1
|
Huang S, Wu J, Yang Y, Zhu M, Chen L, Zhang S, Yang Y, Sun X, Xie Y. Investigate the Effect of ZFP64 on mRNA Expression of HBG Based on Bioinformatics and Experimental Validation. Cell Biochem Biophys 2025:10.1007/s12013-025-01776-5. [PMID: 40392482 DOI: 10.1007/s12013-025-01776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
γ-globin genes (HBG1 and HBG2) are usually expressed during fetal life, and almost no expression after birth. Therefore, the reactivation of HBG is a key target for the treatment of hemoglobinopathy. ZFP64 is a C2H2 type zinc finger transcription factor, which has been shown to play an important role in the maintenance of gene expression in mixed lineage leukemia, and other C2H2 type zinc finger transcription factors (such as ZFP410 and ZFP644) have been shown to regulate the expression of fetal hemoglobin (HbF) in thalassemia. This study aims to investigate the effect of ZFP64 on mRNA expression of HBG. We performed bioinformatics analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks to identify genes and transcription factors associated with ZFP64. ZFP64 was knocked out in K562 and HUDEP-2 cell lines by CRISPR-Cas9 electroporation, and the transcription levels of ZFP64, HBB and HBG were analyzed. In undifferentiated and 7-day differentiated HUDEP-2 cells, knocking down ZFP64 resulted in a 1.5-fold and 2.5-fold increase in HBG mRNA expression, respectively (p < 0.05). These findings suggest that ZFP64 is a potential regulator of HBG expression and warrants further investigation as a therapeutic target in hemoglobinopathies.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jianfeng Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yinghong Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingming Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lihao Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shunhan Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yi Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Wallace KA, Gerstenberg TL, Ennis CL, Perez-Bermejo JA, Partridge JR, Bandoro C, Matern WM, Andreoletti G, Krassovsky K, Kabir S, Lalisan CD, Churi AR, Chew GM, Corbo L, Vincelette JE, Klasson TD, Silva BJ, Strukov YG, Quejarro BJ, Hill KA, Treusch S, Grogan JL, Dever DP, Porteus MH, Wienert B. A differentiated β-globin gene replacement strategy uses heterologous introns to restore physiological expression. Mol Ther 2025; 33:1407-1419. [PMID: 40022449 PMCID: PMC11997512 DOI: 10.1016/j.ymthe.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
β-Hemoglobinopathies are common monogenic disorders. In sickle cell disease (SCD), a single mutation in the β-globin (HBB) gene results in dysfunctional hemoglobin protein, while in β-thalassemia, over 300 mutations distributed across the gene reduce β-globin levels and cause severe anemia. Genetic engineering replacing the whole HBB gene through homology-directed repair (HDR) is an ideal strategy to restore a benign genotype and rescue HBB expression for most genotypes. However, this is technically challenging because (1) the insert must not be homologous to the endogenous gene and (2) synonymous codon-optimized, intron-less sequences may not reconstitute adequate β-globin levels. Here, we developed an HBB gene replacement strategy using CRISPR-Cas9 that successfully addresses these challenges. We determined that a DNA donor containing a diverged HBB coding sequence and heterologous introns to avoid sequence homology provides proper physiological expression. We identified a DNA donor that uses truncated γ-globin introns, results in 34% HDR, and rescues β-globin expression in in vitro models of SCD and β-thalassemia in hematopoietic stem and progenitor cells (HSPCs). Furthermore, while HDR allele frequency dropped in vivo, it was maintained at ∼15%, demonstrating editing of long-term repopulating HSPCs. In summary, our HBB gene replacement strategy offers a differentiated approach by restoring naturally regulated adult hemoglobin expression.
Collapse
Affiliation(s)
- Kirby A Wallace
- Graphite Bio, Inc., South San Francisco, CA 94080, USA; Kamau Therapeutics, Inc., South San Francisco, CA 94080, USA
| | | | - Craig L Ennis
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | - Shaheen Kabir
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Glen M Chew
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | - Lana Corbo
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Brian J Silva
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Kaisle A Hill
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | - Jane L Grogan
- Graphite Bio, Inc., South San Francisco, CA 94080, USA
| | | | | | - Beeke Wienert
- Graphite Bio, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Nar R, Gibbons MD, Perez L, Strouboulis J, Qian Z, Bungert J. TFII-I/GTF2I regulates globin gene expression and stress response in erythroid cells. J Biol Chem 2025; 301:108227. [PMID: 39864622 PMCID: PMC11879681 DOI: 10.1016/j.jbc.2025.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Transcription factor TFII-I/GTF2I is ubiquitously expressed and has been shown to play a role in the differentiation of hematopoietic cells and in the response to various cellular stressors. We previously demonstrated that TFII-I acts as a repressor of adult β-globin gene transcription and positively regulates the expression of stress response proteins, including ATF3. Here we analyzed the function of TFII-I in TF-1 cells during erythroid differentiation and in response to cellular stress, including unfolded protein response, hypoxia, and oxidative stress. Ablation of TFII-I leads to mild changes in the cell cycle and proliferation of TF-1 cells. Importantly, TFII-I deficiency increased the expression of the adult β-globin gene with a concomitant reduction in the expression of the fetal γ-globin genes during erythropoietin-mediated erythroid differentiation of TF-1 cells. Furthermore, TFII-I regulates genes involved in stress response, including CHOP, Elongin A, ATF3, ATF4, and Grp78, and participates in the apoptotic response to stressors. In summary, the data provide further support for the role of TFII-I in stress response and the regulation of globin genes.
Collapse
Affiliation(s)
- Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA; Department of Medicine, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.
| | - Matthew D Gibbons
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Leonardo Perez
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - John Strouboulis
- Red Cell Haematology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Zhijian Qian
- Department of Medicine, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
4
|
Wu T, Ren Z, Liu X, Xing Z, Fu X, Li W, Chen M, Li D, Chen Y. Systematic identification and validation of ceRNA-driven regulatory mechanisms in pediatric β-Thalassemia major. Ann Hematol 2025; 104:963-972. [PMID: 39930261 PMCID: PMC11971229 DOI: 10.1007/s00277-025-06215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 04/05/2025]
Abstract
Reactivation of fetal hemoglobin (Hb F, α2γ2) has been demonstrated to be a therapeutic strategy for patients with β-hemoglobinopathies. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by silencing RNA. Both coding and non-coding RNAs can compete for the same miRNAs, acting as competing endogenous RNAs (ceRNAs). However, the role of ceRNAs in β-thalassemia major (β-TM) and their impact on γ-globin expression remains poorly understood. In this study, we conducted transcriptome sequencing to collect circularRNA (circRNA), miRNA, and mRNAs from β-TM patients and healthy individuals. Through bioinformatics analysis, we constructed a GATA2‑associated ceRNA network, emphasizing the hsa_circ_0005245_hsa-miR-425-3p_GATA2 pathway. Validation using qRT-PCR analysis in β-TM samples, RNA immunoprecipitation, and dual-luciferase reporter assays confirmed this pathway. Furthermore, overexpression of hsa_circ_0005245, hsa-miR-425-3p, and GATA2 in HUDEP-2 cells individually resulted in elevated γ-globin levels. Our findings identify a novel hsa_circ_0005245_hsa-miR-425-3p_GATA2 pathway that regulates γ-globin expression, providing potential insights for the clinical management of β-TM patients.
Collapse
Affiliation(s)
- Tao Wu
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China
- Department of Laboratory Medicine, Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, 518038, China
| | - Zhenmin Ren
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China
| | - Xiaorong Liu
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China
| | - Zhihao Xing
- Biobank & Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, China
| | - Xiaoying Fu
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China
| | - Wujiao Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China
| | - Moxian Chen
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China.
- Department of Laboratory Medicine, Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, 518038, China.
| | - Yunsheng Chen
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Futian District, 7019 Yitian Road, Shenzhen, 518038, NoGuangdong, China.
- Department of Laboratory Medicine, Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, 518038, China.
| |
Collapse
|
5
|
Santos GPD, Rabi LT, Bezerra AA, da Cunha MR, Iatecola A, Fernandes VAR. Transcriptional regulators of fetal hemoglobin. Hematol Transfus Cell Ther 2024; 46 Suppl 5:S258-S268. [PMID: 39237431 PMCID: PMC11670590 DOI: 10.1016/j.htct.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Sickle cell anemia is a hereditary disease caused by sickle-shaped red blood cells that can lead to vaso-occlusive crises. Treatment options are currently limited, highlighting the need to develop new clinical approaches. Studies demonstrated that elevated levels of fetal hemoglobin (Hb F) are associated with a reduction of mortality and morbidity in sickle cell anemia patients. In light of this, researchers have been trying to elucidate the transcriptional regulation of Hb F to develop new therapeutic interventions. The present study aimed to present the main transcription factors of Hb F and discuss the clinical feasibility of these molecular targets. Two search strategies were used in the PubMed, SciELO, and LILACS databases between July and August 2023 to conduct this review. Manual searches were also conducted by checking references of potentially eligible studies. Eligibility criteria consisted of clinical trials and cohort studies from the last five years that investigated transcription factors associated with Hb F. The transcription factors investigated in at least four eligible studies were included in this review. As a result, 56 eligible studies provided data on the BCL11A, LRF, NF-Y, GATA1, KLF1, HRI, ATF4, and MYB factors. The studies demonstrated that Hb F is cooperatively regulated by transcription factors with the BCL11A factor appearing to be the most specific target gene for γ-globin induction. Although these data are promising, there are still significant gaps and intervention limitations due to the adverse functions of the target genes. New studies that clarify the aspects and functionalities of Hb F regulators may enable new clinical approaches for sickle cell anemia patients.
Collapse
Affiliation(s)
| | - Larissa Teodoro Rabi
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, SP, Brazil; Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - André Alves Bezerra
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | - Marcelo Rodrigues da Cunha
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | - Amilton Iatecola
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | | |
Collapse
|
6
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 PMCID: PMC11830979 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Lyu J, Xu J. Context matters: role of ATF4 in hematopoiesis. Blood 2024; 144:684-686. [PMID: 39145942 PMCID: PMC11375458 DOI: 10.1182/blood.2024025066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Affiliation(s)
| | - Jian Xu
- St. Jude Children's Research Hospital
| |
Collapse
|
8
|
Zheng Z, Yang S, Gou F, Tang C, Zhang Z, Gu Q, Sun G, Jiang P, Wang N, Zhao X, Kang J, Wang Y, He Y, Yang M, Lu T, Lu S, Qian P, Zhu P, Cheng H, Cheng T. The ATF4-RPS19BP1 axis modulates ribosome biogenesis to promote erythropoiesis. Blood 2024; 144:742-756. [PMID: 38657191 DOI: 10.1182/blood.2023021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Hematopoietic differentiation is controlled by intrinsic regulators and the extrinsic hematopoietic niche. Activating transcription factor 4 (ATF4) plays a crucial role in the function of fetal and adult hematopoietic stem cell maintenance. However, the precise function of ATF4 in the bone marrow (BM) niche and the mechanism by which ATF4 regulates adult hematopoiesis remain largely unknown. Here, we used 4 cell-type-specific mouse Cre lines to achieve conditional knockout of Atf4 in Cdh5+ endothelial cells, Prx1+ BM stromal cells, Osx+ osteoprogenitor cells, and Mx1+ hematopoietic cells and uncovered the role of Atf4 in niche cells and hematopoiesis. Intriguingly, depletion of Atf4 in niche cells did not affect hematopoiesis; however, Atf4-deficient hematopoietic cells exhibited erythroid differentiation defects, leading to hypoplastic anemia. Mechanistically, ATF4 mediated direct regulation of Rps19bp1 transcription, which is, in turn, involved in 40 S ribosomal subunit assembly to coordinate ribosome biogenesis and promote erythropoiesis. Finally, we demonstrate that under conditions of 5-fluorouracil-induced stress, Atf4 depletion impedes the recovery of hematopoietic lineages, which requires efficient ribosome biogenesis. Taken together, our findings highlight the indispensable role of the ATF4-RPS19BP1 axis in the regulation of erythropoiesis.
Collapse
Affiliation(s)
- Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Nini Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Junnan Kang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Yicheng He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Meng Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
9
|
Li J, Lv A, Chen M, Xu L, Huang H. Activating transcription factor 4 in erythroid development and β -thalassemia: a powerful regulator with therapeutic potential. Ann Hematol 2024; 103:2659-2670. [PMID: 37906269 DOI: 10.1007/s00277-023-05508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Activating transcription factor 4 (ATF4) is a fundamental basic region/leucine zipper transcription factor, responds to various stress signals, and plays crucial roles in normal metabolic and stress response processes. Although its functions in human health and disease are not completely understood, compelling evidence underscores ATF4 is indispensable for multiple stages and lineages of erythroid development, including the regulation of fetal liver hematopoietic stem cells, induction of terminal erythroid differentiation, and maintenance of erythroid homeostasis. β -Thalassemia is a blood disorder arising from mutations in the β -globin gene. Reactivating the expression of the γ -globin gene in adult patients has emerged as a promising therapeutic strategy for ameliorating clinical symptoms associated with β -thalassemia. Recent research has suggested that ATF4 contributes to decreased fetal hemoglobin (HbF) level through its binding to potent negative regulators of HbF, such as BCL11A and MYB. Notably, evidence also suggests a contrasting outcome where increased ATF4 protein levels are associated with enhanced HbF at the transcriptional level. Consequently, the identification of mechanisms that modulate ATF4-mediated γ -globin transcription and its effects on erythroid development may unveil novel targets for β -thalassemia treatment.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Meihuan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
10
|
Zhu T, Okabe A, Usui G, Fujiki R, Komiyama D, Huang KK, Seki M, Fukuyo M, Abe H, Ning M, Okada T, Minami M, Matsumoto M, Fan Q, Rahmutulla B, Hoshii T, Tan P, Morikawa T, Ushiku T, Kaneda A. Integrated enhancer regulatory network by enhancer-promoter looping in gastric cancer. NAR Cancer 2024; 6:zcae020. [PMID: 38720882 PMCID: PMC11077903 DOI: 10.1093/narcan/zcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.
Collapse
Affiliation(s)
- Tianhui Zhu
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba 260-8670, Japan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Daichi Komiyama
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore 169857, Singapore
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Meng Ning
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoka Okada
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mizuki Minami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Qin Fan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138632, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
11
|
Pavani G, Klein JG, Nations CC, Sussman JH, Tan K, An HH, Abdulmalik O, Thom CS, Gearhart PA, Willett CM, Maguire JA, Chou ST, French DL, Gadue P. Modeling primitive and definitive erythropoiesis with induced pluripotent stem cells. Blood Adv 2024; 8:1449-1463. [PMID: 38290102 PMCID: PMC10955655 DOI: 10.1182/bloodadvances.2023011708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.
Collapse
Affiliation(s)
- Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joshua G. Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Catriana C. Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan H. Sussman
- Department of Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kai Tan
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hyun Hyung An
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christopher S. Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Peter A. Gearhart
- Department of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA
| | - Camryn M. Willett
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stella T. Chou
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
12
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
13
|
Ceglie G, Lecis M, Canciani G, Algeri M, Frati G. Genome editing for sickle cell disease: still time to correct? Front Pediatr 2023; 11:1249275. [PMID: 38027257 PMCID: PMC10652763 DOI: 10.3389/fped.2023.1249275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder, due to a single point mutation in the β-globin gene (HBB) leading to multisystemic manifestations and it affects millions of people worldwide. The monogenic nature of the disease and the availability of autologous hematopoietic stem cells (HSCs) make this disorder an ideal candidate for gene modification strategies. Notably, significant advances in the field of gene therapy and genome editing that took place in the last decade enabled the possibility to develop several strategies for the treatment of SCD. These curative approaches were firstly based on the correction of disease-causing mutations holding the promise for a specific, effective and safe option for patients. Specifically, gene-editing approaches exploiting the homology directed repair pathway were investigated, but soon their limited efficacy in quiescent HSC has curbed their wider development. On the other hand, a number of studies on globin gene regulation, led to the development of several genome editing strategies based on the reactivation of the fetal γ-globin gene (HBG) by nuclease-mediated targeting of HBG-repressor elements. Although the efficiency of these strategies seems to be confirmed in preclinical and clinical studies, very little is known about the long-term consequences of these modifications. Moreover, the potential genotoxicity of these nuclease-based strategies must be taken into account, especially when associated with high targeting rates. The recent introduction of nuclease-free genome editing technologies brought along the potential for safer strategies for SCD gene correction, which may also harbor significant advantages over HBG-reactivating ones. In this Review, we discuss the recent advances in genome editing strategies for the correction of SCD-causing mutations trying to recapitulate the promising strategies currently available and their relative strengths and weaknesses.
Collapse
Affiliation(s)
- Giulia Ceglie
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Lecis
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Unit, Modena University Hospital, Modena, Italy
| | - Gabriele Canciani
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Mattia Algeri
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giacomo Frati
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
14
|
Daniels DE, Ferrer-Vicens I, Hawksworth J, Andrienko TN, Finnie EM, Bretherton NS, Ferguson DCJ, Oliveira ASF, Szeto JYA, Wilson MC, Brewin JN, Frayne J. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat Commun 2023; 14:6260. [PMID: 37803026 PMCID: PMC10558456 DOI: 10.1038/s41467-023-41961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
β-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for β-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in β-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - John N Brewin
- Haematology Department, King's college Hospital NHS Foundation, London, SE5 9RS, UK
- Red Cell Biology Group, Kings College London, London, SE5 9NU, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Zhou G, Lu D. Proteomics screening uncovers HMGA1 as a promising negative regulator for γ-globin expression in response to decreased β-globin levels. J Proteomics 2023; 286:104957. [PMID: 37423548 DOI: 10.1016/j.jprot.2023.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Reactivation of fetal hemoglobin (HbF) is a critical goal for the treatment of patients with hemoglobinopathies. β-globin disorders can trigger stress erythropoiesis in red blood cells (RBCs). Cell-intrinsic erythroid stress signals promote erythroid precursors to express high levels of fetal hemoglobin, which is also known as γ-globin. However, the molecular mechanism underlying γ-globin production during cell-intrinsic erythroid stress remains to be elucidated. Here, we utilized CRISPR-Cas9 to model a stressed state caused by reduced levels of adult β-globin in HUDEP2 human erythroid progenitor cells. We found that a decrease in β-globin expression correlates with the upregulation of γ-globin expression. We also identified transcription factor high-mobility group A1 (HMGA1; formerly HMG-I/Y) as a potential γ-globin regulator that responds to reduced β-globin levels. Upon erythroid stress, there is a downregulation of HMGA1, which normally binds -626 to -610 base pairs upstream from the STAT3 promoter, to downregulate STAT3 expression. STAT3 is a known γ-globin repressor, so the downregulation of HMGA1 ultimately upregulates γ-globin expression. SIGNIFICANCE: This study demonstrated HMGA1 as a potential regulator in the poorly understood phenomenon of stress-induced globin compensation, and after further validation these results might inform new strategies to treat patients with sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Guoqiang Zhou
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458, China
| | - Daru Lu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458, China; NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China.
| |
Collapse
|
16
|
Venkatesan V, Christopher AC, Rhiel M, Azhagiri MKK, Babu P, Walavalkar K, Saravanan B, Andrieux G, Rangaraj S, Srinivasan S, Karuppusamy KV, Jacob A, Bagchi A, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Pai R, Marepally SK, Mohankumar KM, Velayudhan SR, Boerries M, Notani D, Cathomen T, Srivastava A, Thangavel S. Editing the core region in HPFH deletions alters fetal and adult globin expression for treatment of β-hemoglobinopathies. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:671-688. [PMID: 37215154 PMCID: PMC10197010 DOI: 10.1016/j.omtn.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Reactivation of fetal hemoglobin (HbF) is a commonly adapted strategy to ameliorate β-hemoglobinopathies. However, the continued production of defective adult hemoglobin (HbA) limits HbF tetramer production affecting the therapeutic benefits. Here, we evaluated deletional hereditary persistence of fetal hemoglobin (HPFH) mutations and identified an 11-kb sequence, encompassing putative repressor region (PRR) to β-globin exon-1 (βE1), as the core deletion that ablates HbA and exhibits superior HbF production compared with HPFH or other well-established targets. PRR-βE1-edited hematopoietic stem and progenitor cells (HSPCs) retained their genome integrity and their engraftment potential to repopulate for long-term hematopoiesis in immunocompromised mice producing HbF positive cells in vivo. Furthermore, PRR-βE1 gene editing is feasible without ex vivo HSPC culture. Importantly, the editing induced therapeutically significant levels of HbF to reverse the phenotypes of both sickle cell disease and β-thalassemia major. These findings imply that PRR-βE1 gene editing of patient HSPCs could lead to improved therapeutic outcomes for β-hemoglobinopathy gene therapy.
Collapse
Affiliation(s)
- Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Manoj Kumar K. Azhagiri
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kaivalya Walavalkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Bharath Saravanan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine & Medical Center - University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sumathi Rangaraj
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Saranya Srinivasan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Annlin Jacob
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Abhirup Bagchi
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan
| | | | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Srujan Kumar Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | | | - Shaji R. Velayudhan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine & Medical Center - University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dimple Notani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| |
Collapse
|
17
|
Boontanrart MY, Mächler E, Ponta S, Nelis JC, Preiano VG, Corn JE. Engineering of the endogenous HBD promoter increases HbA2. eLife 2023; 12:e85258. [PMID: 37265399 PMCID: PMC10270685 DOI: 10.7554/elife.85258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
The β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, are one of the most common genetic diseases worldwide and are caused by mutations affecting the structure or production of β-globin subunits in adult hemoglobin. Many gene editing efforts to treat the β-hemoglobinopathies attempt to correct β-globin mutations or increase γ-globin for fetal hemoglobin production. δ-globin, the subunit of adult hemoglobin A2, has high homology to β-globin and is already pan-cellularly expressed at low levels in adult red blood cells. However, upregulation of δ-globin is a relatively unexplored avenue to increase the amount of functional hemoglobin. Here, we use CRISPR-Cas9 to repair non-functional transcriptional elements in the endogenous promoter region of δ-globin to increase overall expression of adult hemoglobin 2 (HbA2). We find that insertion of a KLF1 site alone is insufficient to upregulate δ-globin. Instead, multiple transcription factor elements are necessary for robust upregulation of δ-globin from the endogenous locus. Promoter edited HUDEP-2 immortalized erythroid progenitor cells exhibit striking increases of HBD transcript, from less than 5% to over 20% of total β-like globins in clonal populations. Edited CD34 +hematopoietic stem and progenitors (HSPCs) differentiated to primary human erythroblasts express up to 46% HBD in clonal populations. These findings add mechanistic insight to globin gene regulation and offer a new therapeutic avenue to treat β-hemoglobinopathies.
Collapse
Affiliation(s)
| | - Elia Mächler
- Department of Biology, ETH ZurichZurichSwitzerland
| | - Simone Ponta
- Department of Biology, ETH ZurichZurichSwitzerland
| | - Jan C Nelis
- Department of Biology, ETH ZurichZurichSwitzerland
| | | | - Jacob E Corn
- Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
18
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
19
|
Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease-A brief update. Front Med (Lausanne) 2023; 9:1065377. [PMID: 36698803 PMCID: PMC9868311 DOI: 10.3389/fmed.2022.1065377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common hemoglobinopathies. Due to its high prevalence, with about 20 million affected individuals worldwide, the development of novel effective treatments is highly warranted. While transplantation of allogeneic hematopoietic stem cells (HSC) is the standard curative treatment approach, a variety of gene transfer and genome editing strategies have demonstrated their potential to provide a prospective cure for SCD patients. Several stratagems employing CRISPR-Cas nucleases or base editors aim at reactivation of γ-globin expression to replace the faulty β-globin chain. The fetal hemoglobin (HbF), consisting of two α-globin and two γ-globin chains, can compensate for defective adult hemoglobin (HbA) and reverse the sickling of hemoglobin-S (HbS). Both disruption of cis-regulatory elements that are involved in inhibiting γ-globin expression, such as BCL11A or LRF binding sites in the γ-globin gene promoters (HBG1/2), or the lineage-specific disruption of BCL11A to reduce its expression in human erythroblasts, have been demonstrated to reestablish HbF expression. Alternatively, the point mutation in the HBB gene has been corrected using homology-directed repair (HDR)-based methodologies. In general, genome editing has shown promising results not only in preclinical animal models but also in clinical trials, both in terms of efficacy and safety. This review provides a brief update on the recent clinical advances in the genome editing space to offer cure for SCD patients, discusses open questions with regard to off-target effects induced by the employed genome editors, and gives an outlook of forthcoming developments.
Collapse
Affiliation(s)
- Parinaz Zarghamian
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Toni Cathomen,
| |
Collapse
|
20
|
Luk K, Liu P, Zeng J, Wang Y, Maitland SA, Idrizi F, Ponnienselvan K, Iyer S, Zhu LJ, Luban J, Bauer DE, Wolfe SA. Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells. GEN BIOTECHNOLOGY 2022; 1:271-284. [PMID: 38405215 PMCID: PMC10887433 DOI: 10.1089/genbio.2022.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Type V CRISPR-Cas12a systems are an attractive Cas9-alternative nuclease platform for specific genome editing applications. However, previous studies demonstrate that there is a gap in overall activity between Cas12a and Cas9 in primary cells.1 Here we describe optimization to the NLS composition and architecture of Cas12a to facilitate highly efficient targeted mutagenesis in human transformed cell lines (HEK293T, Jurkat, and K562 cells) and primary cells (NK cells and CD34+ HSPCs), regardless of Cas12a ortholog. Our 3xNLS Cas12a architecture resulted in the most robust editing platform. The improved editing activity of Cas12a in both NK cells and CD34+ HSPCs resulted in pronounced phenotypic changes associated with target gene editing. Lastly, we demonstrated that optimization of the NLS composition and architecture of Cas12a did not increase editing at potential off-target sites in HEK293T or CD34+ HSPCs. Our new Cas12a NLS variant provides an improved nuclease platform for therapeutic genome editing.
Collapse
Affiliation(s)
- Kevin Luk
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, Boston, MA, USA
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Beijing, Beijing, CN
| | - Stacy A. Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Feston Idrizi
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sukanya Iyer
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, Boston, MA, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
21
|
Magis W, DeWitt MA, Wyman SK, Vu JT, Heo SJ, Shao SJ, Hennig F, Romero ZG, Campo-Fernandez B, Said S, McNeill MS, Rettig GR, Sun Y, Wang Y, Behlke MA, Kohn DB, Boffelli D, Walters MC, Corn JE, Martin DI. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience 2022; 25:104374. [PMID: 35633935 PMCID: PMC9130532 DOI: 10.1016/j.isci.2022.104374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022] Open
Abstract
Background A point mutation in sickle cell disease (SCD) alters one amino acid in the β-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction. Results An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one β-globin allele in more than 30% of long-term engrafting human HSCs. After adopting a high-fidelity Cas9 variant, efficient correction with minimal off-target events also was observed. In vivo erythroid differentiation markedly enriches for corrected β-globin alleles, indicating that erythroblasts carrying one or more corrected alleles have a survival advantage. Significance These findings indicate that the sickle mutation can be corrected in autologous HSCs with an optimized protocol suitable for clinical translation. The gene editing protocol corrects the sickle mutation in ∼30% of engrafting cells Random assortment of engrafting stem cell clones without clonal dominance was shown Corrected erythroid cells are preferentially enriched compared with unedited cells
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW HRI is the heme-regulated elF2α kinase that phosphorylates the α-subunit of elF2. Although the role of HRI in inhibiting globin synthesis in erythroid cells is well established, broader roles of HRI in translation have been uncovered recently. This review is to summarize the new discoveries of HRI in stress erythropoiesis and in fetal γ-globin expression. RECENT FINDINGS HRI and activating transcription factor 4 (ATF4) mRNAs are highly expressed in early erythroblasts. Inhibition of protein synthesis by HRI-phosphorylated elF2α (elF2αP) is necessary to maintain protein homeostasis in both the cytoplasm and mitochondria. In addition, HRI-elF2αP specifically enhances translation of ATF4 mRNA leading to the repression of mechanistic target of rapamycin complex 1 (mTORC1) signaling. ATF4-target genes are most highly activated during iron deficiency to maintain mitochondrial function, redox homeostasis, and to enable erythroid differentiation. HRI is therefore a master translation regulator of erythropoiesis sensing intracellular heme concentrations and oxidative stress for effective erythropoiesis. Intriguingly, HRI-elF2αP-ATF4 signaling also inhibits fetal hemoglobin production in human erythroid cells. SUMMARY The primary function of HRI is to maintain protein homeostasis accompanied by the induction of ATF4 to mitigate stress. Role of HRI-ATF4 in γ-globin expression raises the potential of HRI as a therapeutic target for hemoglobinopathy.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
23
|
Multi-Omics Analysis in β-Thalassemia Using an HBB Gene-Knockout Human Erythroid Progenitor Cell Model. Int J Mol Sci 2022; 23:ijms23052807. [PMID: 35269949 PMCID: PMC8911073 DOI: 10.3390/ijms23052807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
β-thalassemia is a hematologic disease that may be associated with significant morbidity and mortality. Increased expression of HBG1/2 can ameliorate the severity of β-thalassemia. Compared to the unaffected population, some β-thalassemia patients display elevated HBG1/2 expression levels in their red blood cells. However, the magnitude of up-regulation does not reach the threshold of self-healing, and thus, the molecular mechanism underlying HBG1/2 expression in the context of HBB-deficiency requires further elucidation. Here, we performed a multi-omics study examining chromatin accessibility, transcriptome, proteome, and phosphorylation patterns in the HBB homozygous knockout of the HUDEP2 cell line (HBB-KO). We found that up-regulation of HBG1/2 in HBB-KO cells was not induced by the H3K4me3-mediated genetic compensation response. Deletion of HBB in human erythroid progenitor cells resulted in increased ROS levels and production of oxidative stress, which led to an increased rate of apoptosis. Furthermore, in response to oxidative stress, slower cell cycle progression and proliferation were observed. In addition, stress erythropoiesis was initiated leading to increased intracellular HBG1/2 expression. This molecular model was also validated in the single-cell transcriptome of hematopoietic stem cells from β-hemoglobinopathy patients. These findings further the understanding of HBG1/2 gene regulatory networks and provide novel clinical insights into β-thalassemia phenotypic diversity.
Collapse
|
24
|
Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol 2021; 12:712722. [PMID: 34456921 PMCID: PMC8397441 DOI: 10.3389/fimmu.2021.712722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jerome D. Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
25
|
Zhang X, Yang Y, Zhang H, Du Z, Liu H, Shen Y. A rare complex rearrangement in the β-globin gene cluster causing a novel homozygous G γ( A γδβ) 0 -thalassemia. Am J Hematol 2021; 96:E189-E193. [PMID: 33651897 DOI: 10.1002/ajh.26148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU‐CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education West China Second University Hospital, Sichuan University Chengdu China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education Sichuan University Chengdu China
| | - Haixia Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU‐CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education West China Second University Hospital, Sichuan University Chengdu China
| | - Ze Du
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU‐CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education West China Second University Hospital, Sichuan University Chengdu China
| | - Hongqian Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education Chengdu China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU‐CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education West China Second University Hospital, Sichuan University Chengdu China
| |
Collapse
|
26
|
Cellular Basis of Embryonic Hematopoiesis and Its Implications in Prenatal Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249346. [PMID: 33302450 PMCID: PMC7763178 DOI: 10.3390/ijms21249346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023] Open
Abstract
Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.
Collapse
|