1
|
Gracie CJ, Mitchell R, Johnstone JC, Clarke AJ. The unusual metabolism of germinal center B cells. Trends Immunol 2025; 46:416-428. [PMID: 40221291 DOI: 10.1016/j.it.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
In the germinal center (GC), B cells undergo rounds of somatic hypermutation (SHM), proliferation, and positive selection to develop into high-affinity, long-lived plasma cells and memory B cells. It is well established that, upon activation, B cells significantly alter their metabolism, but until recently little was understood about their metabolism within the GC. In this review we discuss novel in vivo models in which GC B cell (GCBC) metabolism is disrupted; these have greatly increased our understanding of B cell metabolic phenotype. GCBCs are unusual in that, unlike almost all other rapidly proliferating immune cells, they use little glycolysis but prefer fatty acid oxidation (FAO) to fuel ATP synthesis, whilst preferentially utilizing glucose and amino acids as carbon and nitrogen sources for biosynthetic pathways.
Collapse
Affiliation(s)
- Caitlin J Gracie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Robert Mitchell
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
2
|
Vaughn N. Cytometry at the Intersection of Metabolism and Epigenetics in Lymphocyte Dynamics. Cytometry A 2025; 107:165-176. [PMID: 40052492 DOI: 10.1002/cyto.a.24919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Landmark studies at the turn of the century revealed metabolic reprogramming as a driving force for lymphocyte differentiation and function. In addition to metabolic changes, differentiating lymphocytes must remodel their epigenetic landscape to properly rewire their gene expression. Recent discoveries have shown that metabolic shifts can shape the fate of lymphocytes by altering their epigenetic state, bringing together these two areas of inquiry. The ongoing evolution of high-dimensional cytometry has enabled increasingly comprehensive analyses of metabolic and epigenetic landscapes in lymphocytes that transcend the technical limitations of the past. Here, we review recent insights into the interplay between metabolism and epigenetics in lymphocytes and how its dysregulation can lead to immunological dysfunction and disease. We also discuss the latest technical advances in cytometry that have enabled these discoveries and that we anticipate will advance future work in this area.
Collapse
Affiliation(s)
- Nicole Vaughn
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Lo Tartaro D, Aramini B, Masciale V, Paschalidis N, Lofaro FD, Neroni A, Borella R, Santacroce E, Ciobanu AL, Samarelli AV, Boraldi F, Quaglino D, Dubini A, Gaudio M, Manzotti G, Reggiani F, Torricelli F, Ciarrocchi A, Neri A, Bertolini F, Dominici M, Filosso PL, Stella F, Gibellini L, De Biasi S, Cossarizza A. Metabolically activated and highly polyfunctional intratumoral VISTA + regulatory B cells are associated with tumor recurrence in early-stage NSCLC. Mol Cancer 2025; 24:16. [PMID: 39810191 PMCID: PMC11730485 DOI: 10.1186/s12943-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC. Our analysis revealed that TME contains diverse B cell clusters, including VISTA+ Bregs, with distinct metabolic and functional profiles. Target liquid chromatography-tandem mass spectrometry confirmed the expression of VISTA on B cells. VISTA+ Bregs displayed high metabolic demand and were able to produce different cytokines, including interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Spatial analysis showed colocalization of B cells with CD4+/CD8+ T lymphocytes in TME. The computational analysis of intercellular communications that links ligands to target genes, performed by NicheNet, predicted B-T interactions via VISTA-PSGL-1 axis. Colocalization analyses revealed that PSGL-1 T cells and VISTA+ B cells are adjacent in the TME. Notably, tumor infiltrating CD8+ T cells expressing PSGL-1 exhibited enhanced metabolism and cytotoxicity. In NSCLC patients, prediction analysis performed by PENCIL revealed the presence of an association between PSGL-1+CD8+ T cells and VISTA+ Bregs with lung recurrence. Our findings suggest a potential interaction between Bregs and T cells through the VISTA-PSGL-1 axis, that could influence NSCLC recurrence.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/immunology
- Tumor Microenvironment/immunology
- B7 Antigens/metabolism
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Female
- Male
- Middle Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | | | | | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Bertolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pier Luigi Filosso
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
4
|
Kim D, Kim J, Yeo H, Chung Y. Immunometabolic regulation of germinal centers and its implications for aging. Curr Opin Immunol 2024; 91:102485. [PMID: 39357081 DOI: 10.1016/j.coi.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Aging, metabolism, and immunity have long been considered distinct domains. Aging is primarily associated with the gradual decline of physiological functions, metabolism regulates energy production and maintains cellular processes, and the immune system manages innate and adaptive responses against pathogens and vaccines. However, recent studies have revealed that these three systems are intricately interconnected, collectively influencing an individual's response to stress and disease. This review explores the interplay between immunometabolism, T follicular helper cells, B cells, and aging, focusing on how these interactions impact immune function in the elderly.
Collapse
Affiliation(s)
- Daehong Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Jaemin Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Hyeonuk Yeo
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Yeonseok Chung
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Johnstone JC, Yazicioglu YF, Clarke AJ. Fuelling B cells: dynamic regulation of B cell metabolism. Curr Opin Immunol 2024; 91:102484. [PMID: 39357080 DOI: 10.1016/j.coi.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
B cells experience extreme alterations in their metabolism throughout their life cycle, from naïve B cells, which have minimal activity, to germinal centre (GC) B cells, which proliferate at the fastest rate of all cells, to long-lived plasma cells with very high levels of protein production that can persist for decades. The underpinning of these transitions remains incompletely understood, and a key question is how utilisation of fuel source supports B cell metabolism. For example, GC B cells, unlike almost all rapidly proliferating cells, mainly use fatty acid oxidation rather than glycolysis. However, following differentiation to plasma cells, their metabolism switches towards a high rate of glucose consumption to aid antibody production. In this review, we discuss the key metabolic pathways in B cells, linking them to cellular signalling events and placing them in the context of disease and therapeutic potential.
Collapse
Affiliation(s)
- Julia C Johnstone
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Yavuz F Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Alexander J Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
6
|
Pruitt L, Abbott RK. Hypoxia-adenosinergic regulation of B cell responses. Front Immunol 2024; 15:1478506. [PMID: 39559353 PMCID: PMC11570280 DOI: 10.3389/fimmu.2024.1478506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Hypoxic microenvironments induce widespread metabolic changes that have been shown to be critical in regulating innate and adaptive immune responses. Hypoxia-induced changes include the generation of extracellular adenosine followed by subsequent signaling through adenosine receptors on immune cells. This evolutionarily conserved "hypoxia-adenosinergic" pathway of hypoxia → extracellular adenosine → adenosine receptor signaling has been shown to be critical in limiting and redirecting T cell responses including in tumor microenvironments and the gut mucosa. However, the question of whether hypoxic microenvironments are involved in the development of B cell responses has remained unexplored until recently. The discovery that germinal centers (GC), the anatomic site in which B cells undergo secondary diversification and affinity maturation, develop a hypoxic microenvironment has sparked new interest in how this evolutionarily conserved pathway affects antibody responses. In this review we will summarize what is known about hypoxia-adenosinergic microenvironments in lymphocyte development and ongoing immune responses. Specific focus will be placed on new developments regarding the role of the hypoxia-adenosinergic pathway in regulating GC development and humoral immunity.
Collapse
Affiliation(s)
| | - Robert K. Abbott
- Department of Pathology, University of Texas Medical Branch,
Galveston, TX, United States
| |
Collapse
|
7
|
Li W, Cai P, Xu Y, Tian W, Jing L, Lv Q, Zhao Y, Wang H, Shao Q. Mitochondrial Quality Control Orchestrates the Symphony of B Cells and Plays Critical Roles in B Cell-Related Diseases. J Immunol Res 2024; 2024:5577506. [PMID: 39449998 PMCID: PMC11502133 DOI: 10.1155/2024/5577506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
B cells are essential for humoral immune response due to their ability to secrete antibodies. The development of B cells from the bone marrow to the periphery is tightly regulated by a complex set of immune signals, and each subset of B cells has a unique metabolic profile. Mitochondria, which serve as cellular energy powerhouses, play an essential role in regulating cell survival and immune responses. To maintain metabolic homeostasis, mitochondria dynamically adjust their morphology, distribution, and mass via biogenesis, fusion and fission, translocation, and mitophagy. Despite its extreme importance, the role of mitochondrial quality control (MQC) in B cells has not been thoroughly summarized, unlike in T cells. This article aims to review the mechanism of MQC that shapes B cell fate and functions. In addition, we will discuss the physiological and pathological implications of MQC in B cells, providing new insights into potential therapeutic targets for diseases associated with B cell abnormalities.
Collapse
Affiliation(s)
- Wuhao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Peiyang Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ye Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weihong Tian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Licong Jing
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiaoyi Lv
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qixiang Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Jiangsu College of Nursing, Huai'an 223002, Jiangsu, China
| |
Collapse
|
8
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
9
|
Garcia AC, Six N, Ma L, Morel L. Intersection of the microbiome and immune metabolism in lupus. Immunol Rev 2024; 325:77-89. [PMID: 38873851 PMCID: PMC11338729 DOI: 10.1111/imr.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.
Collapse
Affiliation(s)
- Abigail Castellanos Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
10
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
11
|
Bucheli OTM, Rodrigues D, Portmann K, Linder A, Thoma M, Halin C, Eyer K. Single-B cell analysis correlates high-lactate secretion with stress and increased apoptosis. Sci Rep 2024; 14:8507. [PMID: 38605071 PMCID: PMC11009249 DOI: 10.1038/s41598-024-58868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
While cellular metabolism was proposed to be a driving factor of the activation and differentiation of B cells and the function of the resulting antibody-secreting cells (ASCs), the study of correlations between cellular metabolism and functionalities has been difficult due to the absence of technologies enabling the parallel measurement. Herein, we performed single-cell transcriptomics and introduced a direct concurrent functional and metabolic flux quantitation of individual murine B cells. Our transcriptomic data identified lactate metabolism as dynamic in ASCs, but antibody secretion did not correlate with lactate secretion rates (LSRs). Instead, our study of all splenic B cells during an immune response linked increased lactate metabolism with acidic intracellular pH and the upregulation of apoptosis. T cell-dependent responses increased LSRs, and added TLR4 agonists affected the magnitude and boosted LSRhigh B cells in vivo, while resulting in only a few immunoglobulin-G secreting cells (IgG-SCs). Therefore, our observations indicated that LSRhigh cells were not differentiating into IgG-SCs, and were rather removed due to apoptosis.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniela Rodrigues
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Kevin Portmann
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Aline Linder
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Marina Thoma
- ETH Laboratory for Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Cornelia Halin
- ETH Laboratory for Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093, Zürich, Switzerland.
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
12
|
Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, Estrada BS, Bovolenta ER, Cifuentes C, Prieto Carro C, González Martínez T, García-Consuegra J, Rey-Stolle MF, Rupérez FJ, Guerra Rodriguez M, Argüello RJ, Cogliati S, Martín-Belmonte F, Martínez-Martín N. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat Commun 2024; 15:2569. [PMID: 38519473 PMCID: PMC10960012 DOI: 10.1038/s41467-024-46763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.
Collapse
Affiliation(s)
- Marta Iborra-Pernichi
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jonathan Ruiz García
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Velasco de la Esperanza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Belén S Estrada
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena R Bovolenta
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Claudia Cifuentes
- Program of Interactions with the Environment, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Prieto Carro
- Program of Interactions with the Environment, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamara González Martínez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José García-Consuegra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Javier Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milagros Guerra Rodriguez
- Electron Microscopy Facility, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sara Cogliati
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Nuria Martínez-Martín
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
13
|
Bierling TEH, Gumann A, Ottmann SR, Schulz SR, Weckwerth L, Thomas J, Gessner A, Wichert M, Kuwert F, Rost F, Hauke M, Freudenreich T, Mielenz D, Jäck HM, Pracht K. GLUT1-mediated glucose import in B cells is critical for anaplerotic balance and humoral immunity. Cell Rep 2024; 43:113739. [PMID: 38340319 DOI: 10.1016/j.celrep.2024.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Collapse
Affiliation(s)
- Theresa E H Bierling
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amelie Gumann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R Ottmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Wichert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frederic Kuwert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Rost
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Freudenreich
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
Wu GL, Li L, Chen XY, Zhang WF, Wu JB, Yu X, Chen HJ. Machine learning-based B cell-related diagnostic biomarker signature and molecular subtypes characteristic of ulcerative colitis. Aging (Albany NY) 2024; 16:2774-2788. [PMID: 38319729 PMCID: PMC10911385 DOI: 10.18632/aging.205510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
As an inflammatory bowel disease, ulcerative colitis (UC) does not respond well to current treatments. It is of positive clinical significance to further study the pathogenesis of UC and find new therapeutic targets. B lymphocytes play an important role in the pathogenesis of UC. The effect of anti-CD20 therapy on UC also provides new evidence for the involvement of B cells in UC process additionally, suggesting the important role and potential therapeutic value of B cells in UC. In this study, we screened the most critical immune cell-related gene modules associated with UC and found that activated B cells were closely related to the gene modules. Subsequently, key activated B cell-associated gene (BRG) signatures were obtained based on WGCNA and differential expression analysis, and three overlapping BRG-associated genes were obtained by RF and LASSO algorithms as BRG-related diagnostic biomarkers for UC. Nomogram model was further performed to evaluate the diagnostic ability of BRG-related diagnostic biomarkers, subsequently followed by UC molecular subsets identification and immunoinfiltration analysis. We also further verified the expressions of the three screened BRGs in vitro by using an LPS-induced NCM460 cell line model. Our results provide new evidence and potential intervention targets for the role of B cells in UC from a new perspective.
Collapse
Affiliation(s)
- Guo-Liang Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Li Li
- Department of Endocrinology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiao-Yao Chen
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Wei-Feng Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jun-Bo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan 421001, China
| | - Xiaoning Yu
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Jin Chen
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
15
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma Cell Differentiation, Antibody Quality, and Initial Germinal Center B Cell Population Depend on Glucose Influx Rate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:43-56. [PMID: 37955416 PMCID: PMC10841396 DOI: 10.4049/jimmunol.2200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.
Collapse
Affiliation(s)
- Shawna K. Brookens
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Sung Hoon Cho
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Yeeun Paik
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kaylor Meyer
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ariel L. Raybuck
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chloe Park
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dalton L. Greenwood
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Mark R. Boothby
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| |
Collapse
|
16
|
Zhong Z, Zhang H, Nan K, Zhong J, Wu Q, Lu L, Yue Y, Zhang Z, Guo M, Wang Z, Xia J, Xing Y, Fu Y, Yu B, Zhou W, Sun X, Shen Y, Chen W, Zhang J, Zhang J, Ma D, Chu Y, Liu R, Miao C. Fasting-Mimicking Diet Drives Antitumor Immunity against Colorectal Cancer by Reducing IgA-Producing Cells. Cancer Res 2023; 83:3529-3543. [PMID: 37602826 PMCID: PMC10618736 DOI: 10.1158/0008-5472.can-23-0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/05/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
As a safe, feasible, and inexpensive dietary intervention, fasting-mimicking diet (FMD) exhibits excellent antitumor efficacy by regulating metabolism and boosting antitumor immunity. A better understanding of the specific mechanisms underlying the immunoregulatory functions of FMD could help improve and expand the clinical application of FMD-mediated immunotherapeutic strategies. In this study, we aimed to elucidate the role of metabolic reprogramming induced by FMD in activation of antitumor immunity against colorectal cancer. Single-cell RNA sequencing analysis of intratumoral immune cells revealed that tumor-infiltrating IgA+ B cells were significantly reduced by FMD treatment, leading to the activation of antitumor immunity and tumor regression in murine colorectal cancer models. Mechanistically, FMD delayed tumor growth by repressing B-cell class switching to IgA. Therefore, FMD-induced reduction of IgA+ B cells overcame the suppression of CD8+ T cells. The immunoregulatory and antitumor effects of FMD intervention were reversed by IgA+ B-cell transfer. Moreover, FMD boosted fatty acid oxidation (FAO) to trigger RUNX3 acetylation, thus inactivating Cα gene transcription and IgA class switching. IgA+ B-cell expansion was also impeded in patients placed on FMD, while B-cell expression of carnitine palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme of FAO, was increased. Furthermore, CPT1A expression was negatively correlated with both IgA+ B cells and IgA secretion within colorectal cancer. Together, these results highlight that FMD holds great promise for treating colorectal cancer. Furthermore, the degree of IgA+ B cell infiltration and FAO-associated metabolic status are potential biomarkers for evaluating FMD efficacy. SIGNIFICANCE Metabolic reprogramming of B cells induced by fasting-mimicking diet suppresses IgA class switching and production to activate antitumor immunity and inhibit tumor growth. See related commentary by Bush and Perry, p. 3493.
Collapse
Affiliation(s)
- Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Lihong Lu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhenyu Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Xia
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Xing
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
17
|
Zhao X, Sun Y, Xu Z, Cai L, Hu Y, Wang H. Targeting PRMT1 prevents acute and chronic graft-versus-host disease. Mol Ther 2023; 31:3259-3276. [PMID: 37735873 PMCID: PMC10638063 DOI: 10.1016/j.ymthe.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication after allogeneic hematopoietic stem cell transplantation. Recent studies have reported that protein arginine methyltransferase 1 (PRMT1) is essential for the differentiation and proliferation of T and B cells. Therefore, it is possible that PRMT1 may play a critical role in GVHD. In this study, we observed that PRMT1 expression was upregulated in CD4+ T and B cells from chronic GVHD (cGVHD) patients and mice. However, the prophylactic use of a PRMT1 inhibitor significantly prevented cGVHD in mice by reducing the percentage of T helper (Th)17 cells, germinal center B cells, and plasma cells. The PRMT1 inhibitor also controlled acute GVHD (aGVHD) in mice by decreasing the percentage of Th17 cells. Moreover, inhibiting PRMT1 also weakened Th17 cell differentiation, B cell proliferation, and antibody production in cells from cGVHD patients. Additionally, further studies revealed that PRMT1 regulated B cell proliferation and antibody secretion by methylating isocitrate dehydrogenase 2 (IDH2). We observed asymmetric di-methylation of IDH2 by PRMT1 at arginine 353 promoted IDH2 homodimerization, which enhanced IDH2 activity, further increasing B cell proliferation and antibody production. Collectively, this study provides a rationale for the application of PRMT1 inhibitors in the prevention of aGVHD and cGVHD.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ziwei Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Cai
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huafang Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Mavers M. Inhibiting post-translational methylation to prevent GVHD. Mol Ther 2023; 31:3115-3116. [PMID: 37865095 PMCID: PMC10638046 DOI: 10.1016/j.ymthe.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Melissa Mavers
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Pouliou M, Koutsi MA, Champezou L, Giannopoulou AI, Vatsellas G, Piperi C, Agelopoulos M. MYCN Amplifications and Metabolic Rewiring in Neuroblastoma. Cancers (Basel) 2023; 15:4803. [PMID: 37835497 PMCID: PMC10571721 DOI: 10.3390/cancers15194803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.
Collapse
Affiliation(s)
- Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Marianna A. Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| |
Collapse
|
20
|
Sharma R, Smolkin RM, Chowdhury P, Fernandez KC, Kim Y, Cols M, Alread W, Yen WF, Hu W, Wang ZM, Violante S, Chaligné R, Li MO, Cross JR, Chaudhuri J. Distinct metabolic requirements regulate B cell activation and germinal center responses. Nat Immunol 2023; 24:1358-1369. [PMID: 37365386 PMCID: PMC11262065 DOI: 10.1038/s41590-023-01540-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner. We find that ablation of LDHA in a naïve B cell did not profoundly affect its ability to undergo a bacterial lipopolysaccharide-induced extrafollicular B cell response. On the other hand, LDHA-deleted naïve B cells had a severe defect in their capacities to form GCs and mount GC-dependent antibody responses. In addition, loss of LDHA in T cells severely compromised B cell-dependent immune responses. Strikingly, when LDHA was deleted in activated, as opposed to naïve, B cells, there were only minimal effects on the GC reaction and in the generation of high-affinity antibodies. These findings strongly suggest that naïve and activated B cells have distinct metabolic requirements that are further regulated by niche and cellular interactions.
Collapse
Affiliation(s)
- Rahul Sharma
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan M Smolkin
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Priyanka Chowdhury
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Keith Conrad Fernandez
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Youngjun Kim
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William Alread
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei-Feng Yen
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Hu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhong-Min Wang
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
21
|
Basta MD, Petruk S, Mazo A, Walker JL. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front Cell Dev Biol 2023; 11:1193344. [PMID: 37476157 PMCID: PMC10354294 DOI: 10.3389/fcell.2023.1193344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Chakma CR, Good-Jacobson KL. Requirements of IL-4 during the Generation of B Cell Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1853-1860. [PMID: 37276051 DOI: 10.4049/jimmunol.2200922] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 06/07/2023]
Abstract
IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Jellusova J. Germinal centers FAMished without TFAM. Nat Immunol 2023; 24:893-894. [PMID: 37106041 DOI: 10.1038/s41590-023-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
- TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany.
| |
Collapse
|
25
|
Yazicioglu YF, Marin E, Sandhu C, Galiani S, Raza IGA, Ali M, Kronsteiner B, Compeer EB, Attar M, Dunachie SJ, Dustin ML, Clarke AJ. Dynamic mitochondrial transcription and translation in B cells control germinal center entry and lymphomagenesis. Nat Immunol 2023; 24:991-1006. [PMID: 37095377 PMCID: PMC10232359 DOI: 10.1038/s41590-023-01484-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023]
Abstract
Germinal center (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor A, mitochondrial (TFAM). TFAM, while also necessary for normal B cell development, is required for entry of activated GC precursor B cells into the germinal center reaction; deletion of Tfam significantly impairs GC formation, function and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signaling, leading to their spatial disorganization. We show that B cell lymphoma substantially increases mitochondrial translation and that deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic mouse model. Finally, we show that pharmacological inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells and induces similar defects in the actin cytoskeleton.
Collapse
Affiliation(s)
| | - Eros Marin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ciaran Sandhu
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Silvia Galiani
- Medical Research Centre Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
26
|
Basta MD, Petruk S, Summer R, Rosenbloom J, Wermuth PJ, Macarak E, Levin AV, Mazo A, Walker JL. Changes in nascent chromatin structure regulate activation of the pro-fibrotic transcriptome and myofibroblast emergence in organ fibrosis. iScience 2023; 26:106570. [PMID: 37250334 PMCID: PMC10214303 DOI: 10.1016/j.isci.2023.106570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Cell reprogramming to a myofibroblast responsible for the pathological accumulation of extracellular matrix is fundamental to the onset of fibrosis. Here, we explored how condensed chromatin structure marked by H3K72me3 becomes modified to allow for activation of repressed genes to drive emergence of myofibroblasts. In the early stages of myofibroblast precursor cell differentiation, we discovered that H3K27me3 demethylase enzymes UTX/KDM6B creates a delay in the accumulation of H3K27me3 on nascent DNA revealing a period of decondensed chromatin structure. This period of decondensed nascent chromatin structure allows for binding of pro-fibrotic transcription factor, Myocardin-related transcription factor A (MRTF-A) to nascent DNA. Inhibition of UTX/KDM6B enzymatic activity condenses chromatin structure, prevents MRTF-A binding, blocks activation of the pro-fibrotic transcriptome, and results in an inhibition of fibrosis in lens and lung fibrosis models. Our work reveals UTX/KDM6B as central coordinators of fibrosis, highlighting the potential to target its demethylase activity to prevent organ fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ross Summer
- Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute at the Sidney Kimmel Medial College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter J. Wermuth
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Edward Macarak
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
28
|
Ruan B, Paulson RF. Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms. Front Physiol 2023; 13:1063294. [PMID: 36685181 PMCID: PMC9849390 DOI: 10.3389/fphys.2022.1063294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Steady state erythropoiesis produces new erythrocytes at a constant rate to replace the senescent cells that are removed by macrophages in the liver and spleen. However, infection and tissue damage disrupt the production of erythrocytes by steady state erythropoiesis. During these times, stress erythropoiesis is induced to compensate for the loss of erythroid output. The strategy of stress erythropoiesis is different than steady state erythropoiesis. Stress erythropoiesis generates a wave of new erythrocytes to maintain homeostasis until steady state conditions are resumed. Stress erythropoiesis relies on the rapid proliferation of immature progenitor cells that do not differentiate until the increase in serum Erythropoietin (Epo) promotes the transition to committed progenitors that enables their synchronous differentiation. Emerging evidence has revealed a central role for cell metabolism in regulating the proliferation and differentiation of stress erythroid progenitors. During the initial expansion stage, the immature progenitors are supported by extensive metabolic changes which are designed to direct the use of glucose and glutamine to increase the biosynthesis of macromolecules necessary for cell growth and division. At the same time, these metabolic changes act to suppress the expression of genes involved in erythroid differentiation. In the subsequent transition stage, changes in niche signals alter progenitor metabolism which in turn removes the inhibition of erythroid differentiation generating a bolus of new erythrocytes to alleviate anemia. This review summarizes what is known about the metabolic regulation of stress erythropoiesis and discusses potential mechanisms for metabolic regulation of proliferation and differentiation.
Collapse
Affiliation(s)
- Baiye Ruan
- Pathobiology Graduate Program, Penn State University, University Park, PA, United States
| | - Robert F. Paulson
- Pathobiology Graduate Program, Penn State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, United States
| |
Collapse
|
29
|
McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP, Dun MD. B-cell Lymphoma 6 (BCL6): From Master Regulator of Humoral Immunity to Oncogenic Driver in Pediatric Cancers. Mol Cancer Res 2022; 20:1711-1723. [PMID: 36166198 PMCID: PMC9716245 DOI: 10.1158/1541-7786.mcr-22-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a protooncogene in adult and pediatric cancers, first identified in diffuse large B-cell lymphoma (DLBCL) where it acts as a repressor of the tumor suppressor TP53, conferring survival, protection, and maintenance of lymphoma cells. BCL6 expression in normal B cells is fundamental in the regulation of humoral immunity, via initiation and maintenance of the germinal centers (GC). Its role in B cells during the production of high affinity immunoglobins (that recognize and bind specific antigens) is believed to underpin its function as an oncogene. BCL6 is known to drive the self-renewal capacity of leukemia-initiating cells (LIC), with high BCL6 expression in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and glioblastoma (GBM) associated with disease progression and treatment resistance. The mechanisms underpinning BCL6-driven therapy resistance are yet to be uncovered; however, high activity is considered to confer poor prognosis in the clinical setting. BCL6's key binding partner, BCL6 corepressor (BCOR), is frequently mutated in pediatric cancers and appears to act in concert with BCL6. Using publicly available data, here we show that BCL6 is ubiquitously overexpressed in pediatric brain tumors, inversely to BCOR, highlighting the potential for targeting BCL6 in these often lethal and untreatable cancers. In this review, we summarize what is known of BCL6 (role, effect, mechanisms) in pediatric cancers, highlighting the two sides of BCL6 function, humoral immunity, and tumorigenesis, as well as to review BCL6 inhibitors and highlight areas of opportunity to improve the outcomes of patients with pediatric cancer.
Collapse
Affiliation(s)
- Tabitha McLachlan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - William C. Matthews
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R. Jackson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Matthew D. Dun
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Corresponding Author: Matthew D. Dun, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Level 3, Life Sciences Bldg, Callaghan, NSW 2308, Australia. Phone: 612-4921-5693; E-mail:
| |
Collapse
|
30
|
Föh B, Buhre JS, Sina C, Ehlers M. Influence of nutrients and metabolites on the differentiation of plasma cells and implications for autoimmunity. Front Immunol 2022; 13:1004644. [PMID: 36466846 PMCID: PMC9716886 DOI: 10.3389/fimmu.2022.1004644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
The modulation of inflammatory (auto)immune reactions by nutrients and gut bacterial metabolites is of great interest for potential preventive and therapeutic strategies. B cell-derived plasma cells are major players in inflammatory (auto)immune responses and can exhibit pro- or anti-inflammatory effects through (auto)antibody-dependent and -independent functions. Emerging evidence indicates a key role of nutrients and microbial metabolites in regulating the differentiation of plasma cells as well as their differentiation to pro- or anti-inflammatory phenotypes. These effects might be mediated indirectly by influencing other immune cells or directly through B cell-intrinsic mechanisms. Here, we provide an overview of nutrients and metabolites that influence B cell-intrinsic signaling pathways regulating B cell activation, plasma cell differentiation, and effector functions. Furthermore, we outline important inflammatory plasma cell phenotypes whose differentiation could be targeted by nutrients and microbial metabolites. Finally, we discuss possible implications for inflammatory (auto)immune conditions.
Collapse
Affiliation(s)
- Bandik Föh
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jana Sophia Buhre
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North, University of Lübeck, German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Lübeck, Germany
| |
Collapse
|
31
|
Wang H, Han H, Niu Y, Li X, Du X, Wang Q. LPP polymorphisms are risk factors for allergic rhinitis in the Chinese Han population. Cytokine 2022; 159:156027. [PMID: 36084606 DOI: 10.1016/j.cyto.2022.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Lipoma preferred partner (LPP) polymorphisms are related to immune diseases, but the role of LPP gene in the pathogenesis of allergic rhinitis (AR) is unclear. The current study aimed to explore the contribution of LPP variants to AR susceptibility in the Chinese Han population. METHODS A total of 992 healthy controls and 992 patients with AR were recruited. Agena MassARRAY system was applied for genotyping. Odds ratios (OR) and 95% confidence intervals (CI) adjusted by age, sex, and body mass index (BMI) were calculated to conduct the risk assessment of LPP variants in people with a predisposition to AR. Additionally, multifactor dimensionality reduction (MDR) was applied to identify high-order interaction models for AR risk. RESULTS We found that rs2030519-G (p = 0.027, OR: 1.15, 95% CI: 1.02-1.31), rs6780858-G (p = 0.019, OR: 1.16, 95% CI: 1.03-1.32), and rs60946162-T (p = 0.014, OR: 1.18, 95% CI: 1.03-1.34) were associated with increased susceptibility to AR. Subgroup analyses indicated the interaction of LPP polymorphisms in terms of age, gender, and BMI with AR susceptibility (p < 0.05, OR > 1). MDR analysis revealed that rs60946162 had the information gain (0.40%) of individual attribute regarding AR. CONCLUSION Our results first determined that rs2030519, rs6780858, and rs60946162 were correlated with increased susceptibility to AR in the Chinese Han population, which add to our understanding of the impact of LPP gene variants on AR development.
Collapse
Affiliation(s)
- Haiying Wang
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Hui Han
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Yongliang Niu
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Xiaobo Li
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Xintao Du
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Qiang Wang
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China.
| |
Collapse
|
32
|
Suzuki S, Yamada S. Epigenetics in susceptibility, progression, and diagnosis of periodontitis. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:183-192. [PMID: 35754944 PMCID: PMC9218144 DOI: 10.1016/j.jdsr.2022.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is characterized by irreversible destruction of periodontal tissue. At present, the accepted etiology of periodontitis is based on a three-factor theory including pathogenic bacteria, host factors, and acquired factors. Periodontitis development usually takes a decade or longer and is therefore called chronic periodontitis (CP). To search for genetic factors associated with CP, several genome-wide association study (GWAS) analyses were conducted; however, polymorphisms associated with CP have not been identified. Epigenetics, on the other hand, involves acquired transcriptional regulatory mechanisms due to reversibly altered chromatin accessibility. Epigenetic status is a condition specific to each tissue and cell, mostly determined by the responses of host cells to stimulations by local factors, like bacterial inflammation, and systemic factors such as nutrition status, metabolic diseases, and health conditions. Significantly, epigenetic status has been linked with the onset and progression of several acquired diseases. Thus, epigenetic factors in periodontal tissues are attractive targets for periodontitis diagnosis and treatments. In this review, we introduce accumulating evidence to reveal the epigenetic background effects related to periodontitis caused by genetic factors, systemic diseases, and local environmental factors, such as smoking, and clarify the underlying mechanisms by which epigenetic alteration influences the susceptibility of periodontitis.
Collapse
Key Words
- 5mC, 5-methylcytocine
- AP, aggressive periodontitis
- ATAC-seq, assay for transposase-accessible chromatin sequencing
- CP, chronic periodontitis
- DNA methylation
- ECM, extracellular matrix
- Epigenetics
- Epigenome
- GWAS, genome-wide association study
- H3K27ac, acetylation of histone H3 lysine 27
- H3K27me3, trimethylation of histone H3 lysine 27
- H3K4me3, trimethylation of histone H3 lysine 4
- H3K9ac, histone H3 lysine 9
- HATs, histone acetyltransferases
- HDACs, histone deacetylases
- Histone modifications
- LPS, lipopolysaccharide
- PDL, periodontal ligament
- Periodontal ligament
- Periodontitis
- ceRNA, competing endogenous RNA
- lncRNAs, long ncRNAs
- m6A, N6-methyladenosine
- ncRNAs, non-coding RNAs
- sEV, small extracellular vesicles
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
33
|
Los-de Vries GT, Stevens WBC, van Dijk E, Langois-Jacques C, Clear AJ, Stathi P, Roemer MGM, Mendeville M, Hijmering NJ, Sander B, Rosenwald A, Calaminici M, Hoster E, Hiddemann W, Gaulard P, Salles G, Horn H, Klapper W, Xerri L, Burton C, Tooze RM, Smith AG, Buske C, Scott DW, Natkunam Y, Advani R, Sehn LH, Raemaekers J, Gribben J, Kimby E, Kersten MJ, Maucort-Boulch D, Ylstra B, de Jong D. Genomic and microenvironmental landscape of stage I follicular lymphoma, compared with stage III/IV. Blood Adv 2022; 6:5482-5493. [PMID: 35816682 PMCID: PMC9631713 DOI: 10.1182/bloodadvances.2022008355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022] Open
Abstract
Although the genomic and immune microenvironmental landscape of follicular lymphoma (FL) has been extensively investigated, little is known about the potential biological differences between stage I and stage III/IV disease. Using next-generation sequencing and immunohistochemistry, 82 FL nodal stage I cases were analyzed and compared with 139 FL stage III/IV nodal cases. Many similarities in mutations, chromosomal copy number aberrations, and microenvironmental cell populations were detected. However, there were also significant differences in microenvironmental and genomic features. CD8+ T cells (P = .02) and STAT6 mutations (false discovery rate [FDR] <0.001) were more frequent in stage I FL. In contrast, programmed cell death protein 1-positive T cells, CD68+/CD163+ macrophages (P < .001), BCL2 translocation (BCL2trl+) (P < .0001), and KMT2D (FDR = 0.003) and CREBBP (FDR = 0.04) mutations were found more frequently in stage III/IV FL. Using clustering, we identified 3 clusters within stage I, and 2 clusters within stage III/IV. The BLC2trl+ stage I cluster was comparable to the BCL2trl+ cluster in stage III/IV. The two BCL2trl- stage I clusters were unique for stage I. One was enriched for CREBBP (95%) and STAT6 (64%) mutations, without BLC6 translocation (BCL6trl), whereas the BCL2trl- stage III/IV cluster contained BCL6trl (64%) with fewer CREBBP (45%) and STAT6 (9%) mutations. The other BCL2trl- stage I cluster was relatively heterogeneous with more copy number aberrations and linker histone mutations. This exploratory study shows that stage I FL is genetically heterogeneous with different underlying oncogenic pathways. Stage I FL BCL2trl- is likely STAT6 driven, whereas BCL2trl- stage III/IV appears to be more BCL6trl driven.
Collapse
Affiliation(s)
- G. Tjitske Los-de Vries
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Erik van Dijk
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carole Langois-Jacques
- Université Lyon 1, Villeurbanne, France, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de recherche (UMR) 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon, France
| | - Andrew J. Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary, University of London, London, United Kingdom
| | - Phylicia Stathi
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Margaretha G. M. Roemer
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Matias Mendeville
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nathalie J. Hijmering
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, and Comprehensive Cancer Center Mainfranken, Germany
| | - Maria Calaminici
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary, University of London, London, United Kingdom
| | - Eva Hoster
- Department of Medicine III, University Hospital Grosshadern, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), LMU University, Munich, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital Grosshadern, Munich, Germany
| | - Philippe Gaulard
- Department of Pathology, Henri Mondor University Hospital, Assistance Pyblique- Hospitaux de Paris (APHP), INSERM U955, Université Paris-Est, Créteil, France
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heike Horn
- Institute for Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch-Institut für Klinische Pharmakologie, Stuttgart, Germany
| | - Wolfram Klapper
- Institute of Pathology, University of Schleswig-Holstein, Kiel, Germany
| | - Luc Xerri
- Département de Biopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Catherine Burton
- Haematological Malignancy Diagnostic Service, St. James University Hospital, Leeds, United Kingdom
| | - Reuben M. Tooze
- Division of Haematology & Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Alexandra G. Smith
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Center (CCC) Ulm, Universitätsklinikum Ulm, Ulm, Germany
| | - David W. Scott
- BC Cancer Centre for Lymphoid Cancer and The University of British Columbia, Vancouver, BC, Canada
| | | | - Ranjana Advani
- Department of Hematology, Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA
| | - Laurie H. Sehn
- BC Cancer Centre for Lymphoid Cancer and The University of British Columbia, Vancouver, BC, Canada
| | - John Raemaekers
- Department of Hematology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary, University of London, London, United Kingdom
| | - Eva Kimby
- Department of Medicine, Division of Hematology, Karolinska Institute, Stockholm, Sweden; and
| | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Delphine Maucort-Boulch
- Université Lyon 1, Villeurbanne, France, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de recherche (UMR) 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon, France
| | - Bauke Ylstra
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Vivas-García Y, Efeyan A. The metabolic plasticity of B cells. Front Mol Biosci 2022; 9:991188. [PMID: 36213123 PMCID: PMC9537818 DOI: 10.3389/fmolb.2022.991188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The humoral response requires rapid growth, biosynthetic capacity, proliferation and differentiation of B cells. These processes involve profound B-cell phenotypic transitions that are coupled to drastic changes in metabolism so as to meet the extremely different energetic requirements as B cells switch from resting to an activated, highly proliferative state and to plasma or memory cell fates. Thus, B cells execute a multi-step, energetically dynamic process of profound metabolic rewiring from low ATP production to transient and large increments of energy expenditure that depend on high uptake and consumption of glucose and fatty acids. Such metabolic plasticity is under tight transcriptional and post-transcriptional regulation. Alterations in B-cell metabolism driven by genetic mutations or by extrinsic insults impair B-cell functions and differentiation and may underlie the anomalous behavior of pathological B cells. Herein, we review molecular switches that control B-cell metabolism and fuel utilization, as well as the emerging awareness of the impact of dynamic metabolic adaptations of B cells throughout the different phases of the humoral response.
Collapse
|
35
|
Zhang X, Wang G, Bi Y, Jiang Z, Wang X. Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice. Int Immunopharmacol 2022; 112:109133. [PMID: 36113317 DOI: 10.1016/j.intimp.2022.109133] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM OF THE STUDY Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice. METHODS We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting. RESULTS In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment. CONCLUSION Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Gang Wang
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Ying Bi
- Department of Rheumatology and Immunology, the Fourth Hospital of China Medical University, Shenyang 110001, China
| | - Zhihang Jiang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xiaofei Wang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
36
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022. [PMID: 35651325 PMCID: PMC9252895 DOI: 10.5483/bmbrep.2022.55.6.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
37
|
Luo L, Jiang P, Chen Q, Chang J, Jing Y, Luo X, Gu H, Huang Y, Chen R, Liu J, Kang D, Liu Q, Wang Y, Fang G, Zhu Y, Guan F, Lei J, Yang L, Liu C, Dai X. c-Abl controls BCR signaling and B cell differentiation by promoting B cell metabolism. Immunology 2022; 167:181-196. [PMID: 35753034 DOI: 10.1111/imm.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
As a non-receptor tyrosine kinase, c-Abl was first studied in chronic myelogenous leukemia, and its role in lymphocytes has been well characterized. c-Abl is involved in B cell development and CD19 associated B cell antigen receptor (BCR) signaling. Although c-Abl regulates different metabolic pathways, the role of c-Abl is still unknown in B cell metabolism. In this study, B cell specific c-Abl knockout (KO) mice (Mb1Cre+/- c-Ablfl/fl ) were used to investigate how c-Abl regulates B cell metabolism and BCR signaling. We found that the levels of activation positive BCR signaling proximal molecules, phosphorylated spleen tyrosine kinase (pSYK) and phosphorylated Bruton tyrosine kinase (pBTK), were decreased, while the level of key negative regulator, phosphorylated SH2-containing inositol phosphatase (pSHIP1), was increased in Mb1Cre+/- c-Ablfl/fl mice. Furthermore, we found c-Abl deficiency weakened the B cell spreading, formation of BCR signalosomes, and the polymerization of actin during BCR activation, and also impaired the differentiation of germinal center (GC) B cells both in quiescent condition and after immunization. Moreover, B cell mitochondrial respiration and the expression of B cell metabolism regulating molecules were downregulated in c-Abl deficiency mice. Overall, c-Abl, which involved in actin remodeling and B cell metabolism, positively regulates BCR signaling and promotes GC differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Gu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Chen
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yi Wang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guofeng Fang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Zhu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Oishi K, Horiuchi S, Frere J, Schwartz RE, tenOever BR. A diminished immune response underlies age-related SARS-CoV-2 pathologies. Cell Rep 2022; 39:111002. [PMID: 35714615 PMCID: PMC9181267 DOI: 10.1016/j.celrep.2022.111002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Morbidity and mortality in response to SARS-CoV-2 infection are significantly elevated in people of advanced age. To understand the underlying biology of this phenotype, we utilize the golden hamster model to compare how the innate and adaptive immune responses to SARS-CoV-2 infection differed between younger and older animals. We find that while both hamster cohorts showed similar virus kinetics in the lungs, the host response in older animals was dampened, with diminished tissue repair in the respiratory tract post-infection. Characterization of the adaptive immune response also revealed age-related differences, including fewer germinal center B cells in older hamsters, resulting in reduced potency of neutralizing antibodies. Moreover, older animals demonstrate elevated suppressor T cells and neutrophils in the respiratory tract, correlating with an increase in TGF-β and IL-17 induction. Together, these data support that diminished immunity is one of the underlying causes of age-related morbidity.
Collapse
Affiliation(s)
- Kohei Oishi
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Shu Horiuchi
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Justin Frere
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
39
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022; 55:259-266. [PMID: 35651325 PMCID: PMC9252895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 02/21/2025] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives. [BMB Reports 2022; 55(6): 259-266].
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
40
|
Yu J, Zhang J, Shi M, Ding H, Ma L, Zhang H, Liu J. Maintenance of glutamine synthetase expression alleviates endotoxin-induced sepsis via alpha-ketoglutarate-mediated demethylation. FASEB J 2022; 36:e22281. [PMID: 35344214 DOI: 10.1096/fj.202200059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (Glul) is the enzyme that synthesizes endogenous glutamine, which is responsible for critical metabolic pathways and the immune system. However, the role of Glul in regulating endotoxin (lipopolysaccharide, LPS)-induced sepsis remains unclear. Here, we found that Glul expression in macrophages was significantly inhibited in endotoxemia, and that Glul deletion induced macrophages to differentiate into the pro-inflammatory type and aggravated sepsis in mice. Mechanistically, TLR4/NF-κB-induced alpha-ketoglutarate (α-KG) depletion inhibits Glul expression through H3K27me3-mediated methylation in septic mice. Both Glul overexpression with adeno-associated virus (AAV) and restoration by replenishing α-KG can alleviate the severity of sepsis. In conclusion, the study demonstrated that Glul can regulate LPS-induced sepsis and provides a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Jianghong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Ding
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liyun Ma
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Calciolari B, Scarpinello G, Tubi LQ, Piazza F, Carrer A. Metabolic control of epigenetic rearrangements in B cell pathophysiology. Open Biol 2022; 12:220038. [PMID: 35580618 PMCID: PMC9113833 DOI: 10.1098/rsob.220038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Both epigenetic and metabolic reprogramming guide lymphocyte differentiation and can be linked, in that metabolic inputs can be integrated into the epigenome to inform cell fate decisions. This framework has been thoroughly investigated in several pathophysiological contexts, including haematopoietic cell differentiation. In fact, metabolite availability dictates chromatin architecture and lymphocyte specification, a multi-step process where haematopoietic stem cells become terminally differentiated lymphocytes (effector or memory) to mount the adaptive immune response. B and T cell precursors reprogram their cellular metabolism across developmental stages, not only to meet ever-changing energetic demands but to impose chromatin accessibility and regulate the function of master transcription factors. Metabolic control of the epigenome has been extensively investigated in T lymphocytes, but how this impacts type-B life cycle remains poorly appreciated. This assay will review our current understanding of the connection between cell metabolism and epigenetics at crucial steps of B cell maturation and how its dysregulation contributes to malignant transformation.
Collapse
Affiliation(s)
- Beatrice Calciolari
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Greta Scarpinello
- Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), of the University of Padova, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Carrer
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
42
|
Goretzki A, Zimmermann J, Lin YJ, Schülke S. Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases? FRONTIERS IN ALLERGY 2022; 3:825931. [PMID: 35386646 PMCID: PMC8974690 DOI: 10.3389/falgy.2022.825931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
|
43
|
Boothby MR, Brookens SK, Raybuck AL, Cho SH. Supplying the trip to antibody production-nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cell Mol Immunol 2022; 19:352-369. [PMID: 34782762 PMCID: PMC8591438 DOI: 10.1038/s41423-021-00782-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID pandemic has refreshed and expanded recognition of the vital role that sustained antibody (Ab) secretion plays in our immune defenses against microbes and of the importance of vaccines that elicit Ab protection against infection. With this backdrop, it is especially timely to review aspects of the molecular programming that govern how the cells that secrete Abs arise, persist, and meet the challenge of secreting vast amounts of these glycoproteins. Whereas plasmablasts and plasma cells (PCs) are the primary sources of secreted Abs, the process leading to the existence of these cell types starts with naive B lymphocytes that proliferate and differentiate toward several potential fates. At each step, cells reside in specific microenvironments in which they not only receive signals from cytokines and other cell surface receptors but also draw on the interstitium for nutrients. Nutrients in turn influence flux through intermediary metabolism and sensor enzymes that regulate gene transcription, translation, and metabolism. This review will focus on nutrient supply and how sensor mechanisms influence distinct cellular stages that lead to PCs and their adaptations as factories dedicated to Ab secretion. Salient findings of this group and others, sometimes exhibiting differences, will be summarized with regard to the journey to a distinctive metabolic program in PCs.
Collapse
Affiliation(s)
- Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Rheumatology & Immunology Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA.
| | - Shawna K Brookens
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA
| |
Collapse
|
44
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
45
|
Shiraz AK, Panther EJ, Reilly CM. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites 2022; 12:metabo12010040. [PMID: 35050162 PMCID: PMC8780703 DOI: 10.3390/metabo12010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
B lymphocytes play an important role in the pathophysiology of many autoimmune disorders by producing autoantibodies, secreting cytokines, and presenting antigens. B cells undergo extreme physiological changes as they develop and differentiate. Aberrant function in tolerogenic checkpoints and the metabolic state of B cells might be the contributing factors to the dysfunctionality of autoimmune B cells. Understanding B-cell metabolism in autoimmunity is important as it can give rise to new treatments. Recent investigations have revealed that alterations in metabolism occur in the activation of B cells. Several reports have suggested that germinal center (GC) B cells of individuals with systemic lupus erythematosus (SLE) have altered metabolic function. GCs are unique microenvironments in which the delicate and complex process of B-cell affinity maturation occurs through somatic hypermutation (SHM) and class switching recombination (CSR) and where Bcl6 tightly regulates B-cell differentiation into memory B-cells or plasma cells. GC B cells rely heavily on glucose, fatty acids, and oxidative phosphorylation (OXPHOS) for their energy requirements. However, the complicated association between GC B cells and their metabolism is still not clearly understood. Here, we review several studies of B-cell metabolism, highlighting the significant transformations that occur in GC progression, and suggest possible approaches that may be investigated to more precisely target aberrant B-cell metabolism in SLE.
Collapse
Affiliation(s)
- Ashton K. Shiraz
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| | - Eric J. Panther
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
| | - Christopher M. Reilly
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| |
Collapse
|
46
|
Lin YJ, Goretzki A, Schülke S. Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases. Front Immunol 2021; 12:790658. [PMID: 34925372 PMCID: PMC8671807 DOI: 10.3389/fimmu.2021.790658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, the frequency of allergic disorders has steadily increased. Immunologically, allergies are caused by abnormal immune responses directed against otherwise harmless antigens derived from our environment. Two of the main cell types driving allergic sensitization and inflammation are IgE-producing plasma cells and Th2 cells. The acute activation of T and B cells, their differentiation into effector cells, as well as the formation of immunological memory are paralleled by distinct changes in cellular metabolism. Understanding the functional consequences of these metabolic changes is the focus of a new research field termed "immune metabolism". Currently, the contribution of metabolic changes in T and B cells to either the development or maintenance of allergies is not completely understood. Therefore, this mini review will introduce the fundamentals of energy metabolism, its connection to immune metabolism, and subsequently focus on the metabolic phenotypes of IL-4-activated B cells and Th2 cells.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
47
|
Fukao S, Haniuda K, Tamaki H, Kitamura D. Protein kinase Cδ is essential for the IgG response against T-cell-independent type 2 antigens and commensal bacteria. eLife 2021; 10:72116. [PMID: 34693907 PMCID: PMC8610492 DOI: 10.7554/elife.72116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Antigens (Ags) with multivalent and repetitive structure elicit IgG production in a T-cell-independent manner. However, the mechanisms by which such T-cell-independent type-2 (TI-2) Ags induce IgG responses remain obscure. Here, we report that B-cell receptor (BCR) engagement with a TI-2 Ag but not with a T-cell-dependent (TD) Ag was able to induce the transcription of Aicda encoding activation-induced cytidine deaminase (AID) and efficient class switching to IgG3 upon costimulation with IL-1 or IFN-α in mouse B cells. TI-2 Ags strongly induced the phosphorylation of protein kinase C (PKC)δ and PKCδ mediated the Aicda transcription through the induction of BATF, the key transcriptional regulator of Aicda. In PKCδ-deficient mice, production of IgG was intact against TD Ag but abrogated against typical TI-2 Ags as well as commensal bacteria, and experimental disruption of the gut epithelial barrier resulted in fatal bacteremia. Thus, our results have revealed novel molecular requirements for class switching in the TI-2 response and highlighted its importance in homeostatic commensal-specific IgG production. When the human body faces a potentially harmful microorganism, the immune system responds by finding and destroying the pathogen. This involves the coordination of several different parts of the immune system. B cells are a type of white blood cell that is responsible for producing antibodies: large proteins that bind to specific targets such as pathogens. B cells often need help from other immune cells known as T cells to complete antibody production. However, T cells are not required for B cells to produce antibodies against some bacteria. For example, when certain pathogenic bacteria coated with a carbohydrate called a capsule – such as pneumococcus, which causes pneumonia, or salmonella – invade our body, B cells recognize a repetitive structure of the capsule using a B-cell antigen receptor. This recognition allows B cells to produce antibodies independently of T cells. It is unclear how B cells produce antibodies in this situation or what proteins are required for this activity. To understand this process, Fukao et al. used genetically modified mice and their B cells to study how they produce antibodies independently of T cells. They found that a protein called PKCδ is critical for B cells to produce antibodies, especially of an executive type called IgG, in the T-cell-independent response. PKCδ became active when B cells were stimulated with the repetitive antigen present on the surface of bacteria like salmonella or pneumococcus. Mice that lack PKCδ were unable to produce IgG independently of T cells, leading to fatal infections when bacteria reached the tissues and blood. Understanding the mechanism behind the T cell-independent B cell response could lead to more effective antibody production, potentially paving the way for new vaccines to prevent fatal diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Saori Fukao
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Hiromasa Tamaki
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
48
|
Duan L, Liu D, Chen H, Mintz MA, Chou MY, Kotov DI, Xu Y, An J, Laidlaw BJ, Cyster JG. Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity 2021; 54:2256-2272.e6. [PMID: 34555336 PMCID: PMC8516727 DOI: 10.1016/j.immuni.2021.08.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
B cells within germinal centers (GCs) enter cycles of antibody affinity maturation or exit the GC as memory cells or plasma cells. Here, we examined the contribution of interleukin (IL)-4 on B cell fate decisions in the GC. Single-cell RNA-sequencing identified a subset of light zone GC B cells expressing high IL-4 receptor-a (IL4Ra) and CD23 and lacking a Myc-associated signature. These cells could differentiate into pre-memory cells. B cell-specific deletion of IL4Ra or STAT6 favored the pre-memory cell trajectory, and provision of exogenous IL-4 in a wild-type context reduced pre-memory cell frequencies. IL-4 acted during antigen-specific interactions but also influenced bystander cells. Deletion of IL4Ra from follicular dendritic cells (FDCs) increased the availability of IL-4 in the GC, impaired the selection of affinity-matured B cells, and reduced memory cell generation. We propose that GC FDCs establish a niche that limits bystander IL-4 activity, focusing IL-4 action on B cells undergoing selection and enhancing memory cell differentiation.
Collapse
Affiliation(s)
- Lihui Duan
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dan Liu
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hsin Chen
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle A Mintz
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marissa Y Chou
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dmitri I Kotov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Xu
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J Laidlaw
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Kubo M. The role of IL-4 derived from T follicular helper cells and TH2 cells. Int Immunol 2021; 33:717-722. [PMID: 34628505 DOI: 10.1093/intimm/dxab080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022] Open
Abstract
IL-4 is known to be the quintessential regulatory cytokine, playing a role in a vast number of immune and non-immune functions. This cytokine is commonly secreted by TH2 cells and follicular helper T (TFH) cells after antigenic sensitization. TH2 cells have been classically thought to be the major contributor to B cell help as a source of IL-4 responsible for class-switch recombination to Immunoglobulin G1 (IgG1) in mice (IgG4 in humans) and to IgE in mice and humans. Recent in vivo observations have shown that IgE and IgG1 antibody responses are mainly controlled by IL-4-secreting TFH cells but not by classical TH2 cells. IL-4 is distinctively regulated in these two T cell subsets by the GATA-3-mediated HS2 enhancer in TH2 cells and the Notch-mediated CNS-2 enhancer in TFH cells. Moreover, the IL-4 derived from TFH cells has an essential role in germinal center (GC) formation in the secondary lymphoid organs during humoral immune responses.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
50
|
PPARγ-Induced Global H3K27 Acetylation Maintains Osteo/Cementogenic Abilities of Periodontal Ligament Fibroblasts. Int J Mol Sci 2021; 22:ijms22168646. [PMID: 34445348 PMCID: PMC8395443 DOI: 10.3390/ijms22168646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
The periodontal ligament is a soft connective tissue embedded between the alveolar bone and cementum, the surface hard tissue of teeth. Periodontal ligament fibroblasts (PDLF) actively express osteo/cementogenic genes, which contribute to periodontal tissue homeostasis. However, the key factors maintaining the osteo/cementogenic abilities of PDLF remain unclear. We herein demonstrated that PPARγ was expressed by in vivo periodontal ligament tissue and its distribution pattern correlated with alkaline phosphate enzyme activity. The knockdown of PPARγ markedly reduced the osteo/cementogenic abilities of PDLF in vitro, whereas PPARγ agonists exerted the opposite effects. PPARγ was required to maintain the acetylation status of H3K9 and H3K27, active chromatin markers, and the supplementation of acetyl-CoA, a donor of histone acetylation, restored PPARγ knockdown-induced decreases in the osteo/cementogenic abilities of PDLF. An RNA-seq/ChIP-seq combined analysis identified four osteogenic transcripts, RUNX2, SULF2, RCAN2, and RGMA, in the PPARγ-dependent active chromatin region marked by H3K27ac. Furthermore, RUNX2-binding sites were selectively enriched in the PPARγ-dependent active chromatin region. Collectively, these results identified PPARγ as the key transcriptional factor maintaining the osteo/cementogenic abilities of PDLF and revealed that global H3K27ac modifications play a role in the comprehensive osteo/cementogenic transcriptional alterations mediated by PPARγ.
Collapse
|