1
|
Masum MHU, Mahdeen AA, Barua A. Revolutionizing Chikungunya Vaccines: mRNA Breakthroughs With Molecular and Immune Simulations. Bioinform Biol Insights 2025; 19:11779322251324859. [PMID: 40182080 PMCID: PMC11967231 DOI: 10.1177/11779322251324859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/14/2025] [Indexed: 04/05/2025] Open
Abstract
With the ability to cause massive epidemics that have consequences on millions of individuals globally, the Chikungunya virus (CHIKV) emerges as a severe menace. Developing an effective vaccine is urgent as no effective therapeutics are available for such viral infections. Therefore, we designed a novel mRNA vaccine against CHIKV with a combination of highly antigenic and potential MHC-I, MHC-II, and B-cell epitopes from the structural polyprotein. The vaccine demonstrated well-characterized physicochemical properties, indicating its solubility and potential functional stability within the body (GRAVY score of -0.639). Structural analyses of the vaccine revealed a well-stabilized secondary and tertiary structure (Ramachandran score of 82.8% and a Z-score of -4.17). Docking studies of the vaccine with TLR-2 (-1027.7 KJ/mol) and TLR-4 (-1212.4 KJ/mol) exhibited significant affinity with detailed hydrogen bond interactions. Molecular dynamics simulations highlighted distinct conformational dynamics among the vaccine, "vaccine-TLR-2" and "vaccine-TLR-4" complexes. The vaccine's ability to elicit both innate and adaptive immune responses, including the presence of memory B-cells and T-cells, persistent B-cell immunity for a year, and the activation of TH cells leading to the release of IFN-γ and IL-2, has significant implications for its potential effectiveness. The CHIKV vaccine developed in this study shows promise as a potential candidate for future vaccine production against CHIKV, suggesting its suitability for further clinical advancement, including in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Md. Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
2
|
Jantz-Naeem N, Guvencli N, Böttcher-Loschinski R, Böttcher M, Mougiakakos D, Kahlfuss S. Metabolic T-cell phenotypes: from bioenergetics to function. Am J Physiol Cell Physiol 2025; 328:C1062-C1075. [PMID: 39946684 DOI: 10.1152/ajpcell.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nese Guvencli
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Böttcher
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Parvin R, Masum MHU, Heema HP, Akter A, Hossain MA, Siddiki AMAMZ. Designing of a multiepitope-based vaccine against echinococcosis utilizing the potent Ag5 antigen: Immunoinformatics and simulation approaches. PLoS One 2025; 20:e0310510. [PMID: 39937717 DOI: 10.1371/journal.pone.0310510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/13/2024] [Indexed: 02/14/2025] Open
Abstract
Echinococcosis is a significant parasitic zoonotic disease with severe implications for human and animal health. To date, there has been no effective vaccine candidate available for echinococcosis. Therefore, we employed computational approaches to develop a multiepitope-based vaccine using the most potent epitopes of MHC-I, MHC-II, and B-cell derived from the Ag5 protein of Echinococcus spp. The final vaccine construct containing the epitopes, linkers, and adjuvant exhibited potent antigenicity (score > 0.1) with no evidence of allergenicity (score < 0) and toxicity (score < 0) in several computational platforms. The vaccine also exhibited favorable physicochemical characteristics such as being highly soluble (SOLpro score of 0.781243) and hydrophilic (Grand average of hydropathy of -0.433). Moreover, the tertiary structure of the vaccine was also found to be structurally stable, with a Z score of -5.71. Further, the molecular docking analysis confirmed the vaccine's significant binding affinity to the RP-105 (docking score of -1252.7) and TLR-9 (docking score of -970.9). The molecular dynamic simulations confirmed the structural stability of the docked complexes under a virtual physiological system. The negative ΔTOTAL values derived from the MM-PBSA and MM-GBSA analyses confirmed a spontaneous and thermodynamically favorable binding process between the vaccine and receptors. Moreover, the vaccine demonstrated high potentiality to elicit both innate (natural killer cell, dendritic and macrophage) and adaptive (B-cell, helper T cell and cytotoxic T cell) immune responses with sustained humoral immune responses evidenced by increased IFN-γ and IL-2 levels. Following codon optimization and in silico cloning, the vaccine was successfully expressed (CAI value of 0.9607 and average GC content of 52.34%) after being inserted into the pET-28a (+) plasmid of E. coli. These findings highlight the potential of the designed vaccine candidate to combat echinococcosis and lay the groundwork for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Aklima Akter
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Mohammad Alamgir Hossain
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - A M A M Zonaed Siddiki
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
- Nextgen Informatics Ltd, Bangladesh
| |
Collapse
|
4
|
Chen X, Zhao Z, Zhao R, Li W, Liu X, Tian L, Liu M. STC1 encapsulated in small extracellular vesicles from laryngeal squamous cell carcinoma cells induces CD8 + T cell dysfunction by reprogramming tumor-associated macrophages into M2-like macrophages. Cancer Immunol Immunother 2025; 74:64. [PMID: 39751648 PMCID: PMC11699165 DOI: 10.1007/s00262-024-03915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8+ T cells and subsequent tumor progression. This study evaluates the role of laryngeal squamous cell carcinoma cell-derived small extracellular vesicles (LSCC-sEVs) in M2 polarization of TAMs and CD8+ T cell dysfunction, and delineates the underlying mechanisms. METHODS Human leukemia monocyte cell line (THP-1) was induced to differentiate into M0 macrophages using phorbol 12-myristate 13-acetate. M0 macrophages were incubated with sEVs derived from LSCC cells TU212. CD8+T cells, extracted from peripheral blood mononuclear cells of healthy volunteer donors, were co-cultured with the LSCC-sEV-treated M0 macrophages to evaluate their proliferation, and immune function. The role of LSCC-sEVs was investigated in macrophage tumor-bearing mouse models. RESULTS LSCC-sEVs promoted TAM M2 polarization and impaired CD8+ T cell function, attributing to PD-L1 expression upregulation. In addition, suppression of metabolic reprogramming could partially reverse LSCC-sEV-induced CD8+ T cell dysfunction. STC-1 was found highly enriched in LSCC-sEVs. Knockdown of STC1 abrogated metabolic reprogramming of TAMs into M2-like macrophages and restored CD8+ T cell function. Importantly, in vivo results showed that LSCC-sEVs transform TAMs into M2 phenotype by mediating metabolic reprogramming and induce CD8+ T cell dysfunction, ultimately accelerating tumor growth. CONCLUSION Our data reveal a previously undescribed role for LSCC-sEVs in the regulation of M2 polarization of TAMs and immune cell function through STC1 mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhigang Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Rui Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Wenjing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xinyu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First People Hospital of Jining, Jining, 272000, China
| | - Linli Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ming Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Voogd L, Riou C, Scriba TJ, van Wolfswinkel M, van Meijgaarden KE, Franken KLMC, Wilkinson RJ, Ottenhoff THM, Joosten SA. HLA-E/ Mtb specific CD4 + and CD8 + T cells have a memory phenotype in individuals with TB infection. Front Immunol 2024; 15:1505329. [PMID: 39790998 PMCID: PMC11714851 DOI: 10.3389/fimmu.2024.1505329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Introduction Tuberculosis (TB) is the deadliest infectious disease worldwide and novel vaccines are urgently needed. HLA-E is a virtually monomorphic antigen presentation molecule and is not downregulated upon HIV co-infection. HLA-E restricted Mtb specific CD8+ T cells are present in the circulation of individuals with active TB (aTB) and Mtb infection (TBI) with or without HIV co-infection, making HLA-E restricted T cells interesting vaccination targets for TB. Methods Here, we performed in-depth phenotyping of HLA-E/Mtb specific and total T cell populations in individuals with TBI and in individuals with aTB or TBI and HIV using HLA-E/Mtb tetramers. Results and Discussion We show that HIV co-infection is the main driver in changing the memory distribution of HLA-E/Mtb specific CD4+ and CD8+ T cell subsets. HLA-E/Mtb specific CD4+ and CD8+ T cells were found to circulate with comparable frequencies in all individuals and displayed expression of KLRG1, PD-1 and 2B4 similar to that of total T cells. The presence of HLA-E/Mtb specific T cells in individuals with aTB and TBI highlights the potential of HLA-E as a vaccine target for TB.
Collapse
Affiliation(s)
- Linda Voogd
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Riou
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marjolein van Wolfswinkel
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Krista E. van Meijgaarden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L. M. C. Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Robert J. Wilkinson
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Tom H. M. Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A. Joosten
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Xiao J, Wang F, Yan H, Wang B, Su B, Lu X, Zhang T. Memory stem CD8 +T cells in HIV/Mtb mono- and co-infection: characteristics, implications, and clinical significance. Front Cell Infect Microbiol 2024; 14:1485825. [PMID: 39720790 PMCID: PMC11666416 DOI: 10.3389/fcimb.2024.1485825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Human immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (Mtb) co-infection presents a significant public health challenge worldwide. Comprehensive assessment of the immune response in HIV/Mtb co-infection is complex and challenging. CD8+T cells play a pivotal role in the adaptive immune response to both HIV and Mtb. The differentiation of CD8+T cells follow a hierarchical pattern, with varying degrees of exhaustion throughout the process. Memory stem T cells (TSCM cells) is at the apex of the memory T lymphocyte system, which has recently emerged as a promising target in immunotherapy. In this context, we discuss the alterations of CD8+TSCM cells in HIV/Mtb mono- and co-infection, their implications and clinical significance, and potential for improving immunotherapy.
Collapse
Affiliation(s)
- Jing Xiao
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fuchun Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Respiratory Medicine, Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Cumming BM, Addicott KW, Maruri F, Pillay V, Asmal R, Moodley S, Barreto-Durate B, Araújo-Pereira M, Mazibuko M, Mhlane Z, Mbatha N, Khan K, Makhari S, Karim F, Peetluk L, Pym AS, Moosa MYS, van der Heijden YF, Sterling TS, Andrade BB, Leslie A, Steyn AJC. Longitudinal mitochondrial bioenergetic signatures of blood monocytes and lymphocytes improve during treatment of drug-susceptible pulmonary tuberculosis patients Monocyte/lymphocyte bioenergetic signatures post-TB treatment. Front Immunol 2024; 15:1465448. [PMID: 39606220 PMCID: PMC11599235 DOI: 10.3389/fimmu.2024.1465448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The impact of human pulmonary tuberculosis (TB) on the bioenergetic metabolism of circulating immune cells remains elusive, as does the resolution of these effects with TB treatment. In this study, the rates of oxidative phosphorylation (OXPHOS) and glycolysis in circulating lymphocytes and monocytes of patients with drug-susceptible TB at diagnosis, 2 months, and 6 months during treatment, and 12 months after diagnosis were investigated using extracellular flux analysis. At diagnosis, the bioenergetic parameters of both blood lymphocytes and monocytes of TB patients were severely impaired in comparison to non-TB and non-HIV-infected controls. However, most bioenergetic parameters were not affected by HIV status or glycemic index. Treatment of TB patients restored the % spare respiratory capacity (%SRC) of the circulating lymphocytes to that observed in non-TB and non-HIV infected controls by 12 months. Treatment also improved the maximal respiration of circulating lymphocytes and the %SRC of circulating monocytes of the TB patients. Notably, the differential correlation of the clinical and bioenergetic parameters of the monocytes and lymphocytes from the controls and TB patients at baseline and month 12 was consistent with improved metabolic health and resolution of inflammation following successful TB treatment. Network analysis of the bioenergetic parameters of circulating immune cells with serum cytokine levels indicated a highly coordinated immune response at month 6. These findings underscore the importance of metabolic health in combating TB, supporting the need for further investigation of the bioenergetic immunometabolism associated with TB infection for novel therapeutic approaches aimed at bolstering cellular energetics to enhance immune responses and expedite recovery in TB patients.
Collapse
Affiliation(s)
- Bridgette M. Cumming
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kelvin W. Addicott
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Fernanda Maruri
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Vanessa Pillay
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Rukaya Asmal
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Sashen Moodley
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz Barreto-Durate
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Mariana Araújo-Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Matilda Mazibuko
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zoey Mhlane
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nikiwe Mbatha
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile Makhari
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lauren Peetluk
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alexander S. Pym
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Yuri F. van der Heijden
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Global Division, The Aurum Institute, Johannesburg, South Africa
| | - Timothy S. Sterling
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College of London, London, United Kingdom
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Abhimanyu, Longlax SC, Nishiguchi T, Ladki M, Sheikh D, Martinez AL, Mace EM, Grimm SL, Caldwell T, Portillo Varela A, Sekhar RV, Mandalakas AM, Mlotshwa M, Ginidza S, Cirillo JD, Wallis RS, Netea MG, van Crevel R, Coarfa C, DiNardo AR. TCA metabolism regulates DNA hypermethylation in LPS and Mycobacterium tuberculosis-induced immune tolerance. Proc Natl Acad Sci U S A 2024; 121:e2404841121. [PMID: 39348545 PMCID: PMC11474056 DOI: 10.1073/pnas.2404841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/28/2024] [Indexed: 10/02/2024] Open
Abstract
Severe and chronic infections, including pneumonia, sepsis, and tuberculosis (TB), induce long-lasting epigenetic changes that are associated with an increase in all-cause postinfectious morbidity and mortality. Oncology studies identified metabolic drivers of the epigenetic landscape, with the tricarboxylic acid (TCA) cycle acting as a central hub. It is unknown if the TCA cycle also regulates epigenetics, specifically DNA methylation, after infection-induced immune tolerance. The following studies demonstrate that lipopolysaccharide and Mycobacterium tuberculosis induce changes in DNA methylation that are mediated by the TCA cycle. Infection-induced DNA hypermethylation is mitigated by inhibitors of cellular metabolism (rapamycin, everolimus, metformin) and the TCA cycle (isocitrate dehydrogenase inhibitors). Conversely, exogenous supplementation with TCA metabolites (succinate and itaconate) induces DNA hypermethylation and immune tolerance. Finally, TB patients who received everolimus have less DNA hypermethylation demonstrating proof of concept that metabolic manipulation can mitigate epigenetic scars.
Collapse
Affiliation(s)
- Abhimanyu
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Santiago Carrero Longlax
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Tomoki Nishiguchi
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Malik Ladki
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Daanish Sheikh
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Amera L. Martinez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX77030
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Thaleia Caldwell
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Alexandra Portillo Varela
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
| | - Rajagopal V. Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Anna M. Mandalakas
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
- Epidemiology, Human Genetics & Environmental Sciences, University of Texas-UTHealth School of Public Health, Houston, TX77030
- Clinical Infectious Disease Group, German Center for Infectious Research (DZIF), Clinical tuberculosis (TB) Unit, Research Center Borstel, Borstel27246, Germany
| | - Mandla Mlotshwa
- The Aurum institute, Johannesburg2006, South Africa
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
- Department of Medicine, Vanderbilt University, Nashville, TN37232
| | | | - Jeffrey D. Cirillo
- Center for Airborne Pathogen Research and Imaging, Texas A&M College of Medicine, Bryan, TX77843
| | - Robert S. Wallis
- The Aurum institute, Johannesburg2006, South Africa
- Department of Medicine, Case Western Reserve University, Cleveland, OH44106
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN37232
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen6525, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn53113, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen6525, Netherlands
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, OxfordOX1 4BH, United Kingdom
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Andrew R. DiNardo
- Department of Pediatrics, The Global TB Program, William T Shearer Center for Immunobiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX77030
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen6525, Netherlands
| |
Collapse
|
9
|
O’Shaughnessy S, Finlay DK. Oxidative stress in gut T H17 cells makes mice susceptible to bacterial infection. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00049. [PMID: 39544255 PMCID: PMC11559963 DOI: 10.1097/in9.0000000000000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
A recent paper published in Cell Metabolism in August 2024 by Dirk Brenner's laboratory highlights the importance of effectively managing reactive oxygen species (ROS) in gut TH17 T cells for minimizing the damage caused by intestinal bacterial infection. This commentary will discuss the control of cellular ROS by glutathione and the emerging understanding that neutralizing ROS in immune cells is essential for the individualized functions of different immune subsets. In the case of this study, managing ROS within TH17 cells in the gut was shown to be essential to sustain the production of IL22 cytokine to maintain gut homeostasis in response to bacterial infection.
Collapse
Affiliation(s)
- Simon O’Shaughnessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences, Trinity College Dublin, Ireland
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences, Trinity College Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences, Trinity College Dublin, Ireland
| |
Collapse
|
10
|
Liang XH, Chen XY, Yan Y, Cheng AY, Lin JY, Jiang YX, Chen HZ, Jin JM, Luan X. Targeting metabolism to enhance immunotherapy within tumor microenvironment. Acta Pharmacol Sin 2024; 45:2011-2022. [PMID: 38811773 PMCID: PMC11420344 DOI: 10.1038/s41401-024-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Like cancer cells, immune cells within the tumor microenvironment or premetastatic niche also undergo extensive metabolic reprogramming, which profoundly impacts anti-tumor immune responses. Numerous evidence has illuminated that immunosuppressive TME and the metabolites released by tumor cells, including lactic acid, Prostaglandin E2 (PGE2), fatty acids (FAs), cholesterol, D-2-Hydroxyglutaric acid (2-HG), adenosine (ADO), and kynurenine (KYN) can contribute to CD8+ T cell dysfunction. Dynamic alterations of these metabolites between tumor cells and immune cells can similarly initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response. This review summarizes the new landscape beyond the classical metabolic pathways in tumor cells, highlighting the pivotal role of metabolic disturbance in the immunosuppressive microenvironment, especially how nutrient deprivation in TME leads to metabolic reprogramming of CD8+ T cells. Likewise, it emphasizes the current therapeutic targets or strategies related to tumor metabolism and immune response, providing therapeutic benefits for tumor immunotherapy and drug development in the future. Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Dynamic alterations of metabolites between tumor cells and immune cells initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response.
Collapse
Affiliation(s)
- Xiao-Hui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Zhu M, Wu Y, Zhu T, Chen J, Chen Z, Ding H, Tan S, He J, Zeng Q, Huang X. Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity. Cancer Immunol Res 2024; 12:1007-1021. [PMID: 38819238 DOI: 10.1158/2326-6066.cir-23-1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively "decorating" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.
Collapse
Affiliation(s)
- Manman Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhenxing Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Kingcell Regenerative Medicine (Guangdong) Co., Zhuhai, China
| | - Hanxi Ding
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Siyi Tan
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qi Zeng
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
12
|
Flores-Gonzalez J, Ramón-Luing LA, Falfán-Valencia R, Batista CVF, Soto-Alvarez S, Huerta-Nuñez L, Chávez-Galán L. The presence of cytotoxic CD4 and exhausted-like CD8+ T-cells is a signature of active tuberculosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167219. [PMID: 38734321 DOI: 10.1016/j.bbadis.2024.167219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Cesar V F Batista
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Silverio Soto-Alvarez
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Lidia Huerta-Nuñez
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico.
| |
Collapse
|
13
|
Masum MHU, Wajed S, Hossain MI, Moumi NR, Talukder A, Rahman MM. An mRNA vaccine for pancreatic cancer designed by applying in silico immunoinformatics and reverse vaccinology approaches. PLoS One 2024; 19:e0305413. [PMID: 38976715 PMCID: PMC11230540 DOI: 10.1371/journal.pone.0305413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is considered a significant global health concern. Chemotherapy and surgery are the mainstays of current pancreatic cancer treatments; however, a few cases are suitable for surgery, and most of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines, mRNA vaccines for pancreatic cancer have more promise because of their delivery, enhanced immune responses, and lower proneness to mutation. We constructed an mRNA vaccine by analyzing S100 family proteins, which are all major activators of receptors for advanced glycation end products. We applied immunoinformatic approaches, including physicochemical properties analysis, structural prediction and validation, molecular docking study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydropathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with generalized Born and surface area solvation analysis of the "Vaccine-TLR-2" (-141.07 kcal/mol) and "Vaccine-TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding affinity for the receptors. Codon optimization also provided a high expression level with a GC content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-cells and T-cells was also observed over a while, with an increased level of helper T-cells and immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for future research and therapeutic development of pancreatic cancer.
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shah Wajed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Infectiology: Biology of Infectious Diseases, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Md Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nusrat Rahman Moumi
- Medical Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Asma Talukder
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Dong Q, Zheng R, He Z, Xi Y. Successful dupilumab treatment in bullous pemphigoid complicated with subacute hematogenous disseminated tuberculosis: A case report. Skin Res Technol 2024; 30:e13847. [PMID: 38995310 PMCID: PMC11243193 DOI: 10.1111/srt.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Qian Dong
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Rui Zheng
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Zhe He
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yue Xi
- Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
15
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
16
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
17
|
Barnacle JR, Davis AG, Wilkinson RJ. Recent advances in understanding the human host immune response in tuberculous meningitis. Front Immunol 2024; 14:1326651. [PMID: 38264653 PMCID: PMC10803428 DOI: 10.3389/fimmu.2023.1326651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tuberculous meningitis (TBM), the most severe form of tuberculosis, causes death in approximately 25% cases despite antibiotic therapy, and half of survivors are left with neurological disability. Mortality and morbidity are contributed to by a dysregulated immune response, and adjunctive host-directed therapies are required to modulate this response and improve outcomes. Developing such therapies relies on improved understanding of the host immune response to TBM. The historical challenges in TBM research of limited in vivo and in vitro models have been partially overcome by recent developments in proteomics, transcriptomics, and metabolomics, and the use of these technologies in nested substudies of large clinical trials. We review the current understanding of the human immune response in TBM. We begin with M. tuberculosis entry into the central nervous system (CNS), microglial infection and blood-brain and other CNS barrier dysfunction. We then outline the innate response, including the early cytokine response, role of canonical and non-canonical inflammasomes, eicosanoids and specialised pro-resolving mediators. Next, we review the adaptive response including T cells, microRNAs and B cells, followed by the role of the glutamate-GABA neurotransmitter cycle and the tryptophan pathway. We discuss host genetic immune factors, differences between adults and children, paradoxical reaction, and the impact of HIV-1 co-infection including immune reconstitution inflammatory syndrome. Promising immunomodulatory therapies, research gaps, ongoing challenges and future paths are discussed.
Collapse
Affiliation(s)
- James R. Barnacle
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Angharad G. Davis
- The Francis Crick Institute, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
18
|
Borah Slater K, Moraes L, Xu Y, Kim D. Metabolic flux reprogramming in Mycobacterium tuberculosis-infected human macrophages. Front Microbiol 2023; 14:1289987. [PMID: 38045029 PMCID: PMC10690623 DOI: 10.3389/fmicb.2023.1289987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Metabolic fluxes are at the heart of metabolism and growth in any living system. During tuberculosis (TB) infection, the pathogenic Mycobacterium tuberculosis (Mtb) adapts its nutritional behaviour and metabolic fluxes to survive in human macrophages and cause infection. The infected host cells also undergo metabolic changes. However, our knowledge of the infected host metabolism and identification of the reprogrammed metabolic flux nodes remains limited. In this study, we applied systems-based 13C-metabolic flux analysis (MFA) to measure intracellular carbon metabolic fluxes in Mtb-infected human THP-1 macrophages. We provide a flux map for infected macrophages that quantified significantly increased fluxes through glycolytic fluxes towards pyruvate synthesis and reduced pentose phosphate pathway fluxes when compared to uninfected macrophages. The tri carboxylic acid (TCA) cycle fluxes were relatively low, and amino acid fluxes were reprogrammed upon Mtb infection. The knowledge of host metabolic flux profiles derived from our work expands on how the host cell adapts its carbon metabolism in response to Mtb infection and highlights important nodes that may provide targets for developing new therapeutics to improve TB treatment.
Collapse
Affiliation(s)
| | - Luana Moraes
- School of Biosciences, University of Surrey, Guildford, United Kingdom
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia-USP, São Paulo, Brazil
| | - Ye Xu
- School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Kim
- School of Biosciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
19
|
Kurtz SL, Rydén P, Elkins KL. Transcriptional signatures measured in whole blood correlate with protection against tuberculosis in inbred and outbred mice. PLoS One 2023; 18:e0289358. [PMID: 37535648 PMCID: PMC10399789 DOI: 10.1371/journal.pone.0289358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Although BCG has been used for almost 100 years to immunize against Mycobacterium tuberculosis, TB remains a global public health threat. Numerous clinical trials are underway studying novel vaccine candidates and strategies to improve or replace BCG, but vaccine development still lacks a well-defined set of immune correlates to predict vaccine-induced protection against tuberculosis. This study aimed to address this gap by examining transcriptional responses to BCG vaccination in C57BL/6 inbred mice, coupled with protection studies using Diversity Outbred mice. We evaluated relative gene expression in blood obtained from vaccinated mice, because blood is easily accessible, and data can be translated to human studies. We first determined that the average peak time after vaccination is 14 days for gene expression of a small subset of immune-related genes in inbred mice. We then performed global transcriptomic analyses using whole blood samples obtained two weeks after mice were vaccinated with BCG. Using comparative bioinformatic analyses and qRT-PCR validation, we developed a working correlate panel of 18 genes that were highly correlated with administration of BCG but not heat-killed BCG. We then tested this gene panel using BCG-vaccinated Diversity Outbred mice and revealed associations between the expression of a subset of genes and disease outcomes after aerosol challenge with M. tuberculosis. These data therefore demonstrate that blood-based transcriptional immune correlates measured within a few weeks after vaccination can be derived to predict protection against M. tuberculosis, even in outbred populations.
Collapse
Affiliation(s)
- Sherry L Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Karen L Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
20
|
Cao J, Liao S, Zeng F, Liao Q, Luo G, Zhou Y. Effects of altered glycolysis levels on CD8 + T cell activation and function. Cell Death Dis 2023; 14:407. [PMID: 37422501 PMCID: PMC10329707 DOI: 10.1038/s41419-023-05937-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
CD8+ T cells are an important component of the body's adaptive immune response. During viral or intracellular bacterial infections, CD8+ T cells are rapidly activated and differentiated to exert their immune function by producing cytokines. Alterations in the glycolysis of CD8+ T cells have an important effect on their activation and function, while glycolysis is important for CD8+ T cell functional failure and recovery. This paper summarizes the importance of CD8+ T cell glycolysis in the immune system. We discuss the link between glycolysis and CD8+ T cell activation, differentiation, and proliferation, and the effect of altered glycolysis on CD8+ T cell function. In addition, potential molecular targets to enhance and restore the immune function of CD8+ T cells by affecting glycolysis and the link between glycolysis and CD8+ T cell senescence are summarized. This review provides new insights into the relationship between glycolysis and CD8+ T cell function, and proposes novel strategies for immunotherapy by targeting glycolysis.
Collapse
Affiliation(s)
- Jiaying Cao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, 410008, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
21
|
Tan Y, Guo W, Zhu Q, Song S, Xiang Y, Wu S, Zou S, Yan Y, Feng L, Luo M, Shen L, Feng Y, Liang K. Characterization of peripheral cytokine-secreting cells responses in HIV/TB co-infection. Front Cell Infect Microbiol 2023; 13:1162420. [PMID: 37483385 PMCID: PMC10359493 DOI: 10.3389/fcimb.2023.1162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Currently the responses of peripheral cytokine-secreting cells in the natural course of human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection haven't been fully elucidated. Methods The function of peripheral proinflammatory, regulatory and cytotoxic cytokine-secreting cells were investigated by direct intracellular cytokine staining (ICS) and flow cytometry, additionally, the absolute numbers of different cytokine-secreting cells were measured among patients with HIV/TB co-infection (HT group), and compared them with the healthy controls (HC group), patients with TB (TB group) and patients with HIV infection (HIV group). After one week's anti-TB treatment, the changes of the percentages of cytokine-secreting cells were further evaluated in TB and HT groups. Results Totally 26 individuals in the HC group, 51 in the TB group, 26 in the HIV group and 29 in the HT group were enrolled. The HT. HT group exhibited significantly lower absolute numbers of IFN-γ+CD4+, IFN-γ+CD8+, TNF-α+CD4+, IL17A+CD4+ T cells and TNF-α+CD14+ monocytes than the TB and HIV groups. Compared with the TB group, the percentages of CD8+ T cells secreting IFN-γ and perforin (p=0.010; p=0.043) were significantly lower among the HT group. Compared with the HIV group, the percentages of CD4+, CD8+ T cells and CD14+ monocytes secreting TNF-α (p=0.013; p=0.001; p<0.001) were significantly decreased, and the percentage of CD8+ T cells secreting IL-17A (p=0.015) was significantly increased among the HT group. Both the percentages of CD4+ T cells secreting TGF-β (p<0.001; p=0.001), and CD4+ and CD8+ T cells secreting granzyme A (all p<0.001), were significantly higher among the HT group than among the TB group and HIV group. After one week's anti-TB treatment, an increased percentage of CD4+ T cells secreting TNF-α (p=0.003) was found in the TB group, and an increased percentage of CD8+ T cells secreting TNF-α (p=0.029) was found in the HT group. Conclusion Significantly different functional profiles of peripheral proinflammatory, regulatory, and cytotoxic cytokine-secreting cells were observed in the natural course of HIV/TB co-infection compared to TB and HIV infection alone, even though the absolute numbers of those cells were significantly lower in HIV/TB co-infection. TNF-α-secreting CD8+ T cells may be a more sensitive marker for early evaluation of anti-TB treatment efficacy in patients with HIV/TB co-infection.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yajun Yan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Feng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingqi Luo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Yong Feng
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
22
|
Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
23
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|
24
|
Rahman MM, Masum MHU, Talukder A, Akter R. An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
25
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
26
|
Pirmoradi S. In-silico Designing of Immunogenic Construct Based on Peptide Epitopes Using Immuno-informatics Tools Against Tuberculosis. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Cubillos-Angulo JM, Nogueira BMF, Arriaga MB, Barreto-Duarte B, Araújo-Pereira M, Fernandes CD, Vinhaes CL, Villalva-Serra K, Nunes VM, Miguez-Pinto JP, Amaral EP, Andrade BB. Host-directed therapies in pulmonary tuberculosis: Updates on anti-inflammatory drugs. Front Med (Lausanne) 2022; 9:970408. [PMID: 36213651 PMCID: PMC9537567 DOI: 10.3389/fmed.2022.970408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB) is a lethal disease and remains one of the top ten causes of mortality by an infectious disease worldwide. It can also result in significant morbidity related to persistent inflammation and tissue damage. Pulmonary TB treatment depends on the prolonged use of multiple drugs ranging from 6 months for drug-susceptible TB to 6-20 months in cases of multi-drug resistant disease, with limited patient tolerance resulting from side effects. Treatment success rates remain low and thus represent a barrier to TB control. Adjunct host-directed therapy (HDT) is an emerging strategy in TB treatment that aims to target the host immune response to Mycobacterium tuberculosis in addition to antimycobacterial drugs. Combined multi-drug treatment with HDT could potentially result in more effective therapies by shortening treatment duration, improving cure success rates and reducing residual tissue damage. This review explores the rationale and challenges to the development and implementation of HDTs through a succinct report of the medications that have completed or are currently being evaluated in ongoing clinical trials.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Betânia M. F. Nogueira
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Beatriz Barreto-Duarte
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Araújo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Catarina D. Fernandes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, Brazil
| | - Klauss Villalva-Serra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
| | | | | | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, Brazil
| |
Collapse
|
28
|
Li F, Liu H, Zhang D, Ma Y, Zhu B. Metabolic plasticity and regulation of T cell exhaustion. Immunology 2022; 167:482-494. [DOI: 10.1111/imm.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fei Li
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Huiling Liu
- Department of gynecology and obstetrics Gansu Provincial Hospital Lanzhou China
| | - Dan Zhang
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
- State Key Laboratory of Veterinary Etiological Biology, School of Veterinary Medicine and Biosafety Lanzhou University Lanzhou China
| |
Collapse
|
29
|
Wabitsch S, McCallen JD, Kamenyeva O, Ruf B, McVey JC, Kabat J, Walz JS, Rotman Y, Bauer KC, Craig AJ, Pouzolles M, Phadke I, Catania V, Green BL, Fu C, Diggs LP, Heinrich B, Wang XW, Ma C, Greten TF. Metformin treatment rescues CD8 + T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. J Hepatol 2022; 77:748-760. [PMID: 35378172 PMCID: PMC9391315 DOI: 10.1016/j.jhep.2022.03.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) represents the fastest growing underlying cause of hepatocellular carcinoma (HCC) and has been shown to impact immune effector cell function. The standard of care for the treatment of advanced HCC is immune checkpoint inhibitor (ICI) therapy, yet NASH may negatively affect the efficacy of ICI therapy in HCC. The immunologic mechanisms underlying the impact of NASH on ICI therapy remain unclear. METHODS Herein, using multiple murine NASH models, we analysed the influence of NASH on the CD8+ T-cell-dependent anti-PD-1 responses against liver cancer. We characterised CD8+ T cells' transcriptomic, functional, and motility changes in mice receiving a normal diet (ND) or a NASH diet. RESULTS NASH blunted the effect of anti-PD-1 therapy against liver cancers in multiple murine models. NASH caused a proinflammatory phenotypic change of hepatic CD8+ T cells. Transcriptomic analysis revealed changes related to NASH-dependent impairment of hepatic CD8+ T-cell metabolism. In vivo imaging analysis showed reduced motility of intratumoural CD8+ T cells. Metformin treatment rescued the efficacy of anti-PD-1 therapy against liver tumours in NASH. CONCLUSIONS We discovered that CD8+ T-cell metabolism is critically altered in the context of NASH-related liver cancer, impacting the effectiveness of ICI therapy - a finding which has therapeutic implications in patients with NASH-related liver cancer. LAY SUMMARY Non-alcoholic steatohepatitis represents the fastest growing cause of hepatocellular carcinoma. It is also associated with reduced efficacy of immunotherapy, which is the standard of care for advanced hepatocellular carcinoma. Herein, we show that non-alcoholic steatohepatitis is associated with impaired motility, metabolic function, and response to anti-PD-1 treatment in hepatic CD8+ T cells, which can be rescued by metformin treatment.
Collapse
Affiliation(s)
- Simon Wabitsch
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin D McCallen
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John C McVey
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Juliane S Walz
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie Pouzolles
- Basic to Translation Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ira Phadke
- Basic to Translation Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanessa Catania
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin L Green
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claude Fu
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurence P Diggs
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Immunometabolism of Immune Cells in Mucosal Environment Drives Effector Responses against Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23158531. [PMID: 35955665 PMCID: PMC9369211 DOI: 10.3390/ijms23158531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberculosis remains a major threat to global public health, with more than 1.5 million deaths recorded in 2020. Improved interventions against tuberculosis are urgently needed, but there are still gaps in our knowledge of the host-pathogen interaction that need to be filled, especially at the site of infection. With a long history of infection in humans, Mycobacterium tuberculosis (Mtb) has evolved to be able to exploit the microenvironment of the infection site to survive and grow. The immune cells are not only reliant on immune signalling to mount an effective response to Mtb invasion but can also be orchestrated by their metabolic state. Cellular metabolism was often overlooked in the past but growing evidence of its importance in the functions of immune cells suggests that it can no longer be ignored. This review aims to gain a better understanding of mucosal immunometabolism of resident effector cells, such as alveolar macrophages and mucosal-associated invariant T cells (MAIT cells), in response to Mtb infection and how Mtb manipulates them for its survival and growth, which could address our knowledge gaps while opening up new questions, and potentially be applied for future vaccination and therapeutic strategies.
Collapse
|
31
|
Pattanaik KP, Sengupta S, Jit BP, Kotak R, Sonawane A. Host-Mycobacteria conflict: Immune responses of the host vs. the mycobacteria TLR2 and TLR4 ligands and concomitant host-directed therapy. Microbiol Res 2022; 264:127153. [DOI: 10.1016/j.micres.2022.127153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
|
32
|
Khan Z, Ualiyeva D, Amissah OB, Sapkota S, Hameed HMA, Zhang T. Insight Into Novel Anti-tuberculosis Vaccines by Using Immunoinformatics Approaches. Front Microbiol 2022; 13:866873. [PMID: 35722321 PMCID: PMC9201507 DOI: 10.3389/fmicb.2022.866873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB), an infectious disease, has been a leading cause of morbidity and mortality for decades. The causative agent of TB is the Mycobacterium tuberculosis (Mtb) which can infects various parts of the body, mainly the lungs in pulmonary TB cases. Mycobacterium bovis Bacillus Calmette–Guerin (BCG) is the only approved vaccine for TB, but its efficiency to combat pulmonary TB is limited. Multidrug-resistant (MDR) TB and extensive drug-resistant (XDR) TB requires the evolution of more potent vaccines. Therefore, this research aims to generate a universal TB subunit vaccine using advanced immunoinformatics techniques. In generating a novel multiepitope subunit vaccine, we selected the conserved and experimentally confirmed antigens Rv0058, Rv0101, and Rv3343. After a rigorous evaluation, the top candidates from predicted Helper T-lymphocytes (HTL), Cytotoxic T-lymphocytes (CTL), and B-cell epitopes were considered potential vaccine candidates. Immunogenicity was enhanced by the addition of an adjuvant to the ultimate construct of the vaccine. B-cell epitopes predictions guaranteed the eventual induction of a humoral response. Thereafter, dynamics simulations and molecular docking validated the vaccine-receptor complex’s stability and high affinity for the immune receptor TLR-3. Also, immune simulations revealed the significantly elevated levels of immunoglobulins such as IgM, cytokines such as interleukin-2, helper T (Th) cells, and cytotoxic T-cell populations. These results agreed with the actual inflammatory response and showed rapid antigen clearance after manifold exposure. Finally, the E. coli K12 strain was confirmed via in-silico cloning for quality expression. Nevertheless, in vivo experiments should be performed to validate the safety of the proposed vaccine and its inherent ability to prevent TB infection.
Collapse
Affiliation(s)
- Zafran Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Daniya Ualiyeva
- University of Chinese Academy of Sciences, Beijing, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Obed Boadi Amissah
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sanjeep Sapkota
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
33
|
Akter S, Chauhan KS, Dunlap MD, Choreño-Parra JA, Lu L, Esaulova E, Zúñiga J, Artyomov MN, Kaushal D, Khader SA. Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Rep 2022; 39:110983. [PMID: 35732116 PMCID: PMC9616001 DOI: 10.1016/j.celrep.2022.110983] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects 25% of the world's population and causes tuberculosis (TB), which is a leading cause of death globally. A clear understanding of the dynamics of immune response at the cellular level is crucial to design better strategies to control TB. We use the single-cell RNA sequencing approach on lung lymphocytes derived from healthy and Mtb-infected mice. Our results show the enrichment of the type I IFN signature among the lymphoid cell clusters, as well as heat shock responses in natural killer (NK) cells from Mtb-infected mice lungs. We identify Ly6A as a lymphoid cell activation marker and validate its upregulation in activated lymphoid cells following infection. The cross-analysis of the type I IFN signature in human TB-infected peripheral blood samples further validates our results. These findings contribute toward understanding and characterizing the transcriptional parameters at a single-cell depth in a highly relevant and reproducible mouse model of TB.
Collapse
Affiliation(s)
- Sadia Akter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,These authors contributed equally
| | - Kuldeep S. Chauhan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,These authors contributed equally
| | - Micah D. Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José Alberto Choreño-Parra
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City 14080, Mexico,Laboratorio de Inmunoquímica I, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Lan Lu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City 14080, Mexico,Laboratorio de Inmunoquímica I, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence: (D.K.), (S.A.K.) https://doi.org/10.1016/j.celrep.2022.110983
| |
Collapse
|
34
|
Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol 2022; 144:58-70. [DOI: 10.1016/j.molimm.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
35
|
Abstract
T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
Collapse
Affiliation(s)
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
DiNardo AR, Gandhi T, Heyckendorf J, Grimm SL, Rajapakshe K, Nishiguchi T, Reimann M, Kirchner HL, Kahari J, Dlamini Q, Lange C, Goldmann T, Marwitz S, Abhimanyu, Cirillo JD, Kaufmann SH, Netea MG, van Crevel R, Mandalakas AM, Coarfa C. Gene expression signatures identify biologically and clinically distinct tuberculosis endotypes. Eur Respir J 2022; 60:13993003.02263-2021. [PMID: 35169026 PMCID: PMC9474892 DOI: 10.1183/13993003.02263-2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND In vitro, animal model, and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes. METHODS A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients were used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as was two RNA-seq cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses. RESULTS A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation. CONCLUSION These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.
Collapse
Affiliation(s)
- Andrew R DiNardo
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, USA .,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Co-first authors contributing equally
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA.,Co-first authors contributing equally
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel; German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany.,Co-first authors contributing equally
| | - Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA.,Co-first authors contributing equally
| | - Kimal Rajapakshe
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Maja Reimann
- Division of Clinical Infectious Diseases, Research Center Borstel; German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany
| | - H Lester Kirchner
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Jaqueline Kahari
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Qiniso Dlamini
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Christoph Lange
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, USA.,Division of Clinical Infectious Diseases, Research Center Borstel; German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Torsten Goldmann
- Division of Clinical Infectious Diseases, Research Center Borstel; German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany
| | - Sebastian Marwitz
- Division of Clinical Infectious Diseases, Research Center Borstel; German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany
| | | | - Abhimanyu
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
| | - Stefan He Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, USA.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Genomics and Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna M Mandalakas
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, USA.,Co-senior authors contributing equally
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA.,Co-senior authors contributing equally
| |
Collapse
|
37
|
Rao Y, Gai X, Le Y, Xiong J, Liu Y, Zhang X, Wang J, Cao W, Sun Y. Enhanced Proinflammatory Cytokine Production and Immunometabolic Impairment of NK Cells Exposed to Mycobacterium tuberculosis and Cigarette Smoke. Front Cell Infect Microbiol 2022; 11:799276. [PMID: 35071048 PMCID: PMC8766853 DOI: 10.3389/fcimb.2021.799276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Aim Smoker COPD patients with chest radiological signs of prior tuberculosis (TB) showed more severe lung damage, but the mechanisms remain unclear. Emerging evidence has implicated NK cells in the pathogenesis of both COPD and TB. The purpose of this study was to delineate the profile and cytokine production of NK-cell subpopulations and their immunometabolic changes after exposure to both cigarette smoke (CS) and Mycobacterium tuberculosis(MTB). Methods We profiled NK-cell subpopulations in terms of percentage and cytokine production by flow cytometry in smoker patients with pulmonary TB (PTB). In an in vitro coexposure model, we investigated proinflammatory cytokine production, glycolytic influx, and oxidative phosphorylation of NK cells under CS extract (CSE) and PPD costimulation. Results Peripheral blood NK cells in smoker patients with active PTB (CS+PTB group) showed altered proportion of subpopulations and excessive proinflammatory cytokine expressions. In vitro, CSE- and PPD-coexposed NK-92 cells displayed enhanced proinflammatory cytokine production, concurrent with decreased glycolytic influx and oxidative phosphorylation. Conclusion Smoker patients with active PTB showed enhanced proinflammatory cytokine expression within altered NK cell subpopulations. CSE and PPD coexposure induced heightened cytokine production concurrent with impaired cell metabolism in NK cells. These novel data suggest a potential role of NK cells in the pathogenesis of lung injury in subjects with coexposure to CS and TB.
Collapse
Affiliation(s)
- Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yujia Liu
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing, China
| | - Xueyang Zhang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jundong Wang
- Department of Infectious Diseases of Beijing Geriatric Hospital, Beijing, China
| | - Wenli Cao
- Department of Infectious Diseases of Beijing Geriatric Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
38
|
Freimane L, Barkane L, Igumnova V, Kivrane A, Zole E, Ranka R. Telomere length and mitochondrial DNA copy number in multidrug-resistant tuberculosis. Tuberculosis (Edinb) 2021; 131:102144. [PMID: 34781086 DOI: 10.1016/j.tube.2021.102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022]
Abstract
Multidrug resistant tuberculosis (MDR-TB) is a severe disease that requires prolonged chemotherapy and is associated with an increased probability of treatment failure and death. MDR-TB is a state of heightened oxidative stress and inflammation, which could be related to the aging-related processes and immunosenescence. We, therefore, tested the hypothesis that MDR-TB is associated with alterations in aging biomarkers in peripheral blood cells. We investigated 51 MDR-TB patients and 57 healthy individuals and carried out an analysis of covariance to assess the possible impact of different variables on biomarker perturbations. The results showed that MDR-TB patients had significantly reduced telomere length (TL) and increased mitochondrial DNA copy number (mtDNA CN) (P < 0.05) in comparison to the controls, and MDR-TB infection was the main influencing factor. Male sex and extrapulmonary TB strongly influenced mtDNA CN increment, and MDR-TB patients with normal weight had longer telomeres than those who were underweight (P < 0.05). In conclusion, the evidence for shorter telomeres and higher mtDNA CN in the peripheral blood cells of MDR-TB patients was obtained indicating the connection between MDR-TB and aging biomarkers. The observed associations highlight a complicated interplay between MDR-TB and immunosenescence, thus further studies are required to achieve full understanding.
Collapse
Affiliation(s)
- Lauma Freimane
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia; Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia
| | - Linda Barkane
- Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia; Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Stopini Region, Upeslejas, LV2118, Latvia
| | - Viktorija Igumnova
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Agnija Kivrane
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia; Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia.
| |
Collapse
|
39
|
Cahill C, Cox DJ, O’Connell F, Basdeo SA, Gogan KM, Ó’Maoldomhnaigh C, O’Sullivan J, Keane J, Phelan JJ. The Effect of Tuberculosis Antimicrobials on the Immunometabolic Profiles of Primary Human Macrophages Stimulated with Mycobacterium tuberculosis. Int J Mol Sci 2021; 22:ijms222212189. [PMID: 34830070 PMCID: PMC8624646 DOI: 10.3390/ijms222212189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Dónal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Sharee A. Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Karl M. Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Cilian Ó’Maoldomhnaigh
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - James J. Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
- Correspondence: ; Tel.: +35-318-963-265
| |
Collapse
|
40
|
Wang N, Sarathy JP, Zimmerman M, Kaya F, Wang H, Dartois V, Carter CL. On-Slide Heat Sterilization Enables Mass Spectrometry Imaging of Tissue Infected with High-Threat Pathogens Outside of Biocontainment: A Study Directed at Mycobacterium tuberculosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2664-2674. [PMID: 34672552 PMCID: PMC8653782 DOI: 10.1021/jasms.1c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 05/16/2023]
Abstract
Mass spectrometry imaging investigations of tissues infected with agents that require high-security biocontainment, such as Mycobacterium tuberculosis, have been limited due to incompatible sterilization techniques. Here we describe an on-slide heat sterilization method that enables mass spectrometry imaging investigations of pharmaceuticals, lipids, and metabolites in infected tissue samples outside of biocontainment. An evaluation of different temperatures and incubation times determined that 100 °C for 1 h was essential to sterilize 5 times the bacterial burden observed in tuberculosis (TB) cavity sections. Laser-capture microdissection combined with liquid chromatography with tandem mass spectrometry quantitation, in addition to mass spectrometry imaging, showed that no degradation was observed following the on-slide heat sterilization protocol for a variety of drug classes covering a range of physicochemical properties. Utilizing the tissue mimetic model, we demonstrated that the detection of lipid and metabolite ions was not impacted by heat sterilization and that, for several metabolites, the on-slide heat sterilization method improved the sensitivity when compared to control samples. An application of the on-slide heat sterilization to M. tuberculosis infected tissue enabled the first detection and spatial distribution of lipids indicative of a lysosomal storage disease phenotype within TB granuloma macrophages, in addition to the differential distribution of metabolites central to the fatty acid oxidation pathway. These initial investigations detected a pronounced heterogeneity within the cellular regions and necrotic cores of individual TB granulomas and across different evolving granulomas. This study provides the framework for mass spectrometry imaging investigations of high-threat pathogens outside of biocontainment.
Collapse
Affiliation(s)
- Ning Wang
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Jansy P. Sarathy
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Matthew Zimmerman
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Firat Kaya
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Han Wang
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Véronique Dartois
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
- Department
of Medical Sciences, Hackensack School of
Medicine, Nutley, New Jersey 07110, United States
| | - Claire L. Carter
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
- Department
of Pathology, Hackensack School of Medicine, Nutley, New Jersey 07110, United States
| |
Collapse
|
41
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
42
|
Mukundan S, Singh P, Shah A, Kumar R, O’Neill KC, Carter CL, Russell DG, Subbian S, Parekkadan B. In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines 2021; 9:1209. [PMID: 34572395 PMCID: PMC8470281 DOI: 10.3390/biomedicines9091209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is a public health concern that impacts 10 million people around the world. Current in vitro models are low throughput and/or lack caseation, which impairs drug effectiveness in humans. Here, we report the generation of THP-1 human monocyte/macrophage spheroids housing mycobacteria (TB spheroids). These TB spheroids have a central core of dead cells co-localized with mycobacteria and are hypoxic. TB spheroids exhibit higher levels of pro-inflammatory factor TNFα and growth factors G-CSF and VEGF when compared to non-infected control. TB spheroids show high levels of lipid deposition, characterized by MALDI mass spectrometry imaging. TB spheroids infected with strains of differential virulence, Mycobacterium tuberculosis (Mtb) HN878 and CDC1551 vary in response to Isoniazid and Rifampicin. Finally, we adapt the spheroid model to form peripheral blood mononuclear cells (PBMCs) and lung fibroblasts (NHLF) 3D co-cultures. These results pave the way for the development of new strategies for disease modeling and therapeutic discovery.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA; (S.M.); (A.S.)
| | - Pooja Singh
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Jersey City, NJ 07103, USA; (P.S.); (R.K.); (S.S.)
| | - Aditi Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA; (S.M.); (A.S.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Jersey City, NJ 07103, USA; (P.S.); (R.K.); (S.S.)
| | - Kelly C. O’Neill
- Department Center for Discovery and Innovation, Hackensack Meridian Health, Neptune, NJ 07110, USA; (K.C.O.); (C.L.C.)
| | - Claire L. Carter
- Department Center for Discovery and Innovation, Hackensack Meridian Health, Neptune, NJ 07110, USA; (K.C.O.); (C.L.C.)
| | - David G. Russell
- Department of Microbiology and Immunology, School of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Jersey City, NJ 07103, USA; (P.S.); (R.K.); (S.S.)
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA; (S.M.); (A.S.)
- Department of Medicine, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA
| |
Collapse
|
43
|
Abhimanyu, Ontiveros CO, Guerra-Resendez RS, Nishiguchi T, Ladki M, Hilton IB, Schlesinger LS, DiNardo AR. Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Front Immunol 2021; 12:688132. [PMID: 34163486 PMCID: PMC8215363 DOI: 10.3389/fimmu.2021.688132] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The immune response must balance the pro-inflammatory, cell-mediated cytotoxicity with the anti-inflammatory and wound repair response. Epigenetic mechanisms mediate this balance and limit host immunity from inducing exuberant collateral damage to host tissue after severe and chronic infections. However, following treatment for these infections, including sepsis, pneumonia, hepatitis B, hepatitis C, HIV, tuberculosis (TB) or schistosomiasis, detrimental epigenetic scars persist, and result in long-lasting immune suppression. This is hypothesized to be one of the contributing mechanisms explaining why survivors of infection have increased all-cause mortality and increased rates of unrelated secondary infections. The mechanisms that induce epigenetic-mediated immune suppression have been demonstrated in-vitro and in animal models. Modulation of the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR), nuclear factor of activated T cells (NFAT) or nuclear receptor (NR4A) pathways is able to block or reverse the development of detrimental epigenetic scars. Similarly, drugs that directly modify epigenetic enzymes, such as those that inhibit histone deacetylases (HDAC) inhibitors, DNA hypomethylating agents or modifiers of the Nucleosome Remodeling and DNA methylation (NuRD) complex or Polycomb Repressive Complex (PRC) have demonstrated capacity to restore host immunity in the setting of cancer-, LCMV- or murine sepsis-induced epigenetic-mediated immune suppression. A third clinically feasible strategy for reversing detrimental epigenetic scars includes bioengineering approaches to either directly reverse the detrimental epigenetic marks or to modify the epigenetic enzymes or transcription factors that induce detrimental epigenetic scars. Each of these approaches, alone or in combination, have ablated or reversed detrimental epigenetic marks in in-vitro or in animal models; translational studies are now required to evaluate clinical applicability.
Collapse
Affiliation(s)
- Abhimanyu
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlos O Ontiveros
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States.,UT Health San Antonio, San Antonio, TX, United States
| | - Rosa S Guerra-Resendez
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Malik Ladki
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Isaac B Hilton
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Department of BioSciences, Rice University, Houston, TX, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andrew R DiNardo
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
44
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
45
|
Shariq M, Quadir N, Sharma N, Singh J, Sheikh JA, Khubaib M, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis RipA Dampens TLR4-Mediated Host Protective Response Using a Multi-Pronged Approach Involving Autophagy, Apoptosis, Metabolic Repurposing, and Immune Modulation. Front Immunol 2021; 12:636644. [PMID: 33746976 PMCID: PMC7969667 DOI: 10.3389/fimmu.2021.636644] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Reductive evolution has endowed Mycobacterium tuberculosis (M. tb) with moonlighting in protein functions. We demonstrate that RipA (Rv1477), a peptidoglycan hydrolase, activates the NFκB signaling pathway and elicits the production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12, through the activation of an innate immune-receptor, toll-like receptor (TLR)4. RipA also induces an enhanced expression of macrophage activation markers MHC-II, CD80, and CD86, suggestive of M1 polarization. RipA harbors LC3 (Microtubule-associated protein 1A/1B-light chain 3) motifs known to be involved in autophagy regulation and indeed alters the levels of autophagy markers LC3BII and P62/SQSTM1 (Sequestosome-1), along with an increase in the ratio of P62/Beclin1, a hallmark of autophagy inhibition. The use of pharmacological agents, rapamycin and bafilomycin A1, reveals that RipA activates PI3K-AKT-mTORC1 signaling cascade that ultimately culminates in the inhibition of autophagy initiating kinase ULK1 (Unc-51 like autophagy activating kinase). This inhibition of autophagy translates into efficient intracellular survival, within macrophages, of recombinant Mycobacterium smegmatis expressing M. tb RipA. RipA, which also localizes into mitochondria, inhibits the production of oxidative phosphorylation enzymes to promote a Warburg-like phenotype in macrophages that favors bacterial replication. Furthermore, RipA also inhibited caspase-dependent programed cell death in macrophages, thus hindering an efficient innate antibacterial response. Collectively, our results highlight the role of an endopeptidase to create a permissive replication niche in host cells by inducing the repression of autophagy and apoptosis, along with metabolic reprogramming, and pointing to the role of RipA in disease pathogenesis.
Collapse
Affiliation(s)
- Mohd Shariq
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasdeep Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Khubaib
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Seyed E Hasnain
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D) Hauz Khas, New Delhi, India
| | - Nasreen Z Ehtesham
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| |
Collapse
|
46
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
47
|
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev 2021; 301:62-83. [PMID: 33565103 PMCID: PMC8248113 DOI: 10.1111/imr.12951] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter‐strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long‐lasting infection. Counteracting these mycobacteria‐induced host modifying mechanisms can be accomplished by host‐directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug‐resistant and drug‐susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host‐pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host‐pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
48
|
Ana Y, Rojas Marquez JD, Fozzatti L, Baigorrí RE, Marin C, Maletto BA, Cerbán FM, Radi R, Piacenza L, Stempin CC. An exacerbated metabolism and mitochondrial reactive oxygen species contribute to mitochondrial alterations and apoptosis in CD4 T cells during the acute phase of Trypanosoma cruzi infection. Free Radic Biol Med 2021; 163:268-280. [PMID: 33359261 DOI: 10.1016/j.freeradbiomed.2020.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease caused by Trypanosoma cruzi parasite is an endemic infection in America. It is well known that T. cruzi causes a strong immunosuppression during the acute phase of infection. However, it is not clear whether T. cruzi infection is related to metabolic alterations in CD4 T cells that prevent downstream effector function. Here, we evaluated the CD4 T cell metabolic and mitochondrial profiles from non-infected (NI), acute phase (AP) and chronic phase (CP) T. cruzi infected mice. CD4 T cells from all groups showed increased glucose uptake after stimulation. Moreover, the bioenergetic analysis revealed a rise in glycolysis and a higher oxidative metabolism in CD4 T cells from the AP. These cells showed increased proton leak and uncoupling protein 3 (UCP3) expression that correlated with mitochondrial ROS (mROS) accumulation, mitochondrial membrane potential (MMP) depolarization and expression of PD-1. In addition, CD4 T cells with mitochondrial alteration displayed an activated phenotype, and were less functional and more prone to apoptosis. In contrast, mitochondrial alterations were not observed during in vivo activation of CD4 T cells in a model of OVA-immunization. The Mn-superoxide dismutase (SOD2) expression, which is involved in mROS detoxification, was increased during the AP and CP of infection. Remarkably, the apoptosis observed in CD4 T cells with MMP depolarization was prevented by incubation with N-acetyl cysteine (NAC). Thus, our results showed that infection triggered an exacerbated metabolism together with mROS production in CD4 T cells from the AP of infection. However, antioxidant availability may not be sufficient to avoid mitochondrial alterations rendering these cells more susceptible to apoptosis. Our investigation is the first to demonstrate an association between a disturbed metabolism and an impaired CD4 T cell response during T. cruzi infection.
Collapse
Affiliation(s)
- Y Ana
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - J D Rojas Marquez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - L Fozzatti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - R E Baigorrí
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - C Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - B A Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - F M Cerbán
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - R Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - L Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - C C Stempin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.
| |
Collapse
|
49
|
Heme Oxygenase-1 as a Pharmacological Target for Host-Directed Therapy to Limit Tuberculosis Associated Immunopathology. Antioxidants (Basel) 2021; 10:antiox10020177. [PMID: 33530574 PMCID: PMC7911872 DOI: 10.3390/antiox10020177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Excessive inflammation and tissue damage are pathological hallmarks of chronic pulmonary tuberculosis (TB). Despite decades of research, host regulation of these clinical consequences is poorly understood. A sustained effort has been made to understand the contribution of heme oxygenase-1 (HO-1) to this process. HO-1 is an essential cytoprotective enzyme in the host that controls inflammation and oxidative stress in many pathological conditions. While HO-1 levels are upregulated in animals and patients infected with Mycobacterium tuberculosis (Mtb), how it regulates host responses and disease pathology during TB remains unclear. This lack of clarity is due in part to contradictory studies arguing that HO-1 induction contributes to both host resistance as well as disease progression. In this review, we discuss these conflicting studies and the role of HO-1 in modulating myeloid cell functions during Mtb disease progression. We argue that HO-1 is a promising target for host-directed therapy to improve TB immunopathology.
Collapse
|
50
|
Bibi S, Ullah I, Zhu B, Adnan M, Liaqat R, Kong WB, Niu S. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci Rep 2021; 11:1249. [PMID: 33441913 PMCID: PMC7807040 DOI: 10.1038/s41598-020-80899-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/29/2020] [Indexed: 01/29/2023] Open
Abstract
Tuberculosis (TB) kills more individuals in the world than any other disease, and a threat made direr by the coverage of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Bacillus Calmette-Guérin (BCG) is the single TB vaccine licensed for use in human beings and effectively protects infants and children against severe military and meningeal TB. We applied advanced computational techniques to develop a universal TB vaccine. In the current study, we select the very conserved, experimentally confirmed Mtb antigens, including Rv2608, Rv2684, Rv3804c (Ag85A), and Rv0125 (Mtb32A) to design a novel multi-epitope subunit vaccine. By using the Immune Epitopes Database (IEDB), we predicted different B-cell and T-cell epitopes. An adjuvant (Griselimycin) was also added to vaccine construct to improve its immunogenicity. Bioinformatics tools were used to predict, refined, and validate the 3D structure and then docked with toll-like-receptor (TLR-3) using different servers. The constructed vaccine was used for further processing based on allergenicity, antigenicity, solubility, different physiochemical properties, and molecular docking scores. The in silico immune simulation results showed significant response for immune cells. For successful expression of the vaccine in E. coli, in-silico cloning and codon optimization were performed. This research also sets out a good signal for the design of a peptide-based tuberculosis vaccine. In conclusion, our findings show that the known multi-epitope vaccine may activate humoral and cellular immune responses and maybe a possible tuberculosis vaccine candidate. Therefore, more experimental validations should be exposed to it.
Collapse
Affiliation(s)
- Shaheen Bibi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, 730000, China
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Inayat Ullah
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, 730000, China
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, 730000, China
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng west Road, Guanshan Lake District, Guiyang, 550081, Guizhou, China
| | - Romana Liaqat
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wei-Bao Kong
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Shiquan Niu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|