1
|
Hu Q, Gui Y, Cao C, Xie J, Tang H. Single-cell sequencing reveals transcriptional dynamics regulated by ERα in mouse ovaries. PLoS One 2024; 19:e0313867. [PMID: 39570927 PMCID: PMC11581351 DOI: 10.1371/journal.pone.0313867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
CONTEXT Estrogen receptor α (ERα) is a key regulator of reproductive function, particularly in ovarian development and function, yet the specifics of its role at the molecular level remain unclear. AIMS The study aims to elucidate the molecular mechanisms of ERα-regulated transcriptional dynamics in ovarian cells using ERα knockout (αERKO) mice created via CRISPR/Cas9. METHODS Single-cell RNA sequencing (scRNA-seq) was used to compare transcriptomes from individual ovarian cells in both wild type and αERKO mice. Bioinformatics analyses identified distinct cell populations and their transcriptional profiles post ERα deletion. KEY RESULTS Distinct oocyte and granulosa cell populations were identified, with ERα deletion disrupting the regulation of genes linked to ovarian infertility, the ovulation cycle, and steroidogenesis. Greb1 expression in granulosa cells was found to be ERα-dependent. CONCLUSIONS ERα deletion significantly alters the transcriptional landscape of ovarian cells, affecting genes and pathways central to ovarian function and the ovulation process. IMPLICATIONS The findings provide an in-depth, single-cell view of ERα's role in the reproductive system, offering insights that may lead to novel treatments for ovarian disorders.
Collapse
Affiliation(s)
- Qicai Hu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, P. R. China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, P. R. China
| | - Yiqian Gui
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jun Xie
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Huiru Tang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Cheerland Watson Precision Medicine Co. LTD, Shenzhen, China
| |
Collapse
|
2
|
Wang S, Du Y, Zhang B, Meng G, Liu Z, Liew SY, Liang R, Zhang Z, Cai X, Wu S, Gao W, Zhuang D, Zou J, Huang H, Wang M, Wang X, Wang X, Liang T, Liu T, Gu J, Liu N, Wei Y, Ding X, Pu Y, Zhan Y, Luo Y, Sun P, Xie S, Yang J, Weng Y, Zhou C, Wang Z, Wang S, Deng H, Shen Z. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 2024; 187:6152-6164.e18. [PMID: 39326417 DOI: 10.1016/j.cell.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.
Collapse
Affiliation(s)
- Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yuanyuan Du
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Gaofan Meng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Soon Yi Liew
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Zhengyuan Zhang
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiangheng Cai
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | - Wei Gao
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Hui Huang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Mingyang Wang
- Department of Ultrasound, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | | | - Xuelian Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Ting Liang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Jiabin Gu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yanling Wei
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Yixiang Zhan
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yu Luo
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Shuangshuang Xie
- Radiology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Zhenglu Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Shuang Wang
- Department of Plastic and Burn, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Hongkui Deng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; China Changping Laboratory, Beijing 102206, China.
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| |
Collapse
|
3
|
Zhao X, Du M, Wu S, Du Z, Liu S, Yang L, Ma H, Zhang L, Song L, Bai C, Su G, Li G. High histone crotonylation modification in bovine fibroblasts promotes cell proliferation and the developmental efficiency of preimplantation nuclear transfer embryos. Sci Rep 2024; 14:10295. [PMID: 38704415 PMCID: PMC11069573 DOI: 10.1038/s41598-024-61148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Mengxin Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhiwen Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Shuqin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Haoran Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liguo Zhang
- Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab Animal Husbandry Workstation, Ulanqab, 012000, Inner Mongolia, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
| |
Collapse
|
4
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Fang Y, Li X. Protein lysine four-carbon acylations in health and disease. J Cell Physiol 2024; 239:e30981. [PMID: 36815448 PMCID: PMC10704440 DOI: 10.1002/jcp.30981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Lysine acylation, a type of posttranslational protein modification sensitive to cellular metabolic states, influences the functions of target proteins involved in diverse cellular processes. Particularly, lysine butyrylation, crotonylation, β-hydroxybutyrylation, and 2-hydroxyisobutyrylation, four types of four-carbon acylations, are modulated by intracellular concentrations of their respective acyl-CoAs and sensitive to alterations of nutrient metabolism induced by cellular and/or environmental signals. In this review, we discussed the metabolic pathways producing these four-carbon acyl-CoAs, the regulation of lysine acylation and deacylation, and the functions of individual lysine acylation.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Zhou C, Zeng H, Xiao X, Wang L, Jia L, Shi Y, Zhang M, Fang C, Zeng Y, Wu T, Huang J, Liang X. Global crotonylome identifies EP300-regulated ANXA2 crotonylation in cumulus cells as a regulator of oocyte maturation. Int J Biol Macromol 2024; 259:129149. [PMID: 38176486 DOI: 10.1016/j.ijbiomac.2023.129149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Lysine crotonylation (Kcr), a newly discovered post-translational modification, played a crucial role in physiology and disease progression. However, the roles of crotonylation in oocyte meiotic resumption remain elusive. As abnormal cumulus cell development will cause oocyte maturation arrest and female infertility, we report that cumulus cells surrounding human meiotic arrested oocytes showed significantly lower crotonylation, which was associated with decreased EP300 expression and blocked cumulus cell expansion. In cultured human cumulus cells, exogenous crotonylation or EP300 activator promoted cell proliferation and reduced cell apoptosis, whereas EP300 knockdown induced the opposite effect. Transcriptome profiling analysis in human cumulus cells indicated that functions of crotonylation were associated with activation of epidermal growth factor receptor (EGFR) pathway. Importantly, we characterized the Kcr proteomics landscape in cumulus cells by LC-MS/MS analysis, and identified that annexin A2 (ANXA2) was crotonylated in cumulus cells in an EP300-dependent manner. Crotonylation of ANXA2 enhanced the ANXA2-EGFR binding, and then activated the EGFR pathway to affect cumulus cell proliferation and apoptosis. Using mouse oocytes IVM model and EP300 knockout mice, we further confirmed that crotonylation alteration in cumulus cells affected the oocyte maturation. Together, our results indicated that EP300-mediated crotonylation is important for cumulus cells functions and oocyte maturation.
Collapse
Affiliation(s)
- Chuanchuan Zhou
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Xingxing Xiao
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China
| | - Li Wang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Tongren People's Hospital, Guizhou, 554300, China
| | - Lei Jia
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Yanan Shi
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Minfang Zhang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Cong Fang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Yanyan Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Taibao Wu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jiana Huang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
7
|
Deng X, Ning Z, Li L, Cui Z, Du X, Amevor FK, Tian Y, Shu G, Du X, Han X, Zhao X. High expression of miR-22-3p in chicken hierarchical follicles promotes granulosa cell proliferation, steroidogenesis, and lipid metabolism via PTEN/PI3K/Akt/mTOR signaling pathway. Int J Biol Macromol 2023; 253:127415. [PMID: 37848113 DOI: 10.1016/j.ijbiomac.2023.127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
MicroRNAs (miRNAs) are a class of RNA macromolecules that play regulatory roles in follicle development by inhibiting protein translation through binding to the 3'UTR of its target genes. Granulosa cell (GC) proliferation, steroidogenesis, and lipid metabolism have indispensable effect during folliculogenesis. In this study, we found that miR-22-3p was highly expressed in the hierarchical follicles of the chickens, which indicated that it may be involved in follicle development. The results obtained suggested that miR-22-3p promoted proliferation, hormone secretion (progesterone and estrogen), and the content of lipid droplets (LDs) in the chicken primary GC. The results from the bioinformatics analysis, luciferase reporter assay, qRT-PCR, and Western blotting, confirmed that PTEN was directly targeted to miR-22-3p. Subsequently, it was revealed that PTEN inhibited proliferation, hormone secretion, and the content of LDs in GC. Therefore, this study showed that miR-22-3p could activate PI3K/Akt/mTOR pathway via targeting PTEN. Taken together, the findings from this study indicated that miR-22-3p was highly expressed in the hierarchical follicles of chickens, which promotes GC proliferation, steroidogenesis, and lipid metabolism by repressing PTEN to activate PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, PR China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China.
| |
Collapse
|
8
|
Al-Hawary SIS, Tayyib NA, Ramaiah P, Parra RMR, Ibrahim AJ, Mustafa YF, Hussien BM, Alsulami SA, Baljon KJ, Nomani I. Functions of LncRNAs, exosomes derived MSCs and immune regulatory molecules in preeclampsia disease. Pathol Res Pract 2023; 250:154795. [PMID: 37774533 DOI: 10.1016/j.prp.2023.154795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
Modulatory signaling pathway such as T cell immunoreceptor with Ig and ITIM domains (TIGIT), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4), P53 signaling and TIM (T-cell immunoglobin and mucin domain) are important in normal pregnancy and loss of their functions or dysregulation of related genes can lead to some disorders. Inflammation is a process by which your body's white blood cells and the things they make protect you from infection from outside invaders, such as bacteria and viruses. Some cellular and molecular signaling have been categorized to demonstrate the mechanism that protects tolerance to antigens. lncRNAs significantly impact physiological processes like immunity and metabolism, and are linked to tumors, cardiovascular diseases, nervous system disorders, and nephropathy.In this review article, we summarized recent studies about the role of TIGIT, CTLA-4, P53 and TIM regulatory molecules and reviewed dysregulation of these pathway in diseases.We will also talk about the role of lncRNAs and mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Sana A Alsulami
- Faculty of Nursing, Umm al, Qura University, Makkah, Saudi Arabia
| | | | - Ibtesam Nomani
- Faculty of Nursing, Umm al, Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
10
|
State of the art in assisted reproductive technologies for patients with advanced maternal age. ZYGOTE 2023; 31:149-156. [PMID: 36810125 DOI: 10.1017/s0967199422000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
According to the World Health Organization, the female reproductive age lasts up to 49 years, but problems with the realization of women's reproductive rights may arise much earlier. Significant numbers of factors affect the state of reproductive health: socioeconomic, ecological, lifestyle features, the level of medical literacy, and the state of the organization and medical care quality. Among the reasons for fertility decline in advanced reproductive age are the loss of cellular receptors for gonadotropins, an increase in the threshold of sensitivity of the hypothalamic-pituitary system to the action of hormones and their metabolites, and many others. Furthermore, negative changes accumulate in the oocyte genome, reducing the possibility of fertilization, normal development and implantation of the embryo and healthy offspring birth. Another theory of ageing causing changes in oocytes is the mitochondrial free radical theory of ageing. Taking into account all these age-related changes in gametogenesis, this review considers modern technologies aimed at the preservation and realization of female fertility. Among the existing approaches, two main ones can be distinguished: methods allowing the preservation of reproductive cells at a younger age using ART intervention and cryobanking, as well as methods aimed at improving the basic functional state of advanced-age women's oocytes and embryos.
Collapse
|
11
|
Sellami I, Beau I, Sonigo C. Chemotherapy and female fertility. ANNALES D'ENDOCRINOLOGIE 2023; 84:382-387. [PMID: 36967045 DOI: 10.1016/j.ando.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Chemotherapy to treat cancer is usually responsible for early ovarian follicle depletion. Ovarian damage induced by cancer treatments frequently results in infertility in surviving patients of childbearing age. Several fertility preservation techniques have been developed. Nowadays, oocyte or embryo cryopreservation with or without ovarian stimulation and cryopreservation of the ovarian cortex are the most commonly used. However, these methods may be difficult to implement in some situations, and subsequent use of the cryopreserved germ cells remains uncertain, with no guarantee of pregnancy. Improved knowledge of the molecular mechanisms and signaling pathways involved in chemotherapy-induced ovarian damage is therefore necessary, to develop new strategies for fertility preservation. The effects of various chemotherapies have been studied in animal models or in vitro on ovarian cultures, suggesting various mechanisms of gonadotoxicity. Today the challenge is to develop molecules and techniques to limit the negative impact of chemotherapy on the ovaries, using experimental models, especially in animals. In this review, the various theories concerning ovarian damage induced by chemotherapy will be reviewed and emerging approaches for ovarian protection will be explained.
Collapse
Affiliation(s)
- Ines Sellami
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance publique Hôpitaux de Paris, Antoine Beclere Hospital, 92140, Clamart, France; Université Paris Saclay, Inserm, physiologie et physiopathologie endocrinienne, 94276, Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Université Paris Saclay, Inserm, physiologie et physiopathologie endocrinienne, 94276, Le Kremlin-Bicêtre, France
| | - Charlotte Sonigo
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance publique Hôpitaux de Paris, Antoine Beclere Hospital, 92140, Clamart, France; Université Paris Saclay, Inserm, physiologie et physiopathologie endocrinienne, 94276, Le Kremlin-Bicêtre, France.
| |
Collapse
|
12
|
Pellicer N, Cozzolino M, Diaz-García C, Galliano D, Cobo A, Pellicer A, Herraiz S. Ovarian rescue in women with premature ovarian insufficiency: facts and fiction. Reprod Biomed Online 2023; 46:543-565. [PMID: 36710157 DOI: 10.1016/j.rbmo.2022.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.
Collapse
Affiliation(s)
| | | | - César Diaz-García
- IVI London, EGA Institute for Women's Health, UCL, London, UK; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | - Ana Cobo
- IVI RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- IVI RMA Rome, Rome, Italy; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sonia Herraiz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
13
|
Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. SCIENCE CHINA. LIFE SCIENCES 2023; 66:324-339. [PMID: 36125668 DOI: 10.1007/s11427-022-2151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 10/14/2022]
Abstract
Functional telomeres protect chromosome ends and play important roles in stem cell maintenance and differentiation. Short telomeres negatively impact germ cell development and can contribute to age-associated infertility. Moreover, telomere syndrome resulting from mutations of telomerase or telomere-associated genes exhibits short telomeres and reduced fertility. It remains elusive whether and how telomere lengths affect germ cell specification. We report that functional telomere is required for the coordinated germ cell and somatic cell fate decisions. Using telomerase gene Terc deficient mice as a model, we show that short telomeres restrain germ cell specification of epiblast cells but promote differentiation towards somatic lineage. Short telomeres increase chromatin accessibility to elevate TGFβ and MAPK/ERK signaling for somatic cell differentiation. Notably, elevated Fst expression in TGFβ pathway represses the BMP4-pSmad signaling pathway, thus reducing germ cell formation. Re-elongation of telomeres by targeted knock-in of Terc restores normal chromatin accessibility to suppress TGFβ and MAPK signaling, thereby facilitating germ cell formation. Taken together, our data reveal that functional telomeres are required for germ cell specification by repressing TGFβ and MAPK signaling.
Collapse
|
14
|
Meng L, Zhang Y, Hua Y, Ma Y, Wang H, Li X, Jiang Y, Zhu G. Identification of oogonial stem cells in chicken ovary. Cell Prolif 2022; 56:e13371. [PMID: 36526415 PMCID: PMC9977656 DOI: 10.1111/cpr.13371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Oogonial stem cells (OSCs) are germ cells that can sustain neo-oogenesis to replenish the pool of primary follicles in adult ovaries. In lower vertebrates, fresh oocytes are produced by numerous OSCs through mitosis and meiosis during each reproduction cycle, but the OSCs in adult mammals are rare. The birds have retained many conserved features and developed unique features of ovarian physiology during evolution, and the presence of OSCs within avian species remain unknown. MATERIALS AND METHODS In this study, we investigated the existence and function of OSCs in adult chickens. The chicken OSCs were isolated and expanded in culture. We then used cell transplantation system to evaluate their potential for migration and differentiation in vivo. RESULTS DDX4/SSEA1-positive OSCs were identified in both the cortex and medulla of the adult chicken ovary. These putative OSCs undergo meiosis in the reproductively active ovary. Furthermore, the isolated OSCs were expanded in vitro for months and found to express germline markers similar to those of primordial germ cells. When transplanted into the bloodstream of recipient embryos, these OSCs efficiently migrated into developing gonads, initiated meiosis, and then derived oocytes in postnatal ovaries. CONCLUSIONS This study has confirmed the presence of functional OSCs in birds for the first time. The identification of chicken OSCs has great potential for improving egg laying and preserving endangered species.
Collapse
Affiliation(s)
- Lu Meng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina,College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yun Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Yao Hua
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina,College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuxiao Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Heng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina,College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
15
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
17
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Establishment and characterization of IPS-OGC-C1: a novel induced pluripotent stem cell line from healthy human ovarian granulosa cells. Hum Cell 2022; 35:1612-1620. [PMID: 35876985 DOI: 10.1007/s13577-022-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Ovarian granulosa cell (OGC) is a critical somatic component of the ovary, which provides physical support and the microenvironment required for the developing oocyte. Human OGCs are easy to obtain and culture as a by-product of follicular aspiration performed during in vitro fertilization (IVF) procedures. Therefore, OGCs offer a potent cell source to generate induced pluripotent stem cells (iPSCs). This study established a novel OGCs-derived iPSC cell line from the follicular fluid of a healthy female donor with a Chinese Han genetic background and named it IPS-OGC-C1. IPS-OGC-C1 was verified for embryonic stem cell morphology, cell marker expression, alkaline phosphatase (AP) activity, transcriptomic profile, and pluripotency capability in developing all three embryonic germ layers in vivo and in vitro.
Collapse
|
19
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
20
|
Wang H, Liu L, Liu C, Wang L, Chen J, Wang H, Heng D, Zeng M, Liu C, Zhou Z, Ye X, Wan Y, Li H, Liu L. Induction of meiosis by embryonic gonadal somatic cells differentiated from pluripotent stem cells. Stem Cell Res Ther 2021; 12:607. [PMID: 34930450 PMCID: PMC8686525 DOI: 10.1186/s13287-021-02672-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background Depletion of oocytes leads to ovarian aging-associated infertility, endocrine disruption and related diseases. Excitingly, unlimited oocytes can be generated by differentiation of primordial germ cell like cells (PGCLCs) from pluripotent stem cells. Nevertheless, development of oocytes and follicles from PGCLCs relies on developmentally matched gonadal somatic cells, only available from E12.5 embryos in mice. It is therefore imperative to achieve an in vitro source of E12.5 gonadal somatic cells. Methods We explored to identify small molecules, which can induce female embryonic stem cells (ESCs) into gonadal somatic cell like cells. Results Using RNA-sequencing, we identified signaling pathways highly upregulated in E12.5_gonadal somatic cells (E12.5_GSCs). Through searching for the activators of these pathways, we identified small-molecule compounds Vitamin C (Vc) and AM580 in combination (V580) for inducing differentiation of female embryonic stem cells (ESCs) into E12.5_GSC-like cells (E12.5_GSCLCs). After V580 treatment for 6 days and sorted by a surface marker CD63, the cell population yielded a transcriptome profile similar to that of E12.5_GSCs, which promoted meiosis progression and folliculogenesis of primordial germ cells. This approach will contribute to the study of germ cell and follicle development and oocyte production and have implications in potentially treating female infertility. Conclusion ESCs can be induced into embryonic gonadal somatic cell like cells by small molecules. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02672-4.
Collapse
Affiliation(s)
- Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Huasong Wang
- Department of Cell Biology, College of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dai Heng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ming Zeng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510655, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Huiyu Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,Department of Cell Biology and Genetics, College of Life Sciences; The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China. .,The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
21
|
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells. Protein Cell 2021; 12:947-964. [PMID: 34845589 PMCID: PMC8674391 DOI: 10.1007/s13238-021-00865-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
Collapse
|
22
|
Xiong X, Ma H, Min X, Su F, Xiong Y, Li J. Effects of demethylase KDM4B on the biological characteristics and function of yak cumulus cells in vitro. Theriogenology 2021; 174:85-93. [PMID: 34425304 DOI: 10.1016/j.theriogenology.2021.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 12/01/2022]
Abstract
The present study aims to investigate the expression and function of lysine-specific demethylase 4B (KDM4B) in yak cumulus cells (CCs) in order to reveal the mechanisms by which KDM4B regulates biological characteristics and function of CCs. The cellular location of KDM4B and the methylation pattern of H3K9 were detected using immunofluorescence (IF) staining in CCs. The mRNA expression levels of apoptosis-related genes (BCL-2, HAX1 and BAX) and genes related to the estrogen pathway (ESR2, CYP17 and 3B-HSD) were estimated by qRT-PCR after knockdown of KDM4B expression by siRNA in yak CCs. Then, a proliferation assay, Annexin V-FITC staining, and ELISA were utilized to explore the effects of KDM4B silencing on CCs proliferation, apoptosis, and estrogen (E2) secretion, respectively. The results showed that KDM4B is located in the nuclei of yak CCs and is distributed in a dotted pattern. Knockdown KDM4B induced a decrease in cell proliferation, an increase in apoptotic rate and a reduction in the levels of E2 secretion of CCs. Additionally, the methylation patterns of H3K9me2 and H3K9me3 were significantly increased in CCs transfected with KDM4B siRNA-1 (P < 0.05). The mRNA expression level of apoptosis promoting BAX genes was significantly upregulated, but 3B-HSD, ESR2 and anti-apoptotic HAX1 genes were significantly downregulated in transfected CCs (P < 0.05). Furthermore, the rate of embryos developing from the 2-cell stage to blastocysts was lower in the siRNA-1 transfection group than that of the control group (28.6 ± 2.9% vs 40.4 ± 2.4%, P < 0.05). In conclusion, our study indicates that KDM4B regulates the biological characteristics and physiological function of yak CCs mainly through changing the methylation patterns of H3K9 and related gene expression levels.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Hongchen Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xinyu Min
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Feng Su
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Taian, Shangdong, 271018, PR China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
23
|
Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis. Cells 2021; 10:cells10061396. [PMID: 34198768 PMCID: PMC8229878 DOI: 10.3390/cells10061396] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte’s proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
Collapse
|
24
|
Liu X, Li W, Yang Y, Chen K, Li Y, Zhu X, Ye H, Xu H. Transcriptome Profiling of the Ovarian Cells at the Single-Cell Resolution in Adult Asian Seabass. Front Cell Dev Biol 2021; 9:647892. [PMID: 33855024 PMCID: PMC8039529 DOI: 10.3389/fcell.2021.647892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is widely adopted for identifying the signature molecular markers or regulators in cells, as this would benefit defining or isolating various types of cells. Likewise, the signature transcriptome profile analysis at the single cell level would well illustrate the key regulators or networks involved in gametogenesis and gonad development in animals; however, there is limited scRNA-seq analysis on gonadal cells in lower vertebrates, especially in the sexual reversal fish species. In this study, we analyzed the molecular signature of several distinct cell populations of Asian seabass adult ovaries through scRNA-seq. We identified five cell types and also successfully validated some specific genes of germ cells and granulosa cells. Likewise, we found some key pathways involved in ovarian development that may concert germline-somatic interactions. Moreover, we compared the transcriptomic profiles across fruit fly, mammals, and fish, and thus uncovered the conservation and divergence in molecular mechanisms that might drive ovarian development. Our results provide a basis for studying the crucial features of germ cells and somatic cells, which will benefit the understandings of the molecular mechanisms behind gametogenesis and gonad development in fish.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Kaili Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yulin Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Hua Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Bharti D, Tikka M, Lee SY, Bok EY, Lee HJ, Rho GJ. Female Germ Cell Development, Functioning and Associated Adversities under Unfavorable Circumstances. Int J Mol Sci 2021; 22:1979. [PMID: 33671303 PMCID: PMC7922109 DOI: 10.3390/ijms22041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
In the present era, infertility is one of the major issues which restricts many couples to have their own children. Infertility is the inability to achieve a clinical pregnancy after regular unprotected sexual intercourse for the period of one year or more. Various factors including defective male or female germ cell development, unhealthy and improper lifestyles, diseases like cancer and associated chemo-or-radiation therapies, congenital disorders, etc., may be responsible for infertility. Therefore, it is highly important to understand the basic concepts of germ cell development including primordial germ cell (PGC) formation, specification, migration, entry to genital ridges and their molecular mechanisms, activated pathways, paracrine and autocrine signaling, along with possible alteration which can hamper germ cell development and can cause adversities like cancer progression and infertility. Knowing all these aspects in a proper way can be very much helpful in improving our understanding about gametogenesis and finding possible ways to cure related disorders. Here in this review, various aspects of gametogenesis especially female gametes and relevant factors causing functional impairment have been thoroughly discussed.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Manisha Tikka
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala 147002, India;
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Hyeon-Jeong Lee
- Department of Medicine, University of California, San Diego, CA 92093-0021, USA;
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| |
Collapse
|
26
|
Heng D, Sheng X, Tian C, Li J, Liu L, Gou M, Liu L. Mtor inhibition by INK128 extends functions of the ovary reconstituted from germline stem cells in aging and premature aging mice. Aging Cell 2021; 20:e13304. [PMID: 33448083 PMCID: PMC7884035 DOI: 10.1111/acel.13304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation has been generally considered as promising therapeutics in preserving or recovering functions of lost, damaged, or aging tissues. Transplantation of primordial germ cells (PGCs) or oogonia stem cells (OSCs) can reconstitute ovarian functions that yet sustain for only short period of time, limiting potential application of stem cells in preservation of fertility and endocrine function. Here, we show that mTOR inhibition by INK128 extends the follicular and endocrine functions of the reconstituted ovaries in aging and premature aging mice following transplantation of PGCs/OSCs. Follicular development and endocrine functions of the reconstituted ovaries by transplanting PGCs into kidney capsule of the recipient mice were maintained by INK128 treatment for more than 12 weeks, in contrast to the controls for only about 4 weeks without receiving the mTOR inhibitors. Comparatively, rapamycin also can prolong the ovarian functions but for limited time. Furthermore, our data reveal that INK128 promotes mitochondrial function in addition to its known function in suppression of immune response and inflammation. Taken together, germline stem cell transplantation in combination with mTOR inhibition by INK128 improves and extends the reconstituted ovarian and endocrine functions in reproductive aging and premature aging mice.
Collapse
Affiliation(s)
- Dai Heng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Li
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Mo Gou
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| |
Collapse
|
27
|
Advances in Female Germ Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2021; 2021:8849230. [PMID: 33510796 PMCID: PMC7822693 DOI: 10.1155/2021/8849230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Germ cells are capable of maintaining species continuity through passing genetic and epigenetic information across generations. Female germ cells mainly develop during the embryonic stage and pass through subsequent developmental stages including primordial germ cells, oogonia, and oocyte. However, due to the limitation of using early human embryos as in vivo research model, in vitro research models are needed to reveal the early developmental process and related mechanisms of female germ cells. After birth, the number of follicles gradually decreases with age. Various conditions which damage ovarian functions would cause premature ovarian failure. Alternative treatments to solve these problems need to be investigated. Germ cell differentiation from pluripotent stem cells in vitro can simulate early embryonic development of female germ cells and clarify unresolved issues during the development process. In addition, pluripotent stem cells could potentially provide promising applications for female fertility preservation after proper in vitro differentiation. Mouse female germ cells have been successfully reconstructed in vitro and delivered to live offspring. However, the derivation of functional human female germ cells has not been fully achieved due to technical limitations and ethical issues. To provide an updated and comprehensive information, this review centers on the major studies on the differentiation of mouse and human female germ cells from pluripotent stem cells and provides references to further studies of developmental mechanisms and potential therapeutic applications of female germ cells.
Collapse
|
28
|
Cui LX, Tian YQ, Hao HS, Zou HY, Pang YW, Zhao SJ, Zhao XM, Zhu HB, Du WH. Knockdown of ASH1L methyltransferase induced apoptosis inhibiting proliferation and H3K36 methylation in bovine cumulus cells. Theriogenology 2020; 161:65-73. [PMID: 33296745 DOI: 10.1016/j.theriogenology.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
This study aims to investigate the expression and function of absent, small, or homeotic 1-like (ASH1L) methyltransferase in bovine cumulus cells in order to reveal by which mechanisms ASH1L regulates epigenetic modification and apoptosis in cumulus cells. The location of ASH1L and the methylation pattern of H3K36 were detected using immunofluorescence staining in cumulus cells. Quantitative PCR (qPCR) and western blotting were used to screen for effective siRNA targeting the ASH1L gene. Also, the mRNA expression levels of apoptosis-related genes and polycomb inhibitory complex genes were estimated by qPCR after knocking down the ASH1L gene in bovine cumulus cells. Cell proliferation and apoptosis were measured with the CCK-8 method and Annexin V-FITC by flow cytometry, respectively. The results of immunofluorescence analysis showed that ASH1L is located in the nucleus of bovine cumulus cells and is distributed in a dotted pattern. ASH1L knockdown in cumulus cells induced a decrease in the levels of H3K36me1/2/3 methylation (P < 0.05). Additionally, ASH1L knockdown inhibited cell proliferation, increased the apoptosis rate, and upregulated the expression of apoptosis genes CASPASE-3, BAX and BAX/BCL-2 ratio (P < 0.05). Meanwhile, the mRNA expression levels of EZH2 and SUZ12, two subunits of PRC2 protein, were increased in cells with ASH1L knockdown (P < 0.05). Therefore, the expression of ASH1L methyltransferase and its function in on the apoptosis of bovine cumulus cells were first studied. The mechanism by which ASH1L regulates the histone methylation and apoptosis in cumulus cells was also revealed.
Collapse
Affiliation(s)
- Li-Xin Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Qing Tian
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
29
|
Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 2020; 564:114-133. [PMID: 33162026 DOI: 10.1016/j.bbrc.2020.10.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.
Collapse
|
30
|
Esfandyari S, Chugh RM, Park HS, Hobeika E, Ulin M, Al-Hendy A. Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility. Cells 2020; 9:E2253. [PMID: 33050021 PMCID: PMC7599919 DOI: 10.3390/cells9102253] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022] Open
Abstract
Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy, with several advantages over other cell sources, including greater abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility. We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency, and to improve reproductive health for a significant number of women worldwide.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Elie Hobeika
- Fertility Centers of Illinois, Glenview, IL 60026, USA;
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
- Department of Obstetrics and Gynecology, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Shi S, Zhou X, Li J, Zhang L, Hu Y, Li Y, Yang G, Chu G. MiR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells. J Anim Sci Biotechnol 2020; 11:94. [PMID: 32944234 PMCID: PMC7488653 DOI: 10.1186/s40104-020-00500-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Granulosa cells (GCs) proliferation and estradiol synthesis significantly affect follicular development. The miR-214-3p expression in the ovarian tissues of high-yielding sows is higher than that in low-yielding sows, indicating that miR-214-3p may be involved in sow fertility. However, the functions and mechanisms of miR-214-3p on GCs are unclear. This study focuses on miR-214-3p in terms of the effects on GCs proliferation and estradiol synthesis. Results Our findings revealed that miR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine GCs. MiR-214-3p can increase the percentage of S-phase cells, the number of EdU labeled positive cells, and cell viability. However, E2 concentration was reduced after miR-214-3p agomir treatment. We also found that miR-214-3p up-regulates the expression of cell cycle genes including cell cycle protein B (Cyclin B), cell cycle protein D (Cyclin D), cell cycle protein E (Cyclin E), and cyclin-dependent kinase 4 (CDK4) at the transcription and translation levels, but down-regulates the mRNA and protein levels of cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 family 19 subfamily A member 1 (CYP19A1), and steroidogenic acute regulatory protein (StAR) (i.e., the key enzymes in estradiol synthesis). On-line prediction, bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blot results showed that the target genes of miR-214-3p in proliferation and estradiol synthesis are Mfn2 and NR5A1, respectively. Conclusions Our findings suggest that miR-214-3p plays an important role in the functional regulation of porcine GCs and therefore may be a target gene for regulating follicular development.
Collapse
Affiliation(s)
- Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jingjing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yamei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yankun Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
32
|
Luo Y, Zhuan Q, Li J, Du X, Huang Z, Hou Y, Fu X. Procyanidin B2 Improves Oocyte Maturation and Subsequent Development in Type 1 Diabetic Mice by Promoting Mitochondrial Function. Reprod Sci 2020; 27:2211-2222. [PMID: 32748223 DOI: 10.1007/s43032-020-00241-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) results in decreased oocyte quality and compromised early embryonic development. Procyanidin B2 (PB2) is a natural compound extracted from grape seeds and has strong antioxidant activity in vivo. This study evaluated the effect of PB2 on oocyte maturation in diabetic mice. Diabetic mice were induced by streptozotocin (STZ) injection. PB2 was supplemented in the in vitro maturation medium, and the ratio of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE), reactive oxygen species (ROS) levels, mitochondrial function, developmental ability, as well as crotonylation at H4K5 were determined in oocytes. PB2 can promote the extrusion of PBE (88.34% vs. 75.02%, P < 0.05); reduce the generation of ROS (1.12 vs. 1.96, P < 0.05); and improve the level of mitochondrial membrane potential (0.87 vs. 0.79 Δφm, P < 0.05), ATP level (1.31 vs. 0.71 pmol, P < 0.05), and mitochondria temperature (618.25 vs. 697.39 pixels, P < 0.05). The addition of PB2 also improved the level of oocyte crotonylation at H4K5 (crH4K5) (47.26 vs. 59.68 pixels, P < 0.05) and increased the blastocyst rate (61.51% vs. 36.07%, P < 0.05) after parthenogenetic activation. Our results are the first to reveal a role for PB2 in promoting the viability of oocytes by regulating the mitochondrial function. Moreover, we uncover that PB2 can improve the level of crH4K5, which provides a new strategy to combat the decline in oocyte quality of diabetic.
Collapse
Affiliation(s)
- Yuxi Luo
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Xingzhu Du
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhengyuan Huang
- Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW10 9NH, UK
| | - Yunpeng Hou
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, Beijing, 100193, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|