1
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Deciphering the role of IL-17D, its newly identified receptor CD93, and IL-17D-CD93 axis in health and disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf061. [PMID: 40258301 DOI: 10.1093/jimmun/vkaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/23/2025] [Indexed: 04/23/2025]
Abstract
This review explores interleukin (IL)-17D and its receptor CD93, highlighting their structural, functional, and clinical aspects. Identifying CD93 as the receptor for IL-17D has advanced understanding of the IL-17 family and its signaling pathways. IL-17D, with its unique glycoprotein structure, plays diverse roles in oxidative stress response and potential antitumor therapies. It is involved in autoimmune diseases, infections, and cancers, making it a promising therapeutic target. CD93 is crucial in various biological processes, from angiogenesis to inflammatory diseases. CD93's implications in cancers, neuroinflammation, and metabolism highlight its significance as a potential prognostic marker and therapeutic target. The review emphasizes IL-17D and CD93 as promising areas for future research, offering insights into their signaling pathways and potential applications in personalized medicine. Deciphering the relationship between IL-17D and CD93 is in its infancy and invites exploration for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yanagawa Y, Maekawa C, Tanaka N, Kawai K, Hamada M, Ota S, Ohsaka H, Nagasawa H, Omori K. Association Between Medical Interventions by Doctor Helicopters and Outcomes in Inflammatory Diseases Using a Doctor Helicopter Registry. Air Med J 2025; 44:56-59. [PMID: 39993860 DOI: 10.1016/j.amj.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 02/26/2025]
Abstract
OBJECTIVE In Japan, patients with inflammatory diseases are transported from the field by doctor helicopters (DHs). This study aimed to retrospectively investigate the relationship between early medical intervention and outcomes in inflammatory diseases, such as respiratory, urinary tract, and gastrointestinal infections. METHODS Using data collected by the Japanese Society for Aeromedical Services from DH base hospitals, cases with a discharge diagnosis of inflammatory diseases were selected. The study evaluated age, sex, request method, vital signs on DH staff contact, medical interventions, and final outcomes (cerebral performance category [CPC] at 1 month postinflammation and survival outcome). Exclusion criteria included cases of cardiac arrest at contact and those with unknown final outcomes. The cases were categorized into 2 groups based on survival or functional outcome (favorable: CPC 1-2; unfavorable: CPC 3-5), and a comparative analysis was conducted between the 2 groups. RESULTS Of 41,592 cases in the data set, 785 cases met the inclusion criteria. The mean age was 73.8 years, with 491 male patients, 136 deaths, and 272 cases with poor outcomes. All cases were transported from the scene. Compared with the survival group, the fatal group was older and had poorer consciousness, lower blood pressure, higher rates of airway management, and higher use of vasopressors, glucose, and muscle relaxants, whereas the use of antiemetics was statistically lower. Similarly, compared with the favorable functional outcome group, the poor outcome group was older and had a higher proportion of female patients, poorer consciousness, faster respiratory rate and pulse, lower blood pressure, higher rates of airway management, and higher use of cardiopressors, glucose, and muscle relaxants, with a statistically lower use of antiemetics. CONCLUSION In cases where the prehospital condition was severe, medical intervention rates increased, and the outcomes for such patients were poor. Conversely, the presence or absence of antiemetic use may have influenced the outcomes.
Collapse
Affiliation(s)
- Youichi Yanagawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan.
| | - Chihiro Maekawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Noriko Tanaka
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Kenji Kawai
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Michika Hamada
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Soichiro Ota
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Hiromichi Ohsaka
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Hiroki Nagasawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| | - Kazuhiko Omori
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Izunokuni City, Shizuoka, Japan
| |
Collapse
|
3
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. Structure 2024; 32:282-291.e4. [PMID: 38218180 DOI: 10.1016/j.str.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The CD93/IGFBP7 axis proteins are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Their upregulation contributes to tumor vascular abnormality and a blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, the interactions of these proteins with each other remain unclear. In this study, we determined a partial structure of the human CD93-IGFBP7 complex comprising the EGF1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides leads for the development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
Affiliation(s)
- Yueming Xu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
5
|
Jiang Q, Kuai J, Jiang Z, Que W, Wang P, Huang W, Ding W, Zhong L. CD93 overexpresses in liver hepatocellular carcinoma and represents a potential immunotherapy target. Front Immunol 2023; 14:1158360. [PMID: 37483608 PMCID: PMC10359974 DOI: 10.3389/fimmu.2023.1158360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is one of the malignant tumors with high incidence as well as high death, which is ranked as the sixth most common tumor and the third highest mortality worldwide. CD93, a transmembrane protein, has been widely reported to play an important role in different types of diseases, including many types of cancer by mainly functioning in extracellular matrix formation and vascular maturation. However, there are few researches focusing on the role and potential function of CD93 in LIHC. Methods In this study, we comprehensively analyzed the relationship between CD93 and LIHC. We not only discovered transcriptional expression of CD93 in LIHC by using the TIMER, GEPIA and UALCAN database, but also performed WB and IHC to verify the protein expression of CD93 in LIHC. Meantime, Kaplan-Meier Plotter Database Analysis were used to assess the prognosis of CD93 in LIHC. After knowing close correlation between CD93 expression and LIHC, there were STRING, GeneMania and GO and KEGG enrichment analyses to find how CD93 functions in LIHC. We further applied CIBERSORT Algorithm to explore the correlation between CD93 and immune cells and evaluate prognostic value of CD93 based on them in LIHC patients. Results The transcriptional and protein expression of CD93 were both obviously increased in LIHC by above methods. There was also a significant and close correlation between the expression of CD93 and the prognosis of LIHC patients by using Kaplan-Meier Analysis, which showed that LIHC patients with elevated expression of CD93 were associated with a predicted poor prognosis. We found that the functions of CD93 in different cancers are mainly related to Insulin like growth factor binding protein 7 Gene (IGFBP7)/CD93 pathway via STRING, GeneMania and functional enrichment analyses. Further, our data obtained from CIBERSORT Algorithm suggested CD93 was also associated with the immune response. There is a close positive correlation between CD93 expression and the infiltration levels of all six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). Importantly, CD93 can affect the prognosis of patients with LIHC partially due to immune infiltration. Conclusion Our results demonstrated CD93 may be a candidate predictor of clinical prognosis and immunotherapy response in LIHC.
Collapse
Affiliation(s)
- Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Kuai
- Department of Hepatobiliary Surgery, Weifang Peopleās Hospital, Shandong, Weifang, Shandong, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Ding
- Department of Hepatobiliary Surgery, Weifang Peopleās Hospital, Shandong, Weifang, Shandong, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543655. [PMID: 37333140 PMCID: PMC10274810 DOI: 10.1101/2023.06.07.543655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The CD93/IGFBP7 axis are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Upregulation of them contributes to tumor vascular abnormality and blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, how these two proteins associated to each other remains unclear. In this study, we solved the human CD93-IGFBP7 complex structure to elucidate the interaction between the EGF 1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed the binding interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides hints for development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
|
7
|
Patterson SD, Copland M. The Bone Marrow Immune Microenvironment in CML: Treatment Responses, Treatment-Free Remission, and Therapeutic Vulnerabilities. Curr Hematol Malig Rep 2023; 18:19-32. [PMID: 36780103 PMCID: PMC9995533 DOI: 10.1007/s11899-023-00688-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/14/2023]
Abstract
PURPOSE OF REVIEW Tyrosine kinase inhibitors (TKIs) are very successful for the treatment of chronic myeloid leukaemia (CML) but are not curative in most patients due to persistence of TKI-resistant leukaemia stem cells (LSCs). The bone marrow immune microenvironment (BME) provides protection to the LSC through multidimensional interactions, driving therapy resistance, and highlighting the need to circumvent these protective niches therapeutically. This review updates the evidence for interactions between CML cells and the immune microenvironment with a view to identifying targetable therapeutic vulnerabilities and describes what is known about the role of immune regulation in treatment-free remission (TFR). RECENT FINDINGS Intracellular signalling downstream of the chemotactic CXCL12-CXCR4 axis, responsible for disrupted homing in CML, has been elucidated in LSCs, highlighting novel therapeutic opportunities. In addition, LSCs expressing CXCL12-cleaving surface protein CD26 were highly correlated with CML burden, building on existing evidence. Newer findings implicate the adhesion molecule CD44 in TKI resistance, while JAK/STAT-mediated resistance to TKIs may occur downstream of extrinsic signalling in the BME. Exosomal BME-LSC cross-communication has also been explored. Finally, further detail on the phenotypes of natural killer (NK) cells putatively involved in maintaining successful TFR has been published, and NK-based immunotherapies are discussed. Recent studies highlight and build on our understanding of the BME in CML persistence and TKI resistance, pinpointing therapeutically vulnerable interactions. Repurposing existing drugs and/or the development of novel inhibitors targeting these relationships may help to overcome these issues in TKI-resistant CML and be used as adjuvant therapy for sustained TFR.
Collapse
Affiliation(s)
- Shaun David Patterson
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Paul O'Gorman Leukaemia Research Centre, University of Glasgow, 21 Shelley Road, Glasgow, G12 0ZD, UK.
| | - Mhairi Copland
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Paul O'Gorman Leukaemia Research Centre, University of Glasgow, 21 Shelley Road, Glasgow, G12 0ZD, UK.
| |
Collapse
|
8
|
Wu B, Fu L, Guo X, Hu H, Li Y, Shi Y, Zhang Y, Han S, Lv C, Tian Y. Multi-omics profiling and digital image analysis reveal the potential prognostic and immunotherapeutic properties of CD93 in stomach adenocarcinoma. Front Immunol 2023; 14:984816. [PMID: 36761750 PMCID: PMC9905807 DOI: 10.3389/fimmu.2023.984816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Recent evidence highlights the fact that immunotherapy has significantly improved patient outcomes. CD93, as a type I transmembrane glycoprotein, was correlated with tumor-associated angiogenesis; however, how CD93 correlates with immunotherapy in stomach adenocarcinoma (STAD) remains unclear. Methods TCGA, GTEx, GEO, TIMER2.0, HPA, TISIDB, TCIA, cBioPortal, LinkedOmics, and ImmuCellAI public databases were used to elucidate CD93 in STAD. Visualization and statistical analysis of data were performed by R (Version 4.1.3), GraphPad (Version 8.0.1), and QuPath (Version 0.3.2). Results CD93 was highly expressed in STAD compared with adjacent normal tissues. The overexpression of CD93 was significantly correlated with a poor prognosis in STAD. There was a negative correlation between CD93 expression levels with CD93 mutation and methylation in STAD. Our results revealed that CD93 expression was positively associated with most immunosuppressive genes (including PD-1, PD-L1, CTLA-4, and LAG3), immunostimulatory genes, HLA, chemokine, and chemokine receptor proteins in STAD. Furthermore, in STAD, CD93 was noticeably associated with the abundance of multiple immune cell infiltration levels. Functional HALLMARK and KEGG term enhancement analysis of CD93 through Gene Set Enrichment Analysis was correlated with the process of the angiogenesis pathway. Subsequently, digital image analysis results by QuPath revealed that the properties of CD93+ cells were statistically significant in different regions of stomach cancer and normal stomach tissue. Finally, we utilized external databases, including GEO, TISIDB, ImmuCellAI, and TCIA, to validate that CD93 plays a key role in the immunotherapy of STAD. Conclusion Our study reveals that CD93 is a potential oncogene and is an indicative biomarker of a worse prognosis and exerts its immunomodulatory properties and potential possibilities for immunotherapy in STAD.
Collapse
|
9
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
10
|
Paroli M, Spadea L, Caccavale R, Spadea L, Paroli MP, Nante N. The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1552. [PMID: 36363508 PMCID: PMC9696590 DOI: 10.3390/medicina58111552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 04/12/2024]
Abstract
Background and Objectives: Interleukin-17 (IL-17) is a cytokine family consisting of six members and five specific receptors. IL-17A was the first member to be identified in 1993. Since then, several studies have elucidated that IL-17 has predominantly pro-inflammatory activity and that its production is involved in both the defense against pathogens and the genesis of autoimmune processes. Materials and Methods: In this review, we provide an overview of the role of interleukin-17 in the pathogenesis of juvenile idiopathic arthritis (JIA) and its relationship with IL-23, the so-called IL-23-IL-17 axis, by reporting updated findings from the scientific literature. Results: Strong evidence supports the role of interleukin-17A in the pathogenesis of JIA after the deregulated production of this interleukin by both T helper 17 (Th17) cells and cells of innate immunity. The blocking of IL-17A was found to improve the course of JIA, leading to the approval of the use of the human anti-IL17A monoclonal antibody secukinumab in the treatment of the JIA subtypes juvenile psoriatic arthritis (JPsA) and enthesitis-related arthritis (ERA). Conclusions: IL-17A plays a central role in the pathogenesis of JIA. Blocking its production with specific biologic drugs enables the effective treatment of this disabling childhood rheumatic disease.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Leopoldo Spadea
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Nante
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
11
|
Guo A, Zhang J, Tian Y, Peng Y, Luo P, Zhang J, Liu Z, Wu W, Zhang H, Cheng Q. Identify the immune characteristics and immunotherapy value of CD93 in the pan-cancer based on the public data sets. Front Immunol 2022; 13:907182. [PMID: 36389798 PMCID: PMC9646793 DOI: 10.3389/fimmu.2022.907182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
CD93 is a transmembrane receptor that is mainly expressed on endothelial cells. A recent study found that upregulated CD93 in tumor vessels is essential for tumor angiogenesis in several cancers. However, the underlying mechanisms are largely unexplored. Our present research systematically analyzed the characteristics of CD93 in tumor immunotherapy among 33 cancers. CD93 levels and co-expression of CD93 on cancer and stromal cells were detected using public databases and multiple immunofluorescence staining. The Kaplan-Meier (KM) analysis identified the predictive role of CD93 in these cancer types. The survival differences between CD93 mutants and WT, CNV groups, and methylation were also investigated. The immune landscape of CD93 in the tumor microenvironment was analyzed using the SangerBox, TIMER 2.0, and single-cell sequencing. The immunotherapy value of CD93 was predicted through public databases. CD93 mRNA and protein levels differed significantly between cancer samples and adjacent control tissues in multiply cancer types. CD93 mRNA expression associated with patient prognosis in many cancers. The correlation of CD93 levels with mutational status of other gene in these cancers was also analyzed. CD93 levels significantly positively related to three scores (immune, stromal, and extimate), immune infiltrates, immune checkpoints, and neoantigen expression.. Additionally, single-cell sequencing revealed that CD93 is predominantly co-expressed on tumor and stromal cells, such as endothelial cells, cancer-associated fibroblasts (CAFs), neutrophils, T cells, macrophages, M1 and M2 macrophages. Several immune-related signaling pathways were enriched based on CD93 expression, including immune cells activation and migration, focal adhesion, leukocyte transendothelial migration, oxidative phosphorylation, and complement. Multiple immunofluorescence staining displayed the relationship between CD93 expression and CD8, CD68, and CD163 in these cancers. Finally, the treatment response of CD93 in many immunotherapy cohorts and sensitive small molecules was predicted from the public datasets. CD93 expression is closely associated with clinical prognosis and immune infiltrates in a variety of tumors. Targeting CD93-related signaling pathways in the tumor microenvironment may be a novel therapeutic strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Aiyuan Guo
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiu Tian
- Department of Infectious Disease, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Jia J, Liu B, Wang D, Wang X, Song L, Ren Y, Guo Z, Ma K, Cui C. CD93 promotes acute myeloid leukemia development and is a potential therapeutic target. Exp Cell Res 2022; 420:113361. [PMID: 36152731 DOI: 10.1016/j.yexcr.2022.113361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
CD93 is a transmembrane receptor belonging to the Group XIV C-Type lectin family. It is expressed in a variety of cellular types such as monocytes, neutrophils, platelets, microglia, and endothelial cells. CD93 has been reported to play important roles in cell proliferation, cell migration, and tumor angiogenesis. Here, we show CD93 is highly expressed in M4 and M5 subtypes of acute myeloid leukemia (AML) patients, and highly expressed in leukemia stem cells, AML progenitor cells, as well as more differentiated AML cells. We found that CD93 promotes AML cell proliferation, while CD93 deficient AML cells commit to differentiation. We further show that CD93 exerts its proliferative function through downstream SHP-2/Syk/CREB cascade in AML cells. Moreover, human AML cells treated with CD93 mAb combined with αMFc-NC-DM1 (an IgG Fc specific antibody conjugated to maytansinoid DM1), showed a striking reduction of proliferation. Our study revealed that CD93 is a critical participator of AML development and provides a potential therapeutic cell surface target. (160 words).
Collapse
Affiliation(s)
- Jie Jia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Bin Liu
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Dandan Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiaohong Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lingrui Song
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yanzhang Ren
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhaoming Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Kun Ma
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Changhao Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
13
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17ā²s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
14
|
Ma K, Chen S, Chen X, Zhao X, Yang J. CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. J Mol Neurosci 2022; 72:2106-2124. [PMID: 36006582 DOI: 10.1007/s12031-022-02060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Previous reports have confirmed the significance of CD93 in the progression of multiple tumors; however, there are few studies examining its immune properties for gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. Six hundred ninety-nine glioma patients in TCGA along with 325 glioma patients in CGGA were correspondingly collected for training and validating. We analyzed and visualized total statistics using RStudio. One-way ANOVA and Student's t-test were used to assess groups' differences. All differences were considered statistically significant at the level of Pā<ā0.05. CD93 markedly upregulated among HGG, MGMT promoter unmethylated subforms, IDH wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. ROC analysis illustrated the favorable applicability of CD93 in estimating mesenchyme subform. Kaplan-Meier curves together with multivariable Cox analyses upon survivance identified high-expression CD93 as a distinct prognostic variable for glioma patients. GO analysis of CD93 documented its predominant part in glioma-related immunobiological processes and inflammation responses. We examined the associations of CD93 with immune-related meta-genes, and CD93 positively correlated with HCK, LCK, MHC I, MHC II, STAT1 and IFN, while adverse with IgG. Association analyses between CD93 and gliomas-infiltrating immunocytes indicated that the infiltrating degrees of most immunocytes exhibited positive correlations with CD93, particularly these immunosuppressive subsets such as TAM, Treg, and MDSCs. CD93 is markedly associated with adverse pathology types, unfavorable survival, and immunosuppressive immunocytes infiltration among gliomas, thus identifying CD93 as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
15
|
Zhang Z, Zheng M, Ding Q, Liu M. CD93 Correlates With Immune Infiltration and Impacts Patient Immunotherapy Efficacy: A Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:817965. [PMID: 35242761 PMCID: PMC8886047 DOI: 10.3389/fcell.2022.817965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The clinical implementation of immune-checkpoint inhibitors (ICIs) targeting CTLA4, PD-1, and PD-L1 has revolutionized the treatment of cancer. However, the majority of patients do not derive clinical benefit. Further development is needed to optimize the approach of ICI therapy. Immunotherapy combined with other forms of treatment is a rising strategy for boosting antitumor responses. CD93 was found to sensitize tumors to immune-checkpoint blocker therapy after the blockade of its pathway. However, its role in immune and ICB therapy across pan-cancer has remained unexplored. Methods: In this study, we provide a comprehensive investigation of CD93 expression in a pan-cancer manner involving 33 cancer types. We evaluated the association of CD93 expression with prognosis, mismatch repair, tumor mutation burden, and microsatellite instability, immune checkpoints, tumor microenvironment, and immune using multiple online datasets, including The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Tumor Immune Estimation Resource database, and Tumor Immune Single-cell Hub. Results: CD93 expression varied strongly among cancer types, and increased CD93 gene expression was associated with poor prognosis as well as higher immune factors in most cancer types. Additionally, the level of CD93 was significantly correlated with MMR, TMB, MSI, immune checkpoints, TME, and immune cell infiltration. Noticeably, our results mediated a strong positive contact between CD93 and CAFs, endothelial cells, myeloid dendritic cells, hematopoietic stem cells, mononuclear/macrophage subsets, and neutrophils while a negative correlation with Th1, MDSC, NK, and T-cell follicular helper in almost all cancers. Function analysis on CD93 revealed a link between itself and promoting cancers, inflammation, and angiogenesis. Conclusion: CD93 can function as a prognostic marker in various malignant tumors and is integral in TME and immune infiltration. Inhibition of the CD93 pathway may be a novel and promising strategy for immunotherapy in human cancer. Further explorations of the mechanisms of CD93 in the immune system may help improve cancer therapy methods.
Collapse
Affiliation(s)
- Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengli Zheng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Houshmand M, Kazemi A, Anjam Najmedini A, Ali MS, Gaidano V, Cignetti A, Fava C, Cilloni D, Saglio G, Circosta P. Shedding Light on Targeting Chronic Myeloid Leukemia Stem Cells. J Clin Med 2021; 10:jcm10245805. [PMID: 34945101 PMCID: PMC8708315 DOI: 10.3390/jcm10245805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloid leukemia stem cells (CML LSCs) are a rare and quiescent population that are resistant to tyrosine kinase inhibitors (TKI). When TKI therapy is discontinued in CML patients in deep, sustained and apparently stable molecular remission, these cells in approximately half of the cases restart to grow, resuming the leukemic process. The elimination of these TKI resistant leukemic stem cells is therefore an essential step in increasing the percentage of those patients who can reach a successful long-term treatment free remission (TFR). The understanding of the biology of the LSCs and the identification of the differences, phenotypic and/or metabolic, that could eventually allow them to be distinguished from the normal hematopoietic stem cells (HSCs) are therefore important steps in designing strategies to target LSCs in a rather selective way, sparing the normal counterparts.
Collapse
Affiliation(s)
- Mohammad Houshmand
- Department of Clinical Biological Sciences, University of Turin, San Luigi University Hospital, 10043 Turin, Italy; (M.H.); (M.S.A.); (C.F.); (D.C.); (P.C.)
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran; (A.K.); (A.A.N.)
| | - Ali Anjam Najmedini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran; (A.K.); (A.A.N.)
| | - Muhammad Shahzad Ali
- Department of Clinical Biological Sciences, University of Turin, San Luigi University Hospital, 10043 Turin, Italy; (M.H.); (M.S.A.); (C.F.); (D.C.); (P.C.)
| | - Valentina Gaidano
- Division of Hematology, A.O. SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Alessandro Cignetti
- Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, 10128 Turin, Italy;
| | - Carmen Fava
- Department of Clinical Biological Sciences, University of Turin, San Luigi University Hospital, 10043 Turin, Italy; (M.H.); (M.S.A.); (C.F.); (D.C.); (P.C.)
| | - Daniela Cilloni
- Department of Clinical Biological Sciences, University of Turin, San Luigi University Hospital, 10043 Turin, Italy; (M.H.); (M.S.A.); (C.F.); (D.C.); (P.C.)
| | - Giuseppe Saglio
- Department of Clinical Biological Sciences, University of Turin, San Luigi University Hospital, 10043 Turin, Italy; (M.H.); (M.S.A.); (C.F.); (D.C.); (P.C.)
- Correspondence:
| | - Paola Circosta
- Department of Clinical Biological Sciences, University of Turin, San Luigi University Hospital, 10043 Turin, Italy; (M.H.); (M.S.A.); (C.F.); (D.C.); (P.C.)
| |
Collapse
|
18
|
Chung SH, Ye XQ, Iwakura Y. Interleukin-17 family members in health and disease. Int Immunol 2021; 33:723-729. [PMID: 34611705 PMCID: PMC8633656 DOI: 10.1093/intimm/dxab075] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
The interleukin-17 (IL-17) family consists of six family members (IL-17A-IL-17F) and all the corresponding receptors have been identified recently. This family is mainly involved in the host defense mechanisms against bacteria, fungi and helminth infection by inducing cytokines and chemokines, recruiting neutrophils, inducing anti-microbial proteins and modifying T-helper cell differentiation. IL-17A and some other family cytokines are also involved in the development of psoriasis, psoriatic arthritis and ankylosing spondylitis by inducing inflammatory cytokines and chemokines, and antibodies against IL-17A as well as the receptor IL-17RA are being successfully used for the treatment of these diseases. Involvement in the development of inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and tumors has also been suggested in animal disease models. In this review, we will briefly review the mechanisms by which IL-17 cytokines are involved in the development of these diseases and discuss possible treatment of inflammatory diseases by targeting IL-17 family members.
Collapse
Affiliation(s)
- Soo-Hyun Chung
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, Japan
| | - Xiao-Qi Ye
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, Japan
| |
Collapse
|
19
|
Hinterbrandner M, Rubino V, Stoll C, Forster S, Schnüriger N, Radpour R, Baerlocher GM, Ochsenbein AF, Riether C. Tnfrsf4-expressing regulatory T cells promote immune escape of chronic myeloid leukemia stem cells. JCI Insight 2021; 6:151797. [PMID: 34727093 PMCID: PMC8675189 DOI: 10.1172/jci.insight.151797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Leukemia stem cells (LSCs) promote the disease and seem resistant to therapy and immune control. Why LSCs are selectively resistant against elimination by CD8+ cytotoxic T cells (CTLs) is still unknown. In this study, we demonstrate that LSCs in chronic myeloid leukemia (CML) can be recognized and killed by CD8+ CTLs in vitro. However, Tregs, which preferentially localized close to CD8+ CTLs in CML BM, protected LSCs from MHC class Iādependent CD8+ CTLāmediated elimination in vivo. BM Tregs in CML were characterized by the selective expression of tumor necrosis factor receptor 4 (Tnfrsf4). Stimulation of Tnfrsf4 signaling did not deplete Tregs but reduced the capacity of Tregs to protect LSCs from CD8+ CTLāmediated killing. In the BM of newly diagnosed CML patients, TNFRSF4 mRNA levels were significantly increased and correlated with the expression of the Treg-restricted transcription factor FOXP3. Overall, these results identify Tregs as key regulators of immune escape of LSCs and TNFRSF4 as a potential target to reduce the function of Tregs and boost antileukemic immunity in CML.
Collapse
Affiliation(s)
| | - Viviana Rubino
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Carina Stoll
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stefan Forster
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Noah Schnüriger
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | - Carsten Riether
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Deep Membrane Proteome Profiling Reveals Overexpression of Prostate-Specific Membrane Antigen (PSMA) in High-Risk Human Paraganglioma and Pheochromocytoma, Suggesting New Theranostic Opportunity. Molecules 2021; 26:molecules26216567. [PMID: 34770976 PMCID: PMC8587166 DOI: 10.3390/molecules26216567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors arising from chromaffin cells of adrenal medulla or sympathetic or parasympathetic paraganglia, respectively. To identify new therapeutic targets, we performed a detailed membrane-focused proteomic analysis of five human paraganglioma (PGL) samples. Using the Pitchfork strategy, which combines specific enrichments of glycopeptides, hydrophobic transmembrane segments, and non-glycosylated extra-membrane peptides, we identified over 1800 integral membrane proteins (IMPs). We found 45 ātumor enrichedā proteins, i.e., proteins identified in all five PGLs but not found in control chromaffin tissue. Among them, 18 IMPs were predicted to be localized on the cell surface, a preferred drug targeting site, including prostate-specific membrane antigen (PSMA), a well-established target for nuclear imaging and therapy of advanced prostate cancer. Using specific antibodies, we verified PSMA expression in 22 well-characterized human PPGL samples. Compared to control chromaffin tissue, PSMA was markedly overexpressed in high-risk PPGLs belonging to the established Cluster 1, which is characterized by worse clinical outcomes, pseudohypoxia, multiplicity, recurrence, and metastasis, specifically including SDHB, VHL, and EPAS1 mutations. Using immunohistochemistry, we localized PSMA expression to tumor vasculature. Our study provides the first direct evidence of PSMA overexpression in PPGLs which could translate to therapeutic and diagnostic applications of anti-PSMA radio-conjugates in high-risk PPGLs.
Collapse
|
21
|
Pessoa Rodrigues C, Akhtar A. Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells. SCIENCE ADVANCES 2021; 7:eabi5987. [PMID: 34362741 PMCID: PMC8346211 DOI: 10.1126/sciadv.abi5987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 05/13/2023]
Abstract
Hematopoietic stem cells (HSCs) are able to reconstitute the bone marrow while retaining their self-renewal property. Individual HSCs demonstrate heterogeneity in their repopulating capacities. Here, we found that the levels of the histone acetyltransferase MOF (males absent on the first) and its target modification histone H4 lysine 16 acetylation are heterogeneous among HSCs and influence their proliferation capacities. The increased proliferative capacities of MOF-depleted cells are linked to their expression of CD93. The CD93+ HSC subpopulation simultaneously shows transcriptional features of quiescent HSCs and functional features of active HSCs. CD93+ HSCs were expanded and exhibited an enhanced proliferative advantage in Mof +/- animals reminiscent of a premalignant state. Accordingly, low MOF and high CD93 levels correlate with poor survival and increased proliferation capacity in leukemia. Collectively, our study indicates H4K16ac as an important determinant for HSC heterogeneity, which is linked to the onset of monocytic disorders.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
22
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|