1
|
Zhang L, Peng Y, Huang S, Zhong L. Integrative analysis of DNA methylation and gene expression in skin cutaneous melanoma by bioinformatic approaches. Arch Dermatol Res 2025; 317:545. [PMID: 40067504 PMCID: PMC11897118 DOI: 10.1007/s00403-025-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/15/2025]
Abstract
Skin cutaneous melanoma represents a significant threat among skin cancers. Investigating key methylated genes with prognostic implications remains an area ripe for exploration in this field. This study aims to identify survival-associated methylated genes and their specific methylation sites in skin cutaneous melanoma through integrated bioinformatic analysis. Utilizing data from the Cancer Genome Atlas database, gene methylation and expression files were analyzed. The results indicate that patients with skin cutaneous melanoma exhibiting high expression of hypomethylated HHEX experience better outcomes compared to those with low expression of hypermethylated HHEX. Furthermore, fifteen methylation sites within HHEX were found to significantly correlate with its expression levels. Expression of HHEX demonstrated a downward trend across pathological stages I-IV. The identified driven gene, HHEX, likely plays a crucial role in the survival of skin cutaneous melanoma patients. These findings provide new epigenetic insights and potential targets for early prognosis prediction in skin cutaneous melanoma.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuchuan Peng
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shan Huang
- Department of Otolaryngology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
2
|
McCulloch TR, Rossi GR, Alim L, Lam PY, Wong JKM, Coleborn E, Kumari S, Keane C, Kueh AJ, Herold MJ, Wilhelm C, Knolle PA, Kane L, Wells TJ, Souza-Fonseca-Guimaraes F. Dichotomous outcomes of TNFR1 and TNFR2 signaling in NK cell-mediated immune responses during inflammation. Nat Commun 2024; 15:9871. [PMID: 39543125 PMCID: PMC11564688 DOI: 10.1038/s41467-024-54232-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Natural killer (NK) cell function is regulated by a balance of activating and inhibitory signals. Tumor necrosis factor (TNF) is an inflammatory cytokine ubiquitous across homeostasis and disease, yet its role in regulation of NK cells remains unclear. Here, we find upregulation of the immune checkpoint protein, T cell immunoglobulin and mucin domain 3 (Tim3), is a biomarker of TNF signaling in NK cells during Salmonella Typhimurium infection. In mice with conditional deficiency of either TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2) in NK cells, we find TNFR1 limits bacterial clearance whereas TNFR2 promotes it. Mechanistically, via single cell RNA sequencing we find that both TNFR1 and TNFR2 induce the upregulation of Tim3, while TNFR1 accelerates NK cell death but TNFR2 promotes NK cell accumulation and effector function. Our study thus highlights the complex interplay of TNF-based regulation of NK cells by the two TNF receptors during inflammation.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction
- Inflammation/immunology
- Inflammation/metabolism
- Mice
- Mice, Inbred C57BL
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Salmonella typhimurium/immunology
- Mice, Knockout
- Salmonella Infections/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Male
- Female
Collapse
Affiliation(s)
- Timothy R McCulloch
- Frazer Institute, The University of Queensland, Woolloongabba, Australia.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Gustavo R Rossi
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Louisa Alim
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Pui Yeng Lam
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Joshua K M Wong
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Elaina Coleborn
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
- Princess Alexandra Hospital, Woolloongabba, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lawrence Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
3
|
Semmes EC, Nettere DR, Nelson AN, Hurst JH, Cain DW, Burt TD, Kurtzberg J, Reeves RK, Coyne CB, Fouda GG, Pollara J, Permar SR, Walsh KM. In utero human cytomegalovirus infection expands NK-like FcγRIII+CD8+ T cells that mediate Fc antibody functions. J Clin Invest 2024; 135:e181342. [PMID: 39531313 PMCID: PMC11684805 DOI: 10.1172/jci181342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Human cytomegalovirus (HCMV) profoundly impacts host T and NK cells across the lifespan, yet how this common congenital infection modulates developing fetal immune cell compartments remains underexplored. Using cord blood from neonates with and without congenital HCMV (cCMV) infection, we identify an expansion of Fcγ receptor III-expressing (FcγRIII-expressing) CD8+ T cells following HCMV exposure in utero. Most FcγRIII+CD8+ T cells express the canonical αβ T cell receptor (TCR), but a proportion express noncanonical γδ TCR. FcγRIII+CD8+ T cells are highly differentiated and have increased expression of NK cell markers and cytolytic molecules. Transcriptional analysis reveals FcγRIII+CD8+ T cells upregulate T-bet and downregulate BCL11B, known transcription factors that govern T/NK cell fate. We show that FcγRIII+CD8+ T cells mediate antibody-dependent IFN-γ production and degranulation against IgG-opsonized target cells, similar to NK cell antibody-dependent cellular cytotoxicity (ADCC). FcγRIII+CD8+ T cell Fc effector functions were further enhanced by IL-15, as has been observed in neonatal NK cells. Our study reveals that FcγRIII+CD8+ T cells elicited in utero by HCMV infection can execute Fc-mediated effector functions bridging cellular and humoral immunity and may be a promising target for antibody-based therapeutics and vaccination in early life.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Boston Children’s Hospital/Boston Medical Center, Boston, Massachusetts, USA
- Medical Scientist Training Program, and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Danielle R. Nettere
- Medical Scientist Training Program, and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H. Hurst
- Children’s Health and Discovery Initiative
- Division of Infectious Diseases, and
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Trevor D. Burt
- Children’s Health and Discovery Initiative
- Division of Neonatology, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Children’s Health and Discovery Initiative
- Carolinas Cord Blood Bank, Marcus Center for Cellular Cures, Durham, North Carolina, USA
| | - R. Keith Reeves
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Human Systems Immunology, and
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Carolyn B. Coyne
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Children’s Health and Discovery Initiative
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Children’s Health and Discovery Initiative
- Division of Infectious Diseases, and
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| | - Kyle M. Walsh
- Children’s Health and Discovery Initiative
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Goh W, Sudholz H, Foroutan M, Scheer S, Pfefferle A, Delconte RB, Meng X, Shen Z, Hennessey R, Kong IY, Schuster IS, Andoniou CE, Davis MJ, Hediyeh-Zadeh S, Souza-Fonseca-Guimaraes F, Parish IA, Beavis P, Thiele D, Chopin M, Degli-Esposti MA, Cursons J, Kallies A, Rautela J, Nutt SL, Huntington ND. IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development. Nat Immunol 2024; 25:240-255. [PMID: 38182668 DOI: 10.1038/s41590-023-01718-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.
Collapse
Affiliation(s)
- Wilford Goh
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Harrison Sudholz
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Momeneh Foroutan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aline Pfefferle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiangpeng Meng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Zihan Shen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert Hennessey
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
- The South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Joe Cursons
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology & Immunology, Faculty of Medicine, Dentistry and Health Sciences & Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Victorino F, Bigley TM, Park E, Yao CH, Benoit J, Yang LP, Piersma SJ, Lauron EJ, Davidson RM, Patti GJ, Yokoyama WM. HIF1α is required for NK cell metabolic adaptation during virus infection. eLife 2021; 10:e68484. [PMID: 34396954 PMCID: PMC8382296 DOI: 10.7554/elife.68484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are essential for early protection against virus infection and must metabolically adapt to the energy demands of activation. Here, we found upregulation of the metabolic adaptor hypoxia-inducible factor-1α (HIF1α) is a feature of mouse NK cells during murine cytomegalovirus (MCMV) infection in vivo. HIF1α-deficient NK cells failed to control viral load, causing increased morbidity. No defects were found in effector functions of HIF1αKO NK cells; however, their numbers were significantly reduced. Loss of HIF1α did not affect NK cell proliferation during in vivo infection and in vitro cytokine stimulation. Instead, we found that HIF1α-deficient NK cells showed increased expression of the pro-apoptotic protein Bim and glucose metabolism was impaired during cytokine stimulation in vitro. Similarly, during MCMV infection HIF1α-deficient NK cells upregulated Bim and had increased caspase activity. Thus, NK cells require HIF1α-dependent metabolic functions to repress Bim expression and sustain cell numbers for an optimal virus response.
Collapse
Affiliation(s)
- Francisco Victorino
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| | - Tarin M Bigley
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| | - Eugene Park
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| | - Cong-Hui Yao
- Department of Chemistry, Department of Medicine, Washington UniversitySt. LouisUnited States
| | - Jeanne Benoit
- Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish HealthDenverUnited States
| | - Li-Ping Yang
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| | - Sytse J Piersma
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| | - Elvin J Lauron
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| | - Rebecca M Davidson
- Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish HealthDenverUnited States
| | - Gary J Patti
- Department of Chemistry, Department of Medicine, Washington UniversitySt. LouisUnited States
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|