1
|
Moseley SM, Meliza CD. A Complex Acoustical Environment During Development Enhances Auditory Perception and Coding Efficiency in the Zebra Finch. J Neurosci 2025; 45:e1269242024. [PMID: 39730206 PMCID: PMC11823350 DOI: 10.1523/jneurosci.1269-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (Taeniopygia guttata), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song. Compared to birds raised by pairs in acoustic isolation, male and female birds raised in a breeding colony were better in an operant discrimination task at recognizing conspecific songs with and without masking colony noise. Neurons in colony-reared birds had higher average firing rates, selectivity, and discriminability, especially in the narrow-spiking, putatively inhibitory neurons of a higher-order auditory area, the caudomedial nidopallium (NCM). Neurons in colony-reared birds were also less correlated in their tuning, more efficient at encoding the spectrotemporal structure of conspecific song, and better at filtering out masking noise. These results suggest that the auditory cortex adapts to noisy, complex acoustical environments by strengthening inhibitory circuitry, functionally decoupling excitatory neurons while maintaining overall excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Samantha M Moseley
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - C Daniel Meliza
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
2
|
Bureš Z, Svobodová Burianová J, Pysanenko K, Syka J. The effect of acoustically enriched environment on structure and function of the developing auditory system. Hear Res 2024; 453:109110. [PMID: 39278142 DOI: 10.1016/j.heares.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 58601, Jihlava, Czech Republic; Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 1150/50, 10034 Prague 10, Czech Republic.
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
3
|
Moseley SM, Meliza CD. A complex acoustical environment during development enhances auditory perception and coding efficiency in the zebra finch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600670. [PMID: 38979160 PMCID: PMC11230381 DOI: 10.1101/2024.06.25.600670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (Taeniopygia guttata), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song. Compared to birds raised by pairs in acoustic isolation, male and female birds raised in a breeding colony were better in an operant discrimination task at recognizing conspecific songs with and without masking colony noise. Neurons in colony-reared birds had higher average firing rates, selectivity, and discriminability, especially in the narrow-spiking, putatively inhibitory neurons of a higher-order auditory area, the caudomedial nidopallium (NCM). Neurons in colony-reared birds were also less correlated in their tuning and more efficient at encoding the spectrotemporal structure of conspecific song, and better at filtering out masking noise. These results suggest that the auditory cortex adapts to noisy, complex acoustical environments by strengthening inhibitory circuitry, functionally decoupling excitatory neurons while maintaining overall excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Samantha M Moseley
- Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
| | - C Daniel Meliza
- Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville VA 22904, USA
| |
Collapse
|
4
|
Homma NY, See JZ, Atencio CA, Hu C, Downer JD, Beitel RE, Cheung SW, Najafabadi MS, Olsen T, Bigelow J, Hasenstaub AR, Malone BJ, Schreiner CE. Receptive-field nonlinearities in primary auditory cortex: a comparative perspective. Cereb Cortex 2024; 34:bhae364. [PMID: 39270676 PMCID: PMC11398879 DOI: 10.1093/cercor/bhae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Cortical processing of auditory information can be affected by interspecies differences as well as brain states. Here we compare multifeature spectro-temporal receptive fields (STRFs) and associated input/output functions or nonlinearities (NLs) of neurons in primary auditory cortex (AC) of four mammalian species. Single-unit recordings were performed in awake animals (female squirrel monkeys, female, and male mice) and anesthetized animals (female squirrel monkeys, rats, and cats). Neuronal responses were modeled as consisting of two STRFs and their associated NLs. The NLs for the STRF with the highest information content show a broad distribution between linear and quadratic forms. In awake animals, we find a higher percentage of quadratic-like NLs as opposed to more linear NLs in anesthetized animals. Moderate sex differences of the shape of NLs were observed between male and female unanesthetized mice. This indicates that the core AC possesses a rich variety of potential computations, particularly in awake animals, suggesting that multiple computational algorithms are at play to enable the auditory system's robust recognition of auditory events.
Collapse
Affiliation(s)
- Natsumi Y Homma
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Jermyn Z See
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Craig A Atencio
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Congcong Hu
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D Downer
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Center of Neuroscience, University of California Davis, Newton Ct, Davis, CA, USA
| | - Ralph E Beitel
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Steven W Cheung
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mina Sadeghi Najafabadi
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Timothy Olsen
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - James Bigelow
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrea R Hasenstaub
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian J Malone
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Center of Neuroscience, University of California Davis, Newton Ct, Davis, CA, USA
| | - Christoph E Schreiner
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Hu C, Hasenstaub AR, Schreiner CE. Basic Properties of Coordinated Neuronal Ensembles in the Auditory Thalamus. J Neurosci 2024; 44:e1729232024. [PMID: 38561224 PMCID: PMC11079962 DOI: 10.1523/jneurosci.1729-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.
Collapse
Affiliation(s)
- Congcong Hu
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| | - Andrea R Hasenstaub
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| | - Christoph E Schreiner
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| |
Collapse
|
6
|
Shadron K, Peña JL. Development of frequency tuning shaped by spatial cue reliability in the barn owl's auditory midbrain. eLife 2023; 12:e84760. [PMID: 37166099 PMCID: PMC10238092 DOI: 10.7554/elife.84760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
Sensory systems preferentially strengthen responses to stimuli based on their reliability at conveying accurate information. While previous reports demonstrate that the brain reweighs cues based on dynamic changes in reliability, how the brain may learn and maintain neural responses to sensory statistics expected to be stable over time is unknown. The barn owl's midbrain features a map of auditory space where neurons compute horizontal sound location from the interaural time difference (ITD). Frequency tuning of midbrain map neurons correlates with the most reliable frequencies for the neurons' preferred ITD (Cazettes et al., 2014). Removal of the facial ruff led to a specific decrease in the reliability of high frequencies from frontal space. To directly test whether permanent changes in ITD reliability drive frequency tuning, midbrain map neurons were recorded from adult owls, with the facial ruff removed during development, and juvenile owls, before facial ruff development. In both groups, frontally tuned neurons were tuned to frequencies lower than in normal adult owls, consistent with the change in ITD reliability. In addition, juvenile owls exhibited more heterogeneous frequency tuning, suggesting normal developmental processes refine tuning to match ITD reliability. These results indicate causality of long-term statistics of spatial cues in the development of midbrain frequency tuning properties, implementing probabilistic coding for sound localization.
Collapse
Affiliation(s)
- Keanu Shadron
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - José Luis Peña
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
7
|
Abstract
Adaptation is an essential feature of auditory neurons, which reduces their responses to unchanging and recurring sounds and allows their response properties to be matched to the constantly changing statistics of sounds that reach the ears. As a consequence, processing in the auditory system highlights novel or unpredictable sounds and produces an efficient representation of the vast range of sounds that animals can perceive by continually adjusting the sensitivity and, to a lesser extent, the tuning properties of neurons to the most commonly encountered stimulus values. Together with attentional modulation, adaptation to sound statistics also helps to generate neural representations of sound that are tolerant to background noise and therefore plays a vital role in auditory scene analysis. In this review, we consider the diverse forms of adaptation that are found in the auditory system in terms of the processing levels at which they arise, the underlying neural mechanisms, and their impact on neural coding and perception. We also ask what the dynamics of adaptation, which can occur over multiple timescales, reveal about the statistical properties of the environment. Finally, we examine how adaptation to sound statistics is influenced by learning and experience and changes as a result of aging and hearing loss.
Collapse
Affiliation(s)
- Ben D. B. Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Souffi S, Varnet L, Zaidi M, Bathellier B, Huetz C, Edeline JM. Reduction in sound discrimination in noise is related to envelope similarity and not to a decrease in envelope tracking abilities. J Physiol 2023; 601:123-149. [PMID: 36373184 DOI: 10.1113/jp283526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Humans and animals constantly face challenging acoustic environments, such as various background noises, that impair the detection, discrimination and identification of behaviourally relevant sounds. Here, we disentangled the role of temporal envelope tracking in the reduction in neuronal and behavioural discrimination between communication sounds in situations of acoustic degradations. By collecting neuronal activity from six different levels of the auditory system, from the auditory nerve up to the secondary auditory cortex, in anaesthetized guinea-pigs, we found that tracking of slow changes of the temporal envelope is a general functional property of auditory neurons for encoding communication sounds in quiet conditions and in adverse, challenging conditions. Results from a go/no-go sound discrimination task in mice support the idea that the loss of distinct slow envelope cues in noisy conditions impacted the discrimination performance. Together, these results suggest that envelope tracking is potentially a universal mechanism operating in the central auditory system, which allows the detection of any between-stimulus difference in the slow envelope and thus copes with degraded conditions. KEY POINTS: In quiet conditions, envelope tracking in the low amplitude modulation range (<20 Hz) is correlated with the neuronal discrimination between communication sounds as quantified by mutual information from the cochlear nucleus up to the auditory cortex. At each level of the auditory system, auditory neurons retain their abilities to track the communication sound envelopes in situations of acoustic degradation, such as vocoding and the addition of masking noises up to a signal-to-noise ratio of -10 dB. In noisy conditions, the increase in between-stimulus envelope similarity explains the reduction in both behavioural and neuronal discrimination in the auditory system. Envelope tracking can be viewed as a universal mechanism that allows neural and behavioural discrimination as long as the temporal envelope of communication sounds displays some differences.
Collapse
Affiliation(s)
- Samira Souffi
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS - Université Paris-Saclay, Saclay, France
| | - Léo Varnet
- Laboratoire des systèmes perceptifs, UMR CNRS 8248, Département d'Etudes Cognitives, Ecole Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Meryem Zaidi
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS - Université Paris-Saclay, Saclay, France
| | - Brice Bathellier
- Institut de l'Audition, Institut Pasteur, Université de Paris, INSERM, Paris, France
| | - Chloé Huetz
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS - Université Paris-Saclay, Saclay, France
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS - Université Paris-Saclay, Saclay, France
| |
Collapse
|
9
|
Seenivasan P, Narayanan R. Efficient information coding and degeneracy in the nervous system. Curr Opin Neurobiol 2022; 76:102620. [PMID: 35985074 PMCID: PMC7613645 DOI: 10.1016/j.conb.2022.102620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Efficient information coding (EIC) is a universal biological framework rooted in the fundamental principle that system responses should match their natural stimulus statistics for maximizing environmental information. Quantitatively assessed through information theory, such adaptation to the environment occurs at all biological levels and timescales. The context dependence of environmental stimuli and the need for stable adaptations make EIC a daunting task. We argue that biological complexity is the principal architect that subserves deft execution of stable EIC. Complexity in a system is characterized by several functionally segregated subsystems that show a high degree of functional integration when they interact with each other. Complex biological systems manifest heterogeneities and degeneracy, wherein structurally different subsystems could interact to yield the same functional outcome. We argue that complex systems offer several choices that effectively implement EIC and homeostasis for each of the different contexts encountered by the system.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India. https://twitter.com/PaveeSeeni
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
10
|
Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022; 16:799787. [PMID: 35221899 PMCID: PMC8866963 DOI: 10.3389/fnins.2022.799787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both “bottom-up” gain alterations in response to changes in environmental sound statistics as well as “top-down” mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.
Collapse
Affiliation(s)
- Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach,
| | - Howard J. Gritton
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
11
|
Occelli F, Hasselmann F, Bourien J, Puel JL, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cereb Cortex 2021; 32:1737-1754. [PMID: 34494109 DOI: 10.1093/cercor/bhab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.
Collapse
Affiliation(s)
- Florian Occelli
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Florian Hasselmann
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Nathalie Desvignes
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Bernadette Wiszniowski
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Jean-Marc Edeline
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Boris Gourévitch
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris F-75012, France.,CNRS, France
| |
Collapse
|
12
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Homma NY, Atencio CA, Schreiner CE. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics. Neuroscience 2021; 467:150-170. [PMID: 33951506 DOI: 10.1016/j.neuroscience.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022]
Abstract
Sensory cortical neurons can nonlinearly integrate a wide range of inputs. The outcome of this nonlinear process can be approximated by more than one receptive field component or filter to characterize the ensuing stimulus preference. The functional properties of multidimensional filters are, however, not well understood. Here we estimated two spectrotemporal receptive fields (STRFs) per neuron using maximally informative dimension analysis. We compared their temporal and spectral modulation properties and determined the stimulus information captured by the two STRFs in core rat auditory cortical fields, primary auditory cortex (A1) and ventral auditory field (VAF). The first STRF is the dominant filter and acts as a sound feature detector in both fields. The second STRF is less feature specific, preferred lower modulations, and had less spike information compared to the first STRF. The information jointly captured by the two STRFs was larger than that captured by the sum of the individual STRFs, reflecting nonlinear interactions of two filters. This information gain was larger in A1. We next determined how the acoustic environment affects the structure and relationship of these two STRFs. Rats were exposed to moderate levels of spectrotemporally modulated noise during development. Noise exposure strongly altered the spectrotemporal preference of the first STRF in both cortical fields. The interaction between the two STRFs was reduced by noise exposure in A1 but not in VAF. The results reveal new functional distinctions between A1 and VAF indicating that (i) A1 has stronger interactions of the two STRFs than VAF, (ii) noise exposure diminishes modulation parameter representation contained in the noise more strongly for the first STRF in both fields, and (iii) plasticity induced by noise exposure can affect the strength of filter interactions in A1. Taken together, ascertaining two STRFs per neuron enhances the understanding of cortical information processing and plasticity effects in core auditory cortex.
Collapse
Affiliation(s)
- Natsumi Y Homma
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA; Center for Integrative Neuroscience, University of California San Francisco, San Francisco, USA.
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA; Center for Integrative Neuroscience, University of California San Francisco, San Francisco, USA
| |
Collapse
|
14
|
Acoustically Enriched Environment during the Critical Period of Postnatal Development Positively Modulates Gap Detection and Frequency Discrimination Abilities in Adult Rats. Neural Plast 2021; 2021:6611922. [PMID: 33777134 PMCID: PMC7979287 DOI: 10.1155/2021/6611922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Throughout life, sensory systems adapt to the sensory environment to provide optimal responses to relevant tasks. In the case of a developing system, sensory inputs induce changes that are permanent and detectable up to adulthood. Previously, we have shown that rearing rat pups in a complex acoustic environment (spectrally and temporally modulated sound) from postnatal day 14 (P14) to P28 permanently improves the response characteristics of neurons in the inferior colliculus and auditory cortex, influencing tonotopical arrangement, response thresholds and strength, and frequency selectivity, along with stochasticity and the reproducibility of neuronal spiking patterns. In this study, we used a set of behavioral tests based on a recording of the acoustic startle response (ASR) and its prepulse inhibition (PPI), with the aim to extend the evidence of the persistent beneficial effects of the developmental acoustical enrichment. The enriched animals were generally not more sensitive to startling sounds, and also, their PPI of ASR, induced by noise or pure tone pulses, was comparable to the controls. They did, however, exhibit a more pronounced PPI when the prepulse stimulus was represented either by a change in the frequency of a background tone or by a silent gap in background noise. The differences in the PPI of ASR between the enriched and control animals were significant at lower (55 dB SPL), but not at higher (65-75 dB SPL), intensities of background sound. Thus, rearing pups in the acoustically enriched environment led to an improvement of the frequency resolution and gap detection ability under more difficult testing conditions, i.e., with a worsened stimulus clarity. We confirmed, using behavioral tests, that an acoustically enriched environment during the critical period of development influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood.
Collapse
|
15
|
Fehrman C, Robbins TD, Meliza CD. Nonlinear effects of intrinsic dynamics on temporal encoding in a model of avian auditory cortex. PLoS Comput Biol 2021; 17:e1008768. [PMID: 33617539 PMCID: PMC7932506 DOI: 10.1371/journal.pcbi.1008768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/04/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Neurons exhibit diverse intrinsic dynamics, which govern how they integrate synaptic inputs to produce spikes. Intrinsic dynamics are often plastic during development and learning, but the effects of these changes on stimulus encoding properties are not well known. To examine this relationship, we simulated auditory responses to zebra finch song using a linear-dynamical cascade model, which combines a linear spectrotemporal receptive field with a dynamical, conductance-based neuron model, then used generalized linear models to estimate encoding properties from the resulting spike trains. We focused on the effects of a low-threshold potassium current (KLT) that is present in a subset of cells in the zebra finch caudal mesopallium and is affected by early auditory experience. We found that KLT affects both spike adaptation and the temporal filtering properties of the receptive field. The direction of the effects depended on the temporal modulation tuning of the linear (input) stage of the cascade model, indicating a strongly nonlinear relationship. These results suggest that small changes in intrinsic dynamics in tandem with differences in synaptic connectivity can have dramatic effects on the tuning of auditory neurons. Experience-dependent developmental plasticity involves changes not only to synaptic connections, but to voltage-gated currents as well. Using biophysical models, it is straightforward to predict the effects of this intrinsic plasticity on the firing patterns of individual neurons, but it remains difficult to understand the consequences for sensory coding. We investigated this in the context of the zebra finch auditory cortex, where early exposure to a complex acoustic environment causes increased expression of a low-threshold potassium current. We simulated responses to song using a detailed biophysical model and then characterized encoding properties using generalized linear models. This analysis revealed that this potassium current has strong, nonlinear effects on how the model encodes the song’s temporal structure, and that the sign of these effects depend on the temporal tuning of the synaptic inputs. This nonlinearity gives intrinsic plasticity broad scope as a mechanism for developmental learning in the auditory system.
Collapse
Affiliation(s)
- Christof Fehrman
- Psychology Department, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tyler D. Robbins
- Cognitive Science Program, University of Virginia, Charlottesville, Virginia, United States of America
| | - C. Daniel Meliza
- Psychology Department, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise. Hear Res 2020; 400:108142. [PMID: 33310564 DOI: 10.1016/j.heares.2020.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Although acoustic communication is inevitably influenced by noise, behaviorally relevant sounds are perceived reliably. The noise-tolerant and -invariant responses of auditory neurons are thought to be the underlying mechanism. So, it is reasonable to speculate that neurons with best frequency tuned to behaviorally relevant sounds will play important role in noise-tolerant perception. Echolocating bats live in groups and emit multiple harmonic signals and analyze the returning echoes to extract information about the target features, making them prone to deal with noise in their natural habitat. The echolocation signal of Hipposideros pratti usually contains 3-4 harmonics (H1H4), the second harmonic has the highest amplitude and is thought to play an essential role during echolocation behavior. Therefore, it is reasonable to propose that neurons tuned to the H2, named the H2 neurons, can be more noise-tolerant to background noise. Taking advantage of bat's stereotypical echolocation signal and single-cell recording, our present study showed that the minimal threshold increases (12.2 dB) of H2 neurons in the auditory midbrain were comparable to increase in bat's call intensity (14.2 dB) observed in 70 dB SPL white noise condition, indicating that the H2 neurons could work as background noise monitor. The H2 neurons had higher minimal thresholds and sharper frequency tuning, which enabled them to be more tolerant to background noise. Furthermore, the H2 neurons had consistent best amplitude spikes and sharper intensity tuning in background white noise condition than in silence. Taken together, these results suggest that the H2 neurons might account for noise-tolerant perception of behaviorally relevant sounds.
Collapse
|
17
|
Abstract
Being able to pick out particular sounds, such as speech, against a background of other sounds represents one of the key tasks performed by the auditory system. Understanding how this happens is important because speech recognition in noise is particularly challenging for older listeners and for people with hearing impairments. Central to this ability is the capacity of neurons to adapt to the statistics of sounds reaching the ears, which helps to generate noise-tolerant representations of sounds in the brain. In more complex auditory scenes, such as a cocktail party — where the background noise comprises other voices, sound features associated with each source have to be grouped together and segregated from those belonging to other sources. This depends on precise temporal coding and modulation of cortical response properties when attending to a particular speaker in a multi-talker environment. Furthermore, the neural processing underlying auditory scene analysis is shaped by experience over multiple timescales.
Collapse
|