1
|
Ma Y, Wang K, Jiao Y, Li Y, Hu R, Li Y, Shi G, Huang M. Atrazine exposure induces TDP-43 protein translocation: A potential mechanism for prefrontal cortical neurodegeneration induced by environmental pollutants. Toxicology 2025; 515:154128. [PMID: 40194585 DOI: 10.1016/j.tox.2025.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Atrazine (ATR) is a widely utilized herbicide that has been demonstrated to exert a multitude of deleterious effects on the environment, particularly with regard to water and soil contamination. Moreover, its disruption of endocrine function and implications for antibiotic resistance underscore the urgent need to prioritize alternative solutions for both ecosystems and human health. Therefore, the objective of this study was to investigate a range of neurotoxic effects associated with atrazine-induced damage in the prefrontal lobe of mice. The results of this study indicate that treatment with ATR in C57BL/6 J mice resulted in cognitive-related behavioral deficits, including anxiety and depression, as well as motor impairments. In vivo analyses demonstrated that ATR exposure resulted in a reduction in neuronal synapse density at the microstructural level, while also compromising prefrontal morphological integrity, nociceptor count, and overall neuronal health within the brain. These findings collectively suggest that synaptic deficits are implicated in ATR-induced behavioral abnormalities observed in these mice. Furthermore, our findings revealed that ATR exposure resulted in elevated TDP-43 expression levels that were ectopically localized within the cytoplasm. This alteration led to impaired functionality of mRNP granules and contributed to the development of abnormal synaptic defects. Conversely, TDP-43 has the potential to localize ectopically to mitochondria, where it activates the mitochondrial unfolded protein response (UPRmt), which ultimately results in mitochondrial dysfunction. These findings collectively indicate a strong correlation between TDP-43 dysregulation and the progression of neurodegenerative diseases. Further investigation into the potential neurotoxicity of atrazine may foster heightened awareness, leading to more stringent regulatory measures, research into safer alternatives, and the adoption of sustainable practices, which are essential for safeguarding environmental integrity alongside human health.
Collapse
Affiliation(s)
- Yuan Ma
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yuxuan Jiao
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yujing Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Kellett EA, Bademosi AT, Walker AK. Molecular mechanisms and consequences of TDP-43 phosphorylation in neurodegeneration. Mol Neurodegener 2025; 20:53. [PMID: 40340943 PMCID: PMC12063406 DOI: 10.1186/s13024-025-00839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Increased phosphorylation of TDP-43 is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the regulation and roles of TDP-43 phosphorylation remain incompletely understood. A variety of techniques have been utilized to understand TDP-43 phosphorylation, including kinase/phosphatase manipulation, phosphomimic variants, and genetic, physical, or chemical inducement in a variety of cell cultures and animal models, and via analyses of post-mortem human tissues. These studies have produced conflicting results: suggesting incongruously that TDP-43 phosphorylation may either drive disease progression or serve a neuroprotective role. In this review, we explore the roles of regulators of TDP-43 phosphorylation including the putative TDP-43 kinases c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, MEK1, TTBK1, and TTBK2, and TDP-43 phosphatases PP1, PP2A, and PP2B, in disease. Building on recent studies, we also examine the consequences of TDP-43 phosphorylation on TDP-43 pathology, especially related to TDP-43 mislocalisation, liquid-liquid phase separation, aggregation, and neurotoxicity. By comparing conflicting findings from various techniques and models, this review highlights both the discrepancies and unresolved aspects in the understanding of TDP-43 phosphorylation. We propose that the role of TDP-43 phosphorylation is site and context dependent, and includes regulation of liquid-liquid phase separation, subcellular mislocalisation, and degradation. We further suggest that greater consideration of the normal functions of the regulators of TDP-43 phosphorylation that may be perturbed in disease is warranted. This synthesis aims to build towards a comprehensive understanding of the complex role of TDP-43 phosphorylation in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Elise A Kellett
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
3
|
Balendra R, Sreedharan J, Hallegger M, Luisier R, Lashuel HA, Gregory JM, Patani R. Amyotrophic lateral sclerosis caused by TARDBP mutations: from genetics to TDP-43 proteinopathy. Lancet Neurol 2025; 24:456-470. [PMID: 40252666 DOI: 10.1016/s1474-4422(25)00109-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 03/20/2025] [Indexed: 04/21/2025]
Abstract
Mutations in the TARDBP gene, which encodes the TDP-43 protein, account for only 3-5% of familial cases of amyotrophic lateral sclerosis and less than 1% of cases that are apparently idiopathic. However, the discovery of neuronal inclusions of TDP-43 as the neuropathological hallmark in the majority of cases of amyotrophic lateral sclerosis has transformed our understanding of the pathomechanisms underlying neurodegeneration. An individual TARDBP mutation can cause phenotypic heterogeneity. Most mutations lie within the C-terminus of the TDP-43 protein. In pathological conditions, TDP-43 is mislocalised from the nucleus to the cytoplasm, where it can be phosphorylated, cleaved, and form insoluble aggregates. This mislocalisation leads to dysfunction of downstream pathways of RNA metabolism, proteostasis, mitochondrial function, oxidative stress, axonal transport, and local translation. Biomarkers for TDP-43 dysfunction and targeted therapies are being developed, justifying cautious optimism for personalised medicine approaches that could rescue the downstream effects of TDP-43 pathology.
Collapse
Affiliation(s)
- Rubika Balendra
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, London, UK.
| | - Jemeen Sreedharan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Martina Hallegger
- UK Dementia Research Institute at King's, London, UK; The Francis Crick Institute, London, UK; Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raphaëlle Luisier
- Genomics and Health Informatics Group, Idiap Research Institute, Martigny, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Qatar Foundation, Doha, Qatar
| | | | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK; Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
4
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
5
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Moissoglu K, Wang T, Gasparski AN, Stueland M, Paine EL, Jenkins LM, Mili S. A KIF1C-CNBP motor-adaptor complex for trafficking mRNAs to cell protrusions. Cell Rep 2025; 44:115346. [PMID: 39982819 PMCID: PMC12002053 DOI: 10.1016/j.celrep.2025.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/12/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
mRNA localization to subcellular compartments is a widely used mechanism that functionally contributes to numerous processes. mRNA targeting can be achieved upon recognition of RNA cargo by molecular motors. However, our molecular understanding of how this is accomplished is limited, especially in higher organisms. We focus on a pathway that targets mRNAs to peripheral protrusions of mammalian cells and which is important for cell migration. Trafficking occurs through active transport on microtubules, mediated by the KIF1C kinesin. Here, we identify the RNA-binding protein CNBP as a factor required for mRNA localization to protrusions. CNBP binds directly to GA-rich sequences in the 3' UTR of protrusion-targeted mRNAs. CNBP also interacts with KIF1C and is required for KIF1C recruitment to mRNAs and their trafficking on microtubules to the periphery. This work provides a molecular mechanism for KIF1C recruitment to mRNA cargo and reveals a motor-adaptor complex for mRNA transport to cell protrusions.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michael Stueland
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elliott L Paine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Wijegunawardana D, Nayak A, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Dev Cell 2025; 60:253-269.e5. [PMID: 39419034 PMCID: PMC12063900 DOI: 10.1016/j.devcel.2024.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43 kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons in vivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.
Collapse
Affiliation(s)
- Denethi Wijegunawardana
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sonali S Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Neha Venkatesh
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Majumder P, Chatterjee B, Akter K, Ahsan A, Tan SJ, Huang CC, Chu JF, Shen CKJ. Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD. Cell Mol Biol Lett 2025; 30:6. [PMID: 39815169 PMCID: PMC11737055 DOI: 10.1186/s11658-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive. METHOD Different molecular and imaging techniques, e.g., immunoprecipitation (IP), RNA-IP, Immunofluorescence (IF)/fluorescence in situ hybridization (FISH), live cell imaging, live cell tracking of RNA using beacon, and mouse model study are used to elucidate a novel mechanism regulating dendritic spine transport of mRNAs in mammalian neurons. RESULTS We demonstrate here that brief mGluR1 activation-mediated dephosphorylation of pFMRP (S499) results in the dissociation of FMRP from TDP-43 and handover of TDP-43/Rac1 mRNA complex from the dendritic transport track on microtubules to myosin V track on the spine actin filaments. Rac1 mRNA thus enters the spines for translational reactivation and increases the mature spine density. In contrast, during mGluR1-mediated neuronal LTD, FMRP (S499) remains phosphorylated and the TDP-43/Rac1 mRNA complex, being associated with kinesin 1-FMRP/cortactin/drebrin, enters the spines owing to Ca2+-dependent microtubule invasion into spines, but without translational reactivation. In a VPA-ASD mouse model, this regulation become anomalous. CONCLUSIONS This study, for the first time, highlights the importance of posttranslational modification of RBPs, such as the neurodevelopmental disease-related protein FMRP, as the molecular switch regulating the dendrite-to-spine transport of specific mRNAs under mGluR1-mediated neurotransmissions. The misregulation of this switch could contribute to the pathogenesis of FMRP-related neurodisorders including the autism spectrum disorder (ASD). It also could indicate a molecular connection between ASD and neurodegenerative disease-related protein TDP-43 and opens up a new perspective of research to elucidate TDP-43 proteinopathy among patients with ASD.
Collapse
Affiliation(s)
- Pritha Majumder
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.).
| | - Biswanath Chatterjee
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Khadiza Akter
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Asmar Ahsan
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Su Jie Tan
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.)
| | - Chi-Chen Huang
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Jen-Fei Chu
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
| | - Che-Kun James Shen
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei, 115, Taiwan (R.O.C.).
| |
Collapse
|
9
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Comaduran MF, Verbrugghe M, Xu JMS, Minotti S, Lynch J, Biswas J, Wu T, Durham HD, Yeo GW, Vera M. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. Nat Commun 2024; 15:10796. [PMID: 39737952 PMCID: PMC11685665 DOI: 10.1038/s41467-024-55055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhances HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites is impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured spinal cord mouse motor neurons or by expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Phuong Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Suleima Jacob-Tomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Mario Fernandez Comaduran
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - James Lynch
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tad Wu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Bai D, Deng F, Jia Q, Ou K, Wang X, Hou J, Zhu L, Guo M, Yang S, Jiang G, Li S, Li X, Yin P. Pathogenic TDP-43 accelerates the generation of toxic exon1 HTT in Huntington's disease knock-in mice. Aging Cell 2024; 23:e14325. [PMID: 39185703 PMCID: PMC11634733 DOI: 10.1111/acel.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein. Under normal conditions, TDP-43 is predominantly found in the nucleus, where it regulates gene expression. However, in various pathological conditions, TDP-43 is mislocalized in the cytoplasm. By investigating HD knock-in mice, we explore whether the pathogenic TDP-43 in the cytoplasm contributes to HD pathogenesis, through expressing the cytoplasmic TDP-43 without nuclear localization signal. We found that the cytoplasmic TDP-43 is increased in the HD mouse brain and that its mislocalization could deteriorate the motor and gait behavior. Importantly, the cytoplasmic TDP-43, via its binding to the intron1 sequence (GU/UG)n of the mouse Htt pre-mRNA, promotes the transport of exon1-intron1 Htt onto ribosome, resulting in the aberrant generation of exon1 Htt. Our findings suggest that cytoplasmic TDP-43 contributes to HD pathogenesis via its binding to and transport of nuclear un-spliced mRNA to the ribosome for the generation of a toxic protein product.
Collapse
Affiliation(s)
- Dazhang Bai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Fuyu Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical DevicesIn Vitro Diagnostic Reagents Testing DepartmentShenzhenGuangdongChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Mingwei Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
11
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
12
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Fernandez-Comaduran M, Verbrugghe M, Xu JSM, Minotti S, Lynch J, Biswas J, Wu T, Durham H, Yeo GW, Vera M. Localized synthesis of molecular chaperones sustains neuronal proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560761. [PMID: 37873158 PMCID: PMC10592939 DOI: 10.1101/2023.10.03.560761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.
Collapse
|
13
|
Majumder P, Hsu TI, Hu CJ, Huang JK, Lee YC, Hsieh YC, Ahsan A, Huang CC. Potential role of solid lipid curcumin particle (SLCP) as estrogen replacement therapy in mitigating TDP-43-related neuropathy in the mouse model of ALS disease. Exp Neurol 2024; 383:114999. [PMID: 39419433 DOI: 10.1016/j.expneurol.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) was first identified in 1869, but it wasn't until the 2014 Ice Bucket Challenge that widespread attention was drawn to the disease. Since then, substantial research has been dedicated to developing treatments for ALS. Despite this, only three drugs - riluzole, edaravone and AMX0035, have been approved for clinical use, and they can only temporarily alleviate mild symptoms without significant disease modification or cure. Therefore, there remains a critical unmet need to identify disease modifying or curative therapies for ALS. The higher incidence and more severe progression of ALS and FTLD (frontotemporal lobar degeneration) observed in men and postmenopausal woman compared to young women suggests that sex hormones may significantly influence disease onset and progression. In both animal models and human clinical studies, 17β estradiol (E2) has been shown to delay and improve the outcomes of many neurodegenerative diseases. Here, we examined the role of TDP-43 in the regulation of estrogen-related enzymes, CYP19A1 and CYP3A4. In addition, we examined the impact of curcumin on the regulation of estrogen E2 levels and TDP-43-associated neuropathy as a potential therapeutic strategy for the treatment of FTLD and ALS. METHODS Prp-TDP-43A315T mice was used as a model of ALS/FTLD to examine the expression patterns of E2 and its biosynthesis and degradation enzymes, CYP19A1 and CYP3A4. Moreover, the molecular mechanisms and the potency of solid lipid curcumin particles (SLCP) as an E2 replacement therapy for TDP-43 associated neuropathy was analyzed. We further examined the survival rates and the pathological TDP43 patterns in female and male Prp-TDP-43A315T mice administrated with or without SLCP. In addition, the changed expression levels of enzymes corresponding to E2 biosynthesis and degradation in the spinal cord of female and male Prp-TDP-43A315T mice with or without SLCP were determined. RESULTS We found that in addition to E2, the expression patterns of CYP19A1 and CYP3A4 proteins differed between Prp-TDP-43A315T mice compared to wild-type control, suggesting that toxic phosphorylated TDP43 oligomers may disrupt the balance between CYP19A1 and CYP3A4 expression, leading to reduced estrogen biosynthesis and accelerated degradation. In addition, we found that oral administration of SLCP prolonged the survival rates in female Prp-TDP-43A315T mice and significantly reduced the pathological insoluble phosphorylated TDP-43 species. Furthermore, SLCP attenuated disease progression associated with TDP-43-related neuropathies through modulating estrogen biosynthesis and the activity of CYP450 enzymes. CONCLUSIONS Our results showed that Prp-TDP-43A315T mice exhibit altered estradiol levels. Moreover, we demonstrated the efficacy of SLCP as an estrogen replacement therapy in mitigating TDP-43-associated disease progression and pathogenesis. These findings suggest that SLCP could be a promising strategy to induce E2 expression for the treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Pritha Majumder
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Joug Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chen Hsieh
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Asmar Ahsan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
14
|
Cheung SW, Willis EF, Simmons DG, Bellingham MC, Noakes PG. Phagocytosis of aggrecan-positive perineuronal nets surrounding motor neurons by reactive microglia expressing MMP-9 in TDP-43 Q331K ALS model mice. Neurobiol Dis 2024; 200:106614. [PMID: 39067491 DOI: 10.1016/j.nbd.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures that surround excitable neurons and their proximal dendrites. PNNs play an important role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can act as a trigger for neuronal death, and this has been implicated in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). We therefore characterised PNNs around alpha motor neurons and the possible contributing cellular factors in the mutant TDP-43Q331K transgenic mouse, a slow onset ALS mouse model. PNNs around alpha motor neurons showed significant loss at mid-stage disease in TDP-43Q331K mice compared to wild type strain control mice. PNN loss coincided with an increased expression of matrix metallopeptidase-9 (MMP-9), an endopeptidase known to cleave PNNs, within the ventral horn. During mid-stage disease, increased numbers of microglia and astrocytes expressing MMP-9 were present in the ventral horn of TDP-43Q331K mice. In addition, TDP-43Q331K mice showed increased levels of aggrecan, a PNN component, in the ventral horn by microglia and astrocytes during this period. Elevated aggrecan levels within glia were accompanied by an increase in fractalkine expression, a chemotaxic protein responsible for the recruitment of microglia, in alpha motor neurons of onset and mid-stage TDP-43Q331K mice. Following PNN loss, alpha motor neurons in mid-stage TDP-43Q331K mice showed increased 3-nitrotyrosine expression, an indicator of protein oxidation. Together, our observations along with previous PNN research provide suggests a possible model whereby microglia and astrocytes expressing MMP-9 degrade PNNs surrounding alpha motor neurons in the TDP-43Q331K mouse. This loss of nets may expose alpha-motor neurons to oxidative damage leading to degeneration of the alpha motor neurons in the TDP-43Q331K ALS mouse model.
Collapse
Affiliation(s)
- Sang Won Cheung
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily F Willis
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Moissoglu K, Wang T, Gasparski AN, Stueland M, Paine EL, Jenkins L, Mili S. A KIF1C-CNBP motor-adaptor complex for trafficking mRNAs to cell protrusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600878. [PMID: 38979199 PMCID: PMC11230373 DOI: 10.1101/2024.06.26.600878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
mRNA localization to subcellular compartments is a widely used mechanism that functionally contributes to numerous processes. mRNA targeting can be achieved upon recognition of RNA cargo by molecular motors. However, our molecular understanding of how this is accomplished is limited, especially in higher organisms. We focus on a pathway that targets mRNAs to peripheral protrusions of mammalian cells and is important for cell migration. Trafficking occurs through active transport on microtubules, mediated by the KIF1C kinesin. Here, we identify the RNA-binding protein CNBP, as a factor required for mRNA localization to protrusions. CNBP binds directly to GA-rich sequences in the 3'UTR of protrusion targeted mRNAs. CNBP also interacts with KIF1C and is required for KIF1C recruitment to mRNAs and for their trafficking on microtubules to the periphery. This work provides a molecular mechanism for KIF1C recruitment to mRNA cargo and reveals a motor-adaptor complex for mRNA transport to cell protrusions.
Collapse
|
16
|
Fakim H, Vande Velde C. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2024; 156:176-189. [PMID: 37268555 DOI: 10.1016/j.semcdb.2023.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.
Collapse
Affiliation(s)
- Hana Fakim
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada.
| |
Collapse
|
17
|
Kurosaki T, Rambout X, Maquat LE. FMRP-mediated spatial regulation of physiologic NMD targets in neuronal cells. Genome Biol 2024; 25:31. [PMID: 38263082 PMCID: PMC10804635 DOI: 10.1186/s13059-023-03146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
In non-polarized cells, nonsense-mediated mRNA decay (NMD) generally begins during the translation of newly synthesized mRNAs after the mRNAs are exported to the cytoplasm. Binding of the FMRP translational repressor to UPF1 on NMD targets mainly inhibits NMD. However, in polarized cells like neurons, FMRP additionally localizes mRNAs to cellular projections. Here, we review the literature and evaluate available transcriptomic data to conclude that, in neurons, the translation of physiologic NMD targets bound by FMRP is partially inhibited until the mRNAs localize to projections. There, FMRP displacement in response to signaling induces a burst in protein synthesis followed by rapid mRNA decay.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
18
|
Ugalde MV, Alecki C, Rizwan J, Le P, Jacob-Tomas S, Xu JM, Minotti S, Wu T, Durham H, Yeo G. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. RESEARCH SQUARE 2023:rs.3.rs-3673702. [PMID: 38168440 PMCID: PMC10760236 DOI: 10.21203/rs.3.rs-3673702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhanced HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites was impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured mouse motor neurons and expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a crucial and unexpected neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gene Yeo
- University of California, San Diego
| |
Collapse
|
19
|
García Morato J, Gloeckner CJ, Kahle PJ. Proteomics elucidating physiological and pathological functions of TDP-43. Proteomics 2023; 23:e2200410. [PMID: 37671599 DOI: 10.1002/pmic.202200410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great variety of cellular processes in the nucleus and cytosol. In addition, a defined subset of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43 can associate with different ribonucleoprotein complexes. Combined with transcriptomics, MS interactome studies have unveiled associations between TDP-43 and the spliceosome machinery, polysomes and RNA granules. Moreover, the highly dynamic, low-valency interactions regulated by its low-complexity domain calls for innovative proximity labeling methodologies. In addition to protein partners, the analysis of post-translational modifications showed that they may play a role in the nucleocytoplasmic shuttling, RNA binding, liquid-liquid phase separation and protein aggregation of TDP-43. Here we review the various TDP-43 ribonucleoprotein complexes characterized so far, how they contribute to the diverse functions of TDP-43, and roles of post-translational modifications. Further understanding of the fluid dynamic properties of TDP-43 in ribonucleoprotein complexes, RNA granules, and self-assemblies will advance the understanding of RNA processing in cells and perhaps help to develop novel therapeutic approaches for TDPopathies.
Collapse
Affiliation(s)
- Jorge García Morato
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christian Johannes Gloeckner
- Research Group Functional Neuroproteomics, German Center of Neurodegenerative Diseases, Tübingen, Germany
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Pisciottani A, Croci L, Lauria F, Marullo C, Savino E, Ambrosi A, Podini P, Marchioretto M, Casoni F, Cremona O, Taverna S, Quattrini A, Cioni JM, Viero G, Codazzi F, Consalez GG. Neuronal models of TDP-43 proteinopathy display reduced axonal translation, increased oxidative stress, and defective exocytosis. Front Cell Neurosci 2023; 17:1253543. [PMID: 38026702 PMCID: PMC10679756 DOI: 10.3389/fncel.2023.1253543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neurodegenerative disease mostly affecting people around 50-60 years of age. TDP-43, an RNA-binding protein involved in pre-mRNA splicing and controlling mRNA stability and translation, forms neuronal cytoplasmic inclusions in an overwhelming majority of ALS patients, a phenomenon referred to as TDP-43 proteinopathy. These cytoplasmic aggregates disrupt mRNA transport and localization. The axon, like dendrites, is a site of mRNA translation, permitting the local synthesis of selected proteins. This is especially relevant in upper and lower motor neurons, whose axon spans long distances, likely accentuating their susceptibility to ALS-related noxae. In this work we have generated and characterized two cellular models, consisting of virtually pure populations of primary mouse cortical neurons expressing a human TDP-43 fusion protein, wt or carrying an ALS mutation. Both forms facilitate cytoplasmic aggregate formation, unlike the corresponding native proteins, giving rise to bona fide primary culture models of TDP-43 proteinopathy. Neurons expressing TDP-43 fusion proteins exhibit a global impairment in axonal protein synthesis, an increase in oxidative stress, and defects in presynaptic function and electrical activity. These changes correlate with deregulation of axonal levels of polysome-engaged mRNAs playing relevant roles in the same processes. Our data support the emerging notion that deregulation of mRNA metabolism and of axonal mRNA transport may trigger the dying-back neuropathy that initiates motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Alessandra Pisciottani
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Povo, Italy
| | - Chiara Marullo
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Savino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Filippo Casoni
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ottavio Cremona
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Franca Codazzi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G. Giacomo Consalez
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
El-Agamy SE, Guillaud L, Kono K, Wu Y, Terenzio M. FMRP Long-Range Transport and Degradation Are Mediated by Dynlrb1 in Sensory Neurons. Mol Cell Proteomics 2023; 22:100653. [PMID: 37739344 PMCID: PMC10625159 DOI: 10.1016/j.mcpro.2023.100653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The fragile X messenger ribonucleoprotein 1 (FMRP) is a multifunctional RNA-binding protein implicated in human neurodevelopmental and neurodegenerative disorders. FMRP mediates the localization and activity-dependent translation of its associated mRNAs through the formation of phase-separated condensates that are trafficked by microtubule-based motors in axons. Axonal transport and localized mRNA translation are critical processes for long-term neuronal survival and are closely linked to the pathogenesis of neurological diseases. FMRP dynein-mediated axonal trafficking is still largely unexplored but likely to constitute a key process underlying FMRP spatiotemporal translational regulation. Here, we show that dynein light chain roadblock 1 (Dynlrb1), a subunit of the dynein complex, is a critical regulator of FMRP function. In sensory axons, FMRP associates with endolysosomal organelles, likely through annexin A11, and is retrogradely trafficked by the dynein complex in a Dynlrb1-dependent manner. Moreover, Dynlrb1 silencing induced FMRP granule accumulation and repressed the translation of microtubule-associated protein 1b, one of its primary mRNA targets. Our findings suggest that Dynlrb1 regulates FMRP function through the control of its transport and targeted degradation.
Collapse
Affiliation(s)
- Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Keiko Kono
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Chemical Biology Mass Spectrometry Platform (ChemBioMS), Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan.
| |
Collapse
|
22
|
Gu J, Zhou X, Sutherland L, Kato M, Jaczynska K, Rizo J, McKnight SL. Oxidative regulation of TDP-43 self-association by a β-to-α conformational switch. Proc Natl Acad Sci U S A 2023; 120:e2311416120. [PMID: 37782781 PMCID: PMC10576115 DOI: 10.1073/pnas.2311416120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
An evolutionarily conserved region of the TDP-43 low-complexity domain (LCD) twenty residues in length can adopt either an α-helical or β-strand conformation. When in the latter conformation, TDP-43 self-associates via the formation of a labile, cross-β structure. Self-association can be monitored via the formation of phase-separated protein droplets. Exposure of droplets to hydrogen peroxide leads to oxidation of conserved methionine residues distributed throughout the LCD. Oxidation disassembles the cross-β structure, thus eliminating both self-association and phase separation. Here, we demonstrate that this process reciprocally enables formation of α-helical structure in precisely the same region formerly functioning to facilitate β-strand-mediated self-association. We further observe that the α-helical conformation allows interaction with a lipid-like detergent and that exposure to lipids enhances the β-to-α conformational switch. We hypothesize that regulation of this oxidative switch will prove to be important to the control of localized translation within vertebrate cells. The experimental observations reported herein were heavily reliant on studies of 1,6-hexanediol, a chemical agent that selectively dissolves labile structures formed via the self-association of protein domains of low sequence complexity. This aliphatic alcohol is shown to exert its dissociative activity primarily via hydrogen-bonding interactions with carbonyl oxygen atoms of the polypeptide backbone. Such observations underscore the central importance of backbone-mediated protein:protein interactions that facilitate the self-association and phase separation of LCDs.
Collapse
Affiliation(s)
- Jinge Gu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Lillian Sutherland
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba263-8555, Japan
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Steven L. McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| |
Collapse
|
23
|
Naskar A, Nayak A, Salaikumaran MR, Vishal SS, Gopal PP. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders. Front Mol Neurosci 2023; 16:1242925. [PMID: 37720552 PMCID: PMC10502346 DOI: 10.3389/fnmol.2023.1242925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Liquid-liquid phase separation results in the formation of dynamic biomolecular condensates, also known as membrane-less organelles, that allow for the assembly of functional compartments and higher order structures within cells. Multivalent, reversible interactions between RNA-binding proteins (RBPs), including FUS, TDP-43, and hnRNPA1, and/or RNA (e.g., RBP-RBP, RBP-RNA, RNA-RNA), result in the formation of ribonucleoprotein (RNP) condensates, which are critical for RNA processing, mRNA transport, stability, stress granule assembly, and translation. Stress granules, neuronal transport granules, and processing bodies are examples of cytoplasmic RNP condensates, while the nucleolus and Cajal bodies are representative nuclear RNP condensates. In neurons, RNP condensates promote long-range mRNA transport and local translation in the dendrites and axon, and are essential for spatiotemporal regulation of gene expression, axonal integrity and synaptic function. Mutations of RBPs and/or pathologic mislocalization and aggregation of RBPs are hallmarks of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. ALS/FTD-linked mutations of RBPs alter the strength and reversibility of multivalent interactions with other RBPs and RNAs, resulting in aberrant phase transitions. These aberrant RNP condensates have detrimental functional consequences on mRNA stability, localization, and translation, and ultimately lead to compromised axonal integrity and synaptic function in disease. Pathogenic protein aggregation is dependent on various factors, and aberrant dynamically arrested RNP condensates may serve as an initial nucleation step for pathologic aggregate formation. Recent studies have focused on identifying mechanisms by which neurons resolve phase transitioned condensates to prevent the formation of pathogenic inclusions/aggregates. The present review focuses on the phase separation of neurodegenerative disease-linked RBPs, physiological functions of RNP condensates, and the pathologic role of aberrant phase transitions in neurodegenerative disease, particularly ALS/FTD. We also examine cellular mechanisms that contribute to the resolution of aberrant condensates in neurons, and potential therapeutic approaches to resolve aberrantly phase transitioned condensates at a molecular level.
Collapse
Affiliation(s)
- Aditi Naskar
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | - Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Gu J, Zhou X, Sutherland L, Kato M, Jaczynska K, Rizo J, McKnight SL. Oxidative regulation of TDP-43 self-association by a β-to-α conformational switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555361. [PMID: 37693418 PMCID: PMC10491227 DOI: 10.1101/2023.08.29.555361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
An evolutionarily conserved region of the TDP-43 low complexity domain twenty residues in length can adopt either an α-helical or β-strand conformation. When in the latter conformation, TDP-43 self-associates via the formation of a labile, cross-β structure. Self-association can be monitored via the formation of phase separated protein droplets. Exposure of droplets to hydrogen peroxide leads to oxidation of conserved methionine residues distributed throughout the low complexity domain. Oxidation disassembles the cross-β structure, thus eliminating both self-association and phase separation. Here we demonstrate that this process reciprocally enables formation of α-helical structure in precisely the same region formerly functioning to facilitate β-strand mediated self-association. We further observe that the α-helical conformation allows interaction with a lipid-like detergent, and that exposure to lipids enhances the β-to-α conformational switch. We hypothesize that regulation of this oxidative switch will prove to be important to the control of localized translation within vertebrate cells. The experimental observations reported herein were heavily reliant on studies of 1,6-hexanediol, a chemical agent that selectively dissolves labile structures formed via the self-association of protein domains of low sequence complexity. This aliphatic alcohol is shown to exert its dissociative activity primarily via hydrogen bonding interactions with carbonyl oxygen atoms of the polypeptide backbone. Such observations underscore the central importance of backbone-mediated protein:protein interactions that facilitate the self-association and phase separation of low complexity domains. Significance Statement The TDP-43 protein is a constituent of RNA granules involved in regulated translation. TDP-43 contains a C-terminal domain of 150 amino acids of low sequence complexity conspicuously decorated with ten methionine residues. An evolutionarily conserved region (ECR) of 20 residues within this domain can adopt either of two forms of labile secondary structure. Under normal conditions wherein methionine residues are reduced, the ECR forms a labile cross-β structure that enables RNA granule condensation. Upon methionine oxidation, the ECR undergoes a conformational switch to become an α-helix incompatible with self-association and granule integrity. Oxidation of the TDP-43 low complexity domain is hypothesized to occur proximal to mitochondria, thus facilitating dissolution of RNA granules and activation of localized translation.
Collapse
Affiliation(s)
- Jinge Gu
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Xiaoming Zhou
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Lillian Sutherland
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Masato Kato
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST) 4-9-1, Anagawa, Inage-ku, Chiba, JAPAN 263-8555
| | - Klaudia Jaczynska
- Department of Biophysics, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Josep Rizo
- Department of Biophysics, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Steven L. McKnight
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| |
Collapse
|
25
|
Chandra S, Chatterjee R, Olmsted ZT, Mukherjee A, Paluh JL. Axonal transport during injury on a theoretical axon. Front Cell Neurosci 2023; 17:1215945. [PMID: 37636588 PMCID: PMC10450981 DOI: 10.3389/fncel.2023.1215945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Neurodevelopment, plasticity, and cognition are integral with functional directional transport in neuronal axons that occurs along a unique network of discontinuous polar microtubule (MT) bundles. Axonopathies are caused by brain trauma and genetic diseases that perturb or disrupt the axon MT infrastructure and, with it, the dynamic interplay of motor proteins and cargo essential for axonal maintenance and neuronal signaling. The inability to visualize and quantify normal and altered nanoscale spatio-temporal dynamic transport events prevents a full mechanistic understanding of injury, disease progression, and recovery. To address this gap, we generated DyNAMO, a Dynamic Nanoscale Axonal MT Organization model, which is a biologically realistic theoretical axon framework. We use DyNAMO to experimentally simulate multi-kinesin traffic response to focused or distributed tractable injury parameters, which are MT network perturbations affecting MT lengths and multi-MT staggering. We track kinesins with different motility and processivity, as well as their influx rates, in-transit dissociation and reassociation from inter-MT reservoirs, progression, and quantify and spatially represent motor output ratios. DyNAMO demonstrates, in detail, the complex interplay of mixed motor types, crowding, kinesin off/on dissociation and reassociation, and injury consequences of forced intermingling. Stalled forward progression with different injury states is seen as persistent dynamicity of kinesins transiting between MTs and inter-MT reservoirs. DyNAMO analysis provides novel insights and quantification of axonal injury scenarios, including local injury-affected ATP levels, as well as relates these to influences on signaling outputs, including patterns of gating, waves, and pattern switching. The DyNAMO model significantly expands the network of heuristic and mathematical analysis of neuronal functions relevant to axonopathies, diagnostics, and treatment strategies.
Collapse
Affiliation(s)
- Soumyadeep Chandra
- Electrical and Computer Science Engineering, Purdue University, West Lafayette, IN, United States
| | - Rounak Chatterjee
- Department of Electronics, Electrical and Systems Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Zachary T. Olmsted
- Nanobioscience, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amitava Mukherjee
- Nanobioscience, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
- School of Computing, Amrita Vishwa Vidyapeetham (University), Kollam, Kerala, India
| | - Janet L. Paluh
- Nanobioscience, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
| |
Collapse
|
26
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Mueller S, Decker L, Menge S, Ludolph AC, Freischmidt A. The Fragile X Protein Family in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2023; 60:3898-3910. [PMID: 36991279 DOI: 10.1007/s12035-023-03330-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The fragile X protein (FXP) family comprises the multifunctional RNA-binding proteins FMR1, FXR1, and FXR2 that play an important role in RNA metabolism and regulation of translation, but also in DNA damage and cellular stress responses, mitochondrial organization, and more. FMR1 is well known for its implication in neurodevelopmental diseases. Recent evidence suggests substantial contribution of this protein family to amyotrophic lateral sclerosis (ALS) pathogenesis. ALS is a highly heterogeneous neurodegenerative disease with multiple genetic and unclear environmental causes and very limited treatment options. The loss of motoneurons in ALS is still poorly understood, especially because pathogenic mechanisms are often restricted to patients with mutations in specific causative genes. Identification of converging disease mechanisms evident in most patients and suitable for therapeutic intervention is therefore of high importance. Recently, deregulation of the FXPs has been linked to pathogenic processes in different types of ALS. Strikingly, in many cases, available data points towards loss of expression and/or function of the FXPs early in the disease, or even at the presymptomatic state. In this review, we briefly introduce the FXPs and summarize available data about these proteins in ALS. This includes their relation to TDP-43, FUS, and ALS-related miRNAs, as well as their possible contribution to pathogenic protein aggregation and defective RNA editing. Furthermore, open questions that need to be addressed before definitively judging suitability of these proteins as novel therapeutic targets are discussed.
Collapse
Affiliation(s)
- Sarah Mueller
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lorena Decker
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sonja Menge
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- German Center For Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
28
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
29
|
Wijegunawardana D, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43, drive ribonucleoprotein condensate transport dysfunction and suppress local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526372. [PMID: 36778347 PMCID: PMC9915502 DOI: 10.1101/2023.01.30.526372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered RNA metabolism is a common pathogenic mechanism linked to familial and sporadic Amyotrophic lateral sclerosis (ALS). ALS is characterized by mislocalization and aggregation of TDP-43, an RNA-binding protein (RBP) with multiple roles in post-transcriptional RNA processing. Recent studies have identified genetic interactions between TDP-43 and Ataxin-2, a polyglutamine (polyQ) RBP in which intermediate length polyQ expansions confer increased ALS risk. Here, we used live-cell confocal imaging, photobleaching and translation reporter assays to study the localization, transport dynamics and mRNA regulatory functions of TDP-43/Ataxin-2 in rodent primary cortical neurons. We show that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within ribonucleoprotein (RNP) condensates, and disrupt both its motility along the axon and liquid-like properties. Our data suggest that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, these results indicate Ataxin-2 polyQ expansions have detrimental effects on stability, localization, and translation of transcripts critical for axonal and cytoskeletal integrity, particularly important for motor neurons.
Collapse
|
30
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
31
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
32
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
33
|
Nikolaou N, Gordon PM, Hamid F, Taylor R, Lloyd-Jones J, Makeyev EV, Houart C. Cytoplasmic pool of U1 spliceosome protein SNRNP70 shapes the axonal transcriptome and regulates motor connectivity. Curr Biol 2022; 32:5099-5115.e8. [PMID: 36384140 DOI: 10.1016/j.cub.2022.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Regulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons. We identify the extra-nuclear SNRNP70 as an important regulator of motor axonal growth, nerve-dependent acetylcholine receptor (AChR) clustering, and neuromuscular synaptogenesis. This cytoplasmic pool has a protective role for a limited number of transcripts regulating their abundance and trafficking inside axons. Moreover, non-nuclear SNRNP70 regulates splice variants of transcripts such as agrin, thereby controlling synapse formation. Our results point to an unexpected, yet essential, function of non-nuclear SNRNP70 in axonal development, indicating a role of spliceosome proteins in cytoplasmic RNA metabolism during neuronal connectivity.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK; Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| | - Patricia M Gordon
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Eugene V Makeyev
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
34
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
35
|
Tran NN, Lee BH. Functional implication of ubiquitinating and deubiquitinating mechanisms in TDP-43 proteinopathies. Front Cell Dev Biol 2022; 10:931968. [PMID: 36158183 PMCID: PMC9500471 DOI: 10.3389/fcell.2022.931968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which motor neurons in spinal cord and motor cortex are progressively lost. About 15% cases of ALS also develop the frontotemporal dementia (FTD), in which the frontotemporal lobar degeneration (FTLD) occurs in the frontal and temporal lobes of the brain. Among the pathologic commonalities in ALS and FTD is ubiquitin-positive cytoplasmic aggregation of TDP-43 that may reflect both its loss-of-function and gain-of-toxicity from proteostasis impairment. Deep understanding of how protein quality control mechanisms regulate TDP-43 proteinopathies still remains elusive. Recently, a growing body of evidence indicates that ubiquitinating and deubiquitinating pathways are critically engaged in the fate decision of aberrant or pathological TDP-43 proteins. E3 ubiquitin ligases coupled with deubiquitinating enzymes may influence the TDP-43-associated proteotoxicity through diverse events, such as protein stability, translocation, and stress granule or inclusion formation. In this article, we recapitulate our current understanding of how ubiquitinating and deubiquitinating mechanisms can modulate TDP-43 protein quality and its pathogenic nature, thus shedding light on developing targeted therapies for ALS and FTD by harnessing protein degradation machinery.
Collapse
Affiliation(s)
- Non-Nuoc Tran
- Department of New Biology, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- Department of New Biology Research Center (NBRC), Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Byung-Hoon Lee,
| |
Collapse
|
36
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
37
|
Zhou X, Sumrow L, Tashiro K, Sutherland L, Liu D, Qin T, Kato M, Liszczak G, McKnight SL. Mutations linked to neurological disease enhance self-association of low-complexity protein sequences. Science 2022; 377:eabn5582. [PMID: 35771920 PMCID: PMC9610444 DOI: 10.1126/science.abn5582] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein domains of low sequence complexity do not fold into stable, three-dimensional structures. Nevertheless, proteins with these sequences assist in many aspects of cell organization, including assembly of nuclear and cytoplasmic structures not surrounded by membranes. The dynamic nature of these cellular assemblies is caused by the ability of low-complexity domains (LCDs) to transiently self-associate through labile, cross-β structures. Mechanistic studies useful for the study of LCD self-association have evolved over the past decade in the form of simple assays of phase separation. Here, we have used such assays to demonstrate that the interactions responsible for LCD self-association can be dictated by labile protein structures poised close to equilibrium between the folded and unfolded states. Furthermore, missense mutations causing Charcot-Marie-Tooth disease, frontotemporal dementia, and Alzheimer's disease manifest their pathophysiology in vitro and in cultured cell systems by enhancing the stability of otherwise labile molecular structures formed upon LCD self-association.
Collapse
|
38
|
Vishal SS, Wijegunawardana D, Salaikumaran MR, Gopal PP. Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons. Front Cell Dev Biol 2022; 10:876893. [PMID: 35646935 PMCID: PMC9133736 DOI: 10.3389/fcell.2022.876893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in TDP-43, a RNA-binding protein with multiple functions in RNA metabolism, cause amyotrophic lateral sclerosis (ALS), but it is uncertain how defects in RNA biology trigger motor neuron degeneration. TDP-43 is a major constituent of ribonucleoprotein (RNP) granules, phase separated biomolecular condensates that regulate RNA splicing, mRNA transport, and translation. ALS-associated TDP-43 mutations, most of which are found in the low complexity domain, promote aberrant liquid to solid phase transitions and impair the dynamic liquid-like properties and motility of RNP transport granules in neurons. Here, we perform a comparative analysis of ALS-linked mutations and TDP-43 variants in order to identify critical structural elements, aromatic and charged residues that are key determinants of TDP-43 RNP transport and condensate formation in neurons. We find that A315T and Q343R disease-linked mutations and substitutions of aromatic residues within the α-helical domain and LARKS, show the most severe defects in TDP-43 RNP granule transport and impair both anterograde and retrograde motility. F313L and F313-6L/Y substitutions of one or both phenylalanine residues in LARKS suggest the aromatic rings are important for TDP-43 RNP transport. Similarly, W334F/L substitutions of the tryptophan residue in the α-helical domain, impair TDP-43 RNP motility (W334L) or anterograde transport (W334F). We also show that R293A and R293K mutations, which disrupt the only RGG in the LCD, profoundly reduce long-range, directed transport and net velocity of TDP-43 RNP granules. In the disordered regions flanking the α-helical domain, we find that F283Y, F397Y or Y374F substitutions of conserved GF/G and SYS motifs, also impair anterograde and/or retrograde motility, possibly by altering hydrophobicity. Similarly, ALS-linked mutations in disordered regions distant from the α-helical domain also show anterograde transport deficits, consistent with previous findings, but these mutations are less severe than A315T and Q343R. Overall our findings demonstrate that the conserved α-helical domain, phenylalanine residues within LARKS and RGG motif are key determinants of TDP-43 RNP transport, suggesting they may mediate efficient recruitment of motors and adaptor proteins. These results offer a possible mechanism underlying ALS-linked TDP-43 defects in axonal transport and homeostasis.
Collapse
Affiliation(s)
- Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | | | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
40
|
Bjork RT, Mortimore NP, Loganathan S, Zarnescu DC. Dysregulation of Translation in TDP-43 Proteinopathies: Deficits in the RNA Supply Chain and Local Protein Production. Front Neurosci 2022; 16:840357. [PMID: 35321094 PMCID: PMC8935057 DOI: 10.3389/fnins.2022.840357] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
Local control of gene expression provides critical mechanisms for regulating development, maintenance and plasticity in the nervous system. Among the strategies known to govern gene expression locally, mRNA transport and translation have emerged as essential for a neuron’s ability to navigate developmental cues, and to establish, strengthen and remove synaptic connections throughout lifespan. Substantiating the role of RNA processing in the nervous system, several RNA binding proteins have been implicated in both developmental and age dependent neurodegenerative disorders. Of these, TDP-43 is an RNA binding protein that has emerged as a common denominator in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and related disorders due to the identification of causative mutations altering its function and its accumulation in cytoplasmic aggregates observed in a significant fraction of ALS/FTD cases, regardless of etiology. TDP-43 is involved in multiple aspects of RNA processing including splicing, transport and translation. Given that one of the early events in disease pathogenesis is mislocalization from the nucleus to the cytoplasm, several studies have focused on elucidating the pathogenic role of TDP-43 in cytoplasmic translation. Here we review recent findings describing TDP-43 translational targets and potential mechanisms of translation dysregulation in TDP-43 proteinopathies across multiple experimental models including cultured cells, flies, mice and patient derived neurons.
Collapse
Affiliation(s)
- Reed T. Bjork
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
| | - Nicholas P. Mortimore
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | | | - Daniela C. Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
- *Correspondence: Daniela C. Zarnescu,
| |
Collapse
|
41
|
Versluys L, Ervilha Pereira P, Schuermans N, De Paepe B, De Bleecker JL, Bogaert E, Dermaut B. Expanding the TDP-43 Proteinopathy Pathway From Neurons to Muscle: Physiological and Pathophysiological Functions. Front Neurosci 2022; 16:815765. [PMID: 35185458 PMCID: PMC8851062 DOI: 10.3389/fnins.2022.815765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
TAR DNA-binding protein 43, mostly referred to as TDP-43 (encoded by the TARDBP gene) is strongly linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). From the identification of TDP-43 positive aggregates in the brains and spinal cords of ALS/FTD patients, to a genetic link between TARBDP mutations and the development of TDP-43 pathology in ALS, there is strong evidence indicating that TDP-43 plays a pivotal role in the process of neuronal degeneration. What this role is, however, remains to be determined with evidence ranging from gain of toxic properties through the formation of cytotoxic aggregates, to an inability to perform its normal functions due to nuclear depletion. To add to an already complex subject, recent studies highlight a role for TDP-43 in muscle physiology and disease. We here review the biophysical, biochemical, cellular and tissue-specific properties of TDP-43 in the context of neurodegeneration and have a look at the nascent stream of evidence that positions TDP-43 in a myogenic context. By integrating the neurogenic and myogenic pathological roles of TDP-43 we provide a more comprehensive and encompassing view of the role and mechanisms associated with TDP-43 across the various cell types of the motor system, all the way from brain to limbs.
Collapse
Affiliation(s)
- Lauren Versluys
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Ervilha Pereira
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Nika Schuermans
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan L. De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Bogaert
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bart Dermaut
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Fan R, Lai KO. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J 2021; 289:2128-2144. [PMID: 34796656 DOI: 10.1111/febs.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
The Kinesin superfamily proteins (KIFs) are major molecular motors that transport diverse set of cargoes along microtubules to both the axon and dendrite of a neuron. Much of our knowledge about kinesin function is obtained from studies on axonal transport. Emerging evidence reveals how specific kinesin motor proteins carry cargoes to dendrites, including proteins, mRNAs and organelles that are crucial for synapse development and plasticity. In this review, we will summarize the major kinesin motors and their associated cargoes that have been characterized to regulate postsynaptic function in neuron. We will also discuss how specific kinesins are selectively involved in the development of excitatory and inhibitory postsynaptic compartments, their regulation by post-translational modifications (PTM), as well as their roles beyond conventional transport carrier.
Collapse
Affiliation(s)
- Ruolin Fan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Ma X, Ying Y, Xie H, Liu X, Wang X, Li J. The Regulatory Role of RNA Metabolism Regulator TDP-43 in Human Cancer. Front Oncol 2021; 11:755096. [PMID: 34778070 PMCID: PMC8581290 DOI: 10.3389/fonc.2021.755096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
TAR-DNA-binding protein-43 (TDP-43) is a member of hnRNP family and acts as both RNA and DNA binding regulator, mediating RNA metabolism and transcription regulation in various diseases. Currently, emerging evidence gradually elucidates the crucial role of TDP-43 in human cancers like it is previously widely researched in neurodegeneration diseases. A series of RNA metabolism events, including mRNA alternative splicing, transport, stability, miRNA processing, and ncRNA regulation, are all confirmed to be closely involved in various carcinogenesis and tumor progressions, which are all partially regulated and interacted by TDP-43. Herein we conducted the first overall review about TDP-43 and cancers to systematically summarize the function and precise mechanism of TDP-43 in different human cancers. We hope it would provide basic knowledge and concepts for tumor target therapy and biomarker diagnosis in the future.
Collapse
Affiliation(s)
- Xueyou Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiangfeng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms222111870. [PMID: 34769301 PMCID: PMC8584444 DOI: 10.3390/ijms222111870] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Collapse
|
45
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|
46
|
Valori CF, Neumann M. Contribution of RNA/DNA Binding Protein Dysfunction in Oligodendrocytes in the Pathogenesis of the Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration Spectrum Diseases. Front Neurosci 2021; 15:724891. [PMID: 34539339 PMCID: PMC8440855 DOI: 10.3389/fnins.2021.724891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders, often considered as the extreme manifestations of a disease spectrum, as they share similar pathomechanisms. In support of this, pathological aggregation of the RNA/DNA binding proteins trans-activation response element DNA-binding protein 43 (TDP-43) or fused in sarcoma (FUS) is the pathological hallmark found in neurons and glial cells of subsets of patients affected by either condition (i.e., ALS/FTLD—TDP-43 or ALS/FTLD—FUS, respectively). Among glia, oligodendrocytes are the most abundant population, designated to ensheath the axons with myelin and to provide them with metabolic and trophic support. In this minireview, we recapitulate the neuropathological evidence for oligodendroglia impairment in ALS/FTLD. We then debate how TDP-43 and FUS target oligodendrocyte transcripts, thereby controlling their homeostatic abilities toward the axons. Finally, we discuss cellular and animal models aimed at investigating the functional consequences of manipulating TDP-43 and FUS in oligodendrocytes in vivo. Taken together, current data provide increasing evidence for an important role of TDP-43 and FUS-mediated oligodendroglia dysfunction in the pathogenesis of ALS/FTLD. Thus, targeting disrupted oligodendroglial functions may represent a new treatment approach for these conditions.
Collapse
Affiliation(s)
- Chiara F Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
48
|
Wang IF, Wang Y, Yang YH, Huang GJ, Tsai KJ, Shen CKJ. Activation of a hippocampal CREB-pCREB-miRNA-MEF2 axis modulates individual variation of spatial learning and memory capability. Cell Rep 2021; 36:109477. [PMID: 34348143 DOI: 10.1016/j.celrep.2021.109477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
Phenotypic variation is a fundamental prerequisite for cell and organism evolution by natural selection. Whereas the role of stochastic gene expression in phenotypic diversity of genetically identical cells is well studied, not much is known regarding the relationship between stochastic gene expression and individual behavioral variation in animals. We demonstrate that a specific miRNA (miR-466f-3p) is upregulated in the hippocampus of a portion of individual inbred mice upon a Morris water maze task. Significantly, miR-466f-3p positively regulates the neuron morphology, function and spatial learning, and memory capability of mice. Mechanistically, miR-466f-3p represses translation of MEF2A, a negative regulator of learning/memory. Finally, we show that varied upregulation of hippocampal miR-466f-3p results from randomized phosphorylation of hippocampal cyclic AMP (cAMP)-response element binding (CREB) in individuals. This finding of modulation of spatial learning and memory via a randomized hippocampal signaling axis upon neuronal stimulation represents a demonstration of how variation in tissue gene expression lead to varied animal behavior.
Collapse
Affiliation(s)
- I-Fang Wang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yihan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hua Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou 33302, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Che-Kun James Shen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
49
|
Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci 2021; 22:ijms22157781. [PMID: 34360544 PMCID: PMC8346169 DOI: 10.3390/ijms22157781] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.
Collapse
|
50
|
Gamarra M, de la Cruz A, Blanco-Urrejola M, Baleriola J. Local Translation in Nervous System Pathologies. Front Integr Neurosci 2021; 15:689208. [PMID: 34276318 PMCID: PMC8279726 DOI: 10.3389/fnint.2021.689208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dendrites and axons can extend dozens to hundreds of centimeters away from the cell body so that a single neuron can sense and respond to thousands of stimuli. Thus, for an accurate function of dendrites and axons the neuronal proteome needs to be asymmetrically distributed within neurons. Protein asymmetry can be achieved by the transport of the protein itself or the transport of the mRNA that is then translated at target sites in neuronal processes. The latter transport mechanism implies local translation of localized mRNAs. The role of local translation in nervous system (NS) development and maintenance is well established, but recently there is growing evidence that this mechanism and its deregulation are also relevant in NS pathologies, including neurodegenerative diseases. For instance, upon pathological signals disease-related proteins can be locally synthesized in dendrites and axons. Locally synthesized proteins can exert their effects at or close to the site of translation, or they can be delivered to distal compartments like the nucleus and induce transcriptional responses that lead to neurodegeneration, nerve regeneration and other cell-wide responses. Relevant key players in the process of local protein synthesis are RNA binding proteins (RBPs), responsible for mRNA transport to neurites. Several neurological and neurodegenerative disorders, including amyotrophic lateral sclerosis or spinal motor atrophy, are characterized by mutations in genes encoding for RBPs and consequently mRNA localization and local translation are impaired. In other diseases changes in the local mRNA repertoire and altered local protein synthesis have been reported. In this review, we will discuss how deregulation of localized translation at different levels can contribute to the development and progression of nervous system pathologies.
Collapse
Affiliation(s)
- María Gamarra
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Aida de la Cruz
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Maite Blanco-Urrejola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jimena Baleriola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|