheat. RNA interference technology, to some extent, has succeeded in the development of safer wheat varieties. However, these varieties have multiple challenges in terms of their implementation. Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) is a versatile gene-editing tool that has the ability to edit immunogenic gluten genes. So far, only a few studies have applied CRISPR/Cas9 to modify the wheat genome. In this article, we reviewed the published literature that applied CRISPR/Cas9 in wheat genome editing to investigate the current status of the CRISPR/Cas9 system to produce a low-immunogenic wheat variety. We found that in recent years, the CRISPR/Cas9 system has been continuously improved to edit the complex hexaploid wheat genome. Although some reduced immunogenic wheat varieties have been reported, CRISPR/Cas9 has still not been fully explored in terms of editing the wheat genome. We conclude that further studies are required to apply the CRISPR/Cas9 gene-editing system efficiently for the development of a celiac-safe wheat variety and to establish it as a "tool to celiac safe wheat".
Collapse
Affiliation(s)
- Anil K. Verma
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India;
| | - Aadhya Tiwari
- Department of System Biology, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Chiara Monachesi
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Giulia N. Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Akash Srivastava
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA;
| | - Simona Gatti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Elena Lionetti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Carlo Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
48
|
Bhowmik P, Bilichak A. Advances in Gene Editing of Haploid Tissues in Crops. Genes (Basel) 2021; 12:1410. [PMID: 34573392 PMCID: PMC8468125 DOI: 10.3390/genes12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
49
|
Zhang J, Zhang H, Li S, Li J, Yan L, Xia L. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1649-1663. [PMID: 34270164 DOI: 10.1111/jipb.13151] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 05/22/2023]
Abstract
Wheat (Triticum aestivum L.) is a staple food crop consumed by more than 30% of world population. Nitrogen (N) fertilizer has been applied broadly in agriculture practice to improve wheat yield to meet the growing demands for food production. However, undue N fertilizer application and the low N use efficiency (NUE) of modern wheat varieties are aggravating environmental pollution and ecological deterioration. Under nitrogen-limiting conditions, the rice (Oryza sativa) abnormal cytokinin response1 repressor1 (are1) mutant exhibits increased NUE, delayed senescence and consequently, increased grain yield. However, the function of ARE1 ortholog in wheat remains unknown. Here, we isolated and characterized three TaARE1 homoeologs from the elite Chinese winter wheat cultivar ZhengMai 7698. We then used CRISPR/Cas9-mediated targeted mutagenesis to generate a series of transgene-free mutant lines either with partial or triple-null taare1 alleles. All transgene-free mutant lines showed enhanced tolerance to N starvation, and showed delayed senescence and increased grain yield in field conditions. In particular, the AABBdd and aabbDD mutant lines exhibited delayed senescence and significantly increased grain yield without growth defects compared to the wild-type control. Together, our results underscore the potential to manipulate ARE1 orthologs through gene editing for breeding of high-yield wheat as well as other cereal crops with improved NUE.
Collapse
Affiliation(s)
- Jiahui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huating Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shaoya Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingying Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
50
|
Hisano H, Abe F, Hoffie RE, Kumlehn J. Targeted genome modifications in cereal crops. BREEDING SCIENCE 2021; 71:405-416. [PMID: 34912167 PMCID: PMC8661484 DOI: 10.1270/jsbbs.21019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledge-based improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland/OT Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland/OT Gatersleben, Germany
| |
Collapse
|