1
|
Ding Y, Ye Z, Ding B, Feng S, Zhang Y, Shen Y. Identification of CXCL13 as a Promising Biomarker for Immune Checkpoint Blockade Therapy and PARP Inhibitor Therapy in Ovarian Cancer. Mol Biotechnol 2025; 67:2428-2442. [PMID: 38856873 DOI: 10.1007/s12033-024-01207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ovarian cancer has poor response rates to immune checkpoint blockade (ICB) therapy, despite the use of genomic sequencing to identify molecular targets. Homologous recombination deficiency (HRD) is a conventional indicator of genomic instability (GI) and has been used as a marker for targeted therapies. Indicators reflecting HRD status have shown potential in predicting the efficacy of ICB treatment. Public databases, including TCGA, ICGC, and GEO, were used to obtain data. HRD scores, neoantigen load, and TMB were obtained from the TCGA cohort. Candidate biomarkers were validated in multiple databases, such as the Imvigor210 immunotherapy cohort and the open-source single-cell sequencing database. Immunohistochemistry was performed to further validate the results in independent cohorts. CXCL10, CXCL11, and CXCL13 were found to be significantly upregulated in HRD tumors and exhibited prognostic value. A comprehensive analysis of the tumor immune microenvironment (TIME) revealed that CXCL13 expression positively correlated with neoantigen load and immune cell infiltration. In addition, single-cell sequencing data and clinical trial results supported the utility of CXCL13 as a biomarker for ICB therapy. Not only does CXCL13 serve as a biomarker reflecting HRD status, but it also introduces a potentially novel perspective on prognostic biomarkers for ICB in ovarian cancer.
Collapse
Affiliation(s)
- Yue Ding
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Songwei Feng
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Lianyungang, No. 6 East Zhenhua Road, Haizhou, Lianyungang, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Ma C, Yang X, Zhang L, Zhang J, Zhang Y, Hu X. BRCA1 regulates glucose and lipid metabolism in diabetes mellitus with metabolic dysfunction-associated steatotic liver disease via the PI3K/Akt signaling pathway. PLoS One 2025; 20:e0318696. [PMID: 40138287 PMCID: PMC11940781 DOI: 10.1371/journal.pone.0318696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/20/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE This study mimics the metabolic environment of metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetic mellitus (DM) to investigate the function of BRCA1 in regulating glucose and lipid metabolism in hepatocytes under high glucose (HG) settings. METHODS MASLD and DM-related datasets (GSE89632, GSE95849) were screened for overlapping genes, Protein-Protein Interaction (PPI) network and enrichment analyses were performed. Then, quantitative real-time polymerase chain reaction (qRT-PCR), Western Blotting (WB), and enzymatic colorimetric assays to examine the expression changes of BRCA1 in mouse primary hepatocytes under HG conditions and the impact of the combined PI3K/Akt signaling pathway on key metabolic markers of gluconeogenesis and lipid metabolism. RESULTS Our study identified seven key overlapping genes (AURKA, BRCA1, ISG15, NUSAP1, OAS1, RSAD2, TLR7) between MASLD and DM. Experiments found that when BRCA1 was overexpressed in mouse primary hepatocytes, intracellular triglyceride content and lipid metabolism-related biomarkers (such as PEPCK, SREBP-1c, G6Pase, and FAS) were significantly increased in HG circumstances. However, the knockdown of BRCA1 reduced the expression of these indicators. Besides, we also observed that under HG conditions, the expression of proteins linked to the PI3K/Akt signaling pathway was negatively regulated by BRCA1 expression. Moreover, TG content and expression of lipid metabolism markers are also regulated by BRCA1 and PI3K/Akt pathway inhibitor Ly294002. CONCLUSION As a key regulator of hepatocyte metabolism under HG conditions, BRCA1 can participate in regulating glucose and lipid metabolism in mouse primary hepatocytes through the PI3K/AKT signaling pathway, which be able to become a possible remedy strategy for DM with MASLD.
Collapse
Affiliation(s)
- Cui Ma
- Department of Endocrinology, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University Shanghai, China, Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Liyin Zhang
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Zhang
- Department of pharmacy, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Youyou Zhang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University Shanghai, China, Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Xiaofeng Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Li X, Ning L, Zhao H, Gu C, Han Y, Xu W, Si Y, Xu Y, Wang R, Ren Q. Jiawei Ermiao Granules (JWEMGs) clear persistent HR-HPV infection though improving vaginal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119342. [PMID: 39793775 DOI: 10.1016/j.jep.2025.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Ermiao Granules (JWEMGs), a traditional Chinese herbal formulation, has been widely used in China for the treatment of human papillomavirus (HPV) infections. However, the underlying mechanisms through which it exerts its antiviral effects remain poorly understood. AIM OF THE STUDY This study aimed to investigate the potential mechanisms by which JWEMGs modulate vaginal microecology and clear HPV infections, utilizing clinical trials, metagenomic sequencing, and in vitro models. MATERIALS AND METHODS Clinical indicators related to vaginal microecology, such as vaginal pH, cleanliness, Nugent score, Donders score, catalase, neuraminidase, and leukocyte esterase, were evaluated in 65 patients with high-risk HPV (HR-HPV) infection. The study examined the impact of two courses of oral JWEMGs on these clinical parameters. Additionally, metagenomic sequencing was performed on vaginal lavage samples from 33 patients to assess the alteration of the vaginal microbiome following JWEMGs treatment. Immunohistochemistry was used to detect ALPK1 expression in cervical exfoliated cells, and ELISA was employed to measure cytokine levels in vaginal lavage fluid. JWEMGs intervention was applied to HaCaT-HPV E6/E7 cells to evaluate its effects on restoring α-kinase 1 (ALPK1) expression and promoting the secretion of cytokines and chemokines. RESULTS Treatment with JWEMGs significantly improved several clinical indicators, including cleanliness, pH, Nugent score, Donders score, catalase, neuraminidase, and leukocyte esterase, in HR-HPV-infected patients. Furthermore, JWEMGs therapy led to an increased abundance of Lactobacillus species, especially Lactobacillus crispatus, and a marked reduction in Gardnerella species. JWEMGs treatment also significantly promoted ALPK1 expression in cervical exfoliated cells and augmented the secretion of key cytokines, including IL-6, IL-8, and TNF-α. In parallel, in vitro results showed that JWEMGs substantially enhanced IL-6, IL-8, TNF-α, CCL2, CCL5, and CCL7 secretion in HaCaT-HPV E6/E7 cells, which correlated with the activation of the ALPK1/NF-κB signaling pathway. CONCLUSION In conclusion, JWEMGs treatment effectively remodels the vaginal microbiota and bolsters mucosal immunity in the lower genital tract, thereby improving the vaginal microecology in HR-HPV-infected individuals. In vitro findings further demonstrated that JWEMGs promote cytokine and chemokine expression, activating the ALPK1/NF-κB pathway.
Collapse
Affiliation(s)
- Xiu Li
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Li Ning
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hongting Zhao
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chenxi Gu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yue Han
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wenwen Xu
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yu Si
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yating Xu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ruyue Wang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Qingling Ren
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
4
|
Seitz S, Dreyer TF, Stange C, Steiger K, Wohlleber D, Anton M, Pham TA, Sauter-Peschke D, Reuning U, Multhoff G, Weichert W, Kiechle M, Magdolen V, Bronger H. The chemokine CX3CL1 promotes intraperitoneal tumour growth despite enhanced T-cell recruitment in ovarian cancer. Neoplasia 2025; 60:101130. [PMID: 39862711 PMCID: PMC11804824 DOI: 10.1016/j.neo.2025.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
T-cell recruiting chemokines are required for a successful immune intervention in ovarian cancer, and also for the efficacy of modern anticancer agents such as PARP inhibitors. The chemokine CX3CL1 recruits tumour-suppressive T-cells into solid tumours, but also mediates cell-cell adhesions, e.g. of tumour cells, through its membrane-bound form. So far, its role in ovarian cancer has only been rudimentarily addressed. We show that high CX3CL1 expression significantly correlates with worsened survival in human high-grade serous ovarian cancer (n=219). In preclinical ovarian cancer, CX3CL1 plays a dual role, as it enhances the adaptive anti-tumour response, but overall still promotes tumour growth, the latter as a feature of the intraperitoneal environment. Moreover, PARP inhibitors are able to increase CX3CL1 release from human ovarian cancer cells. Collectively, our study shows that CX3CL1 is a driver of intraperitoneal tumour growth in ovarian cancer, a feature that may compromise the anticancer effect of CX3CL1-inducing PARP inhibitors.
Collapse
Affiliation(s)
- Stefanie Seitz
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Tobias F Dreyer
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Christoph Stange
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, Technical University of Munich, 81675 Munich, Germany; Institute of Pathology, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Thuý An Pham
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | | | - Ute Reuning
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Technical University of Munich, TranslaTUM, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Viktor Magdolen
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Bogani G, Moore KN, Ray-Coquard I, Lorusso D, Matulonis UA, Ledermann JA, González-Martín A, Kurtz JE, Pujade-Lauraine E, Scambia G, Caruso G, Raspagliesi F, Colombo N, Monk BJ. Incorporating immune checkpoint inhibitors in epithelial ovarian cancer. Gynecol Oncol 2025; 193:30-40. [PMID: 39764856 DOI: 10.1016/j.ygyno.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 12/18/2024] [Indexed: 03/03/2025]
Abstract
OBJECTIVE Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy. METHODS A systematic review of phase III studies testing the role of CPIs in ovarian cancer was performed. RESULTS Seven randomized trials testing CPIs in newly diagnosed (n = 3) and recurrent (n = 4) EOC are evaluated. Overall, those trials included data of 5671 patients. Single-agent PD-L1 inhibitor trials have not shown significant efficacy in newly diagnosed ovarian cancer. Triplet maintenance with bevacizumab plus olaparib and durvalumab is associated with longer progression-free survival than maintenance with bevacizumab alone in patients without tumor BRCA mutations. CPIs were not effective in platinum-sensitive (n = 1031) and platinum-resistant (n = 1420) EOC. CONCLUSIONS The value of adding CPI to standard treatment including poly (ADP-ribose) polymerase (PARP) inhibitors with or without bevacizumab remains unclear and is being addressed in ongoing clinical trials. The combination of cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) inhibitors may enhance the efficacy of immunotherapy in EOC and studies are underway to investigate the combination of CPI with other emerging treatment modalities. PROSPERO registration ID: CRD42024536017.
Collapse
Affiliation(s)
- Giorgio Bogani
- Deaprtment of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Kathleen N Moore
- Stephenson Cancer Center at the University of Oklahoma Health Sciences Center/Sarah Cannon Research Institute, Oklahoma City, OK, United States.
| | - Isabelle Ray-Coquard
- Centre Anticancereux Léon Bérard, University Claude Bernard Lyon, GINECO Group, Lyon, France.
| | - Domenica Lorusso
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.
| | | | - Antonio González-Martín
- Medical Oncology Department, Translational Oncology Group, CIMA, Universidad de Navarra, Cancer Center Clinica Universidad de Navarra, Madrid, and Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain.
| | - Jean-Emmanuel Kurtz
- Department of Medical and Surgical Oncology & Hematology, ICANS, Strasbourg, France.
| | - Eric Pujade-Lauraine
- Association de Recherche Cancers Gynécologiques (ARCAGY)-Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France; GINECO, Paris, France.
| | - Giovanni Scambia
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy.
| | - Giuseppe Caruso
- Department of Gynecology, European Institute of Oncology, IEO, IRCCS, Milan, Italy; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Francesco Raspagliesi
- Deaprtment of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Nicoletta Colombo
- Gynecology Program, European Institute of Oncology, IEO, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.
| | - Bradley J Monk
- GOG Foundation, Florida Cancer Specialists and Research Institute, West Palm Beach, FL 33401, United States of America.
| |
Collapse
|
6
|
Zhang D, Zhang B. cGAS/STING signaling pathway in gynecological malignancies: From molecular mechanisms to therapeutic values. Front Immunol 2025; 16:1525736. [PMID: 39949780 PMCID: PMC11821648 DOI: 10.3389/fimmu.2025.1525736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Gynecological cancers, including cervical, ovarian, and endometrial malignancies, remain a significant global health burden, exacerbated by disparities in access to preventive measures such as HPV vaccination and routine screening. The cGAS/STING signaling pathway, a pivotal mechanism in innate immunity, detects cytosolic DNA from pathogens or cellular damage, triggering immune responses via type I interferons and inflammatory cytokines. This pathway's dual role in gynecological cancers, either promoting antitumor immunity or facilitating tumor immune evasion, makes it a compelling target for innovative therapies. The article outlines cGAS/STING's influence on tumor microenvironments, immune surveillance, and inflammation, with emphasis on molecular mechanisms driving cancer progression. It explores interactions between DNA damage response pathways and immune modulation, highlighting the impact of cGAS/STING activation or suppression in ovarian, cervical, and endometrial cancers. The therapeutic potential of STING agonists, PARP inhibitors, and targeted immunotherapies is reviewed, demonstrating how these approaches can boost immune responses, counteract chemotherapy resistance, and improve patient outcomes. The study also discusses strategies for leveraging cGAS/STING signaling to enhance the efficacy of immunotherapies and address tumor-mediated immune suppression, providing insights into future directions for personalized cancer treatments.
Collapse
Affiliation(s)
| | - Bingxue Zhang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
8
|
Chap BS, Rayroux N, Grimm AJ, Ghisoni E, Dangaj Laniti D. Crosstalk of T cells within the ovarian cancer microenvironment. Trends Cancer 2024; 10:1116-1130. [PMID: 39341696 DOI: 10.1016/j.trecan.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvironments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked to enhanced immune responses and long-term survival. In this review we present emerging evidence suggesting that cellular crosstalk tightly regulates the distribution of TILs within the TME, underscoring the need to better understand key cellular networks that promote or impede T cell infiltration in OC. We also capture the emergent methodologies and computational techniques that enable the dissection of cell-cell crosstalk. Finally, we present innovative ex vivo TME models that can be leveraged to map and perturb cellular communications to enhance T cell infiltration and immune reactivity.
Collapse
Affiliation(s)
- Bovannak S Chap
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicolas Rayroux
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
9
|
Gronauer R, Madersbacher L, Monfort-Lanzas P, Floriani G, Sprung S, Zeimet AG, Marth C, Fiegl H, Hackl H. Integrated immunogenomic analyses of high-grade serous ovarian cancer reveal vulnerability to combination immunotherapy. Front Immunol 2024; 15:1489235. [PMID: 39669575 PMCID: PMC11634877 DOI: 10.3389/fimmu.2024.1489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background The efficacy of immunotherapies in high-grade serous ovarian cancer (HGSOC) is limited, but clinical trials investigating the potential of combination immunotherapy including poly-ADP-ribose polymerase inhibitors (PARPis) are ongoing. Homologous recombination repair deficiency or BRCAness and the composition of the tumor microenvironment appear to play a critical role in determining the therapeutic response. Methods We conducted comprehensive immunogenomic analyses of HGSOC using data from several patient cohorts. Machine learning methods were used to develop a classification model for BRCAness from gene expression data. Integrated analysis of bulk and single-cell RNA sequencing data was used to delineate the tumor immune microenvironment and was validated by immunohistochemistry. The impact of PARPi and BRCA1 mutations on the activation of immune-related pathways was studied using ovarian cancer cell lines, RNA sequencing, and immunofluorescence analysis. Results We identified a 24-gene signature that predicts BRCAness. Comprehensive immunogenomic analyses across patient cohorts identified samples with BRCAness and high immune infiltration. Further characterization of these samples revealed increased infiltration of immunosuppressive cells, including tumor-associated macrophages expressing TREM2, C1QA, and LILRB4, as specified by single-cell RNA sequencing data and gene expression analysis of samples from patients receiving combination therapy with PARPi and anti-PD-1. Our findings show also that genomic instability and PARPi activated the cGAS-STING signaling pathway in vitro and the downstream innate immune response in a similar manner to HGSOC patients with BRCAness status. Finally, we have developed a web application (https://ovrseq.icbi.at) and an associated R package OvRSeq, which allow for comprehensive characterization of ovarian cancer patient samples and assessment of a vulnerability score that enables stratification of patients to predict response to the combination immunotherapy. Conclusions Genomic instability in HGSOC affects the tumor immune environment, and TAMs play a crucial role in modulating the immune response. Based on various datasets, we have developed a diagnostic application that uses RNA sequencing data not only to comprehensively characterize HGSOC but also to predict vulnerability and response to combination immunotherapy.
Collapse
Affiliation(s)
- Raphael Gronauer
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonie Madersbacher
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Floriani
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Sprung
- Institute of Pathology, Innpath GmbH, Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
11
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Xie X, Chen C, Wang C, Guo Y, Sun B, Tian J, Yan J, Li D, Chen G. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol 2024; 76:103350. [PMID: 39265497 PMCID: PMC11415882 DOI: 10.1016/j.redox.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024] Open
Abstract
BRCA1 is one of the most frequently-mutated tumor suppressor genes in ovarian and breast cancers. Loss of BRCA1 triggers homologous recombination (HR) repair deficiency, consequently leading to genomic instability and PARP inhibitors (PARPi)-associated synthetic lethality. Although, the roles of BRCA1 in DNA repair and replication have been extensively investigated, its tumor suppressive functions beyond genome safeguard remain poorly understood. Here, we report that BRCA1 promotes ferroptosis susceptibility through catalyzing K6-linked polyubiquitination of GPX4 and subsequently accelerating GPX4 degradation. Depletion of BRCA1 induces ferroptosis resistance in ovarian cancer cells due to elevated GPX4 protein, and silence of GPX4 significantly suppresses the growth of BRCA1-deficient ovarian cancer xenografts. Importantly, we found that PARPi triggers ferroptosis in ovarian cancer cells, inhibition of GPX4 markedly increase PARPi-induced ferroptosis in BRCA1-deficient ovarian cancer cells. Combined treatment of GPX4 inhibitor and PARPi produces synergistic anti-tumor efficacy in BRCA1-deficient ovarian cancer cells, patient derived organoid (PDO) and xenografts. Thus, our study uncovers a novel mechanism via which BRCA1 exerts tumor suppressive function through regulating ferroptosis, and demonstrates the potential of GPX4 as a therapeutic target for BRCA1-mutant cancers.
Collapse
Affiliation(s)
- Xuexia Xie
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Congcong Chen
- Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Dake Li
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Madaan V, Kollara A, Spaner D, Brown TJ. ISGylation enhances dsRNA-induced interferon response and NFκB signaling in fallopian tube epithelial cells. J Biol Chem 2024; 300:107686. [PMID: 39159817 PMCID: PMC11418117 DOI: 10.1016/j.jbc.2024.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Heritable mutations in BRCA1 associate with increased risk of high-grade serous tubo-ovarian cancer. Nongenetic risk factors associated with this cancer, which arises from fallopian tube epithelial (FTE) cells, suggests a role for repetitive ovulation wherein FTE cells are exposed to inflammatory signaling molecules within follicular fluid. We previously reported increased NFκB and EGFR signaling in BRCA1-deficient primary FTE cells, with follicular fluid exposure further increasing abundance of interferon-stimulated gene (ISG) transcripts, including the ubiquitin-like protein ISG15 and other ISGylation pathway members. Both NFκB and type I interferon signaling are upregulated by stimulation of cGAS-STING or MDA5 and RIGI pattern recognition receptors. Since some pattern recognition receptors and their signal transduction pathway members are ISGylated, we tested the impact of ISG15 and ISGylation on interferon regulatory factor 3 (IRF3) and NFκB signaling through cGAS-STING or RIGI and MDA5 activation. Expression of ISG15 or UBA7, the E1-like ISG15-activating enzyme, in immortalized FTE cells was disrupted by CRISPR gene editing. Activation of IRF3 by RIGI or MDA5 but not cGAS-STING was attenuated by loss of either ISG15 or UBA7 and this was reflected by a similar effect on NFκB activation and downstream targets. Loss of ISGylation decreased levels of both MDA5 and RIGI, with knockdown of RIGI but not MDA5, decreasing IRF3 and NFκB activation in parental cells. These finding indicate that ISGylation enhances the ability of dsRNA to activate cytokine release and proinflammatory signaling. Further work to explore ISGylation as a target for prevention of high-grade serous tubo-ovarian cancer in BRCA1 mutation carriers is warranted.
Collapse
Affiliation(s)
- Vidushi Madaan
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Kollara
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - David Spaner
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Mohamed NE, Abdel Fattah NF, Seadawy MG, Lymona AM, Nasr SS, El Leithy AA, Abdelwahed FM, Nassar A. The clinical importance of IFN-γ and human epididymis protein 4 in Egyptian patients with epithelial ovarian cancer combined with HPV infection. Hum Immunol 2024; 85:111089. [PMID: 39173571 DOI: 10.1016/j.humimm.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND High-grade Epithelial Ovarian Cancer (HGEOC) is an aggressive disease that usually presents at an advanced stage. Thus, detecting the circulating cytokines (IFNγ and TNF-α) may serve as a biomarker to identify malignancy and manage therapeutic decisions. OBJECTIVES Assessing the clinical importance of inflammatory mediators and tumor markers in EOC Egyptian patients compared with benign cases. Moreover, identifying the distinct inflammatory mediators in EOC patients combined with HPV infection. METHODS This study was conducted on 61 Egyptian patients, divided into 25 patients with HGEOC, 22 patients with LGEOC, and 14 benign ovarian tumor cases. Measurements of serum HE4, CA125, CEA, and CA19-9 were determined by Roche Elecsys immunoassays. Serum levels of TNF-α and IFN-γ were measured using quantitative sandwich ELISA. Quantitative genotyping of HPV DNA types 16, 18, and 45 was assessed for the HPV DNA-positive samples. RESULTS HPV DNA was detected in 25.53 % of malignant cases, HPV 16 was detected in 50 % of HPV-positive cases, and only 1 case of HPV 18 was detected out of 12 positive cases. The Human Epididymis protein 4 (HE4) was statistically different between patients with EOC and benign cases (p-value = 0.007) and between HPV DNA positive and HPV DNA negative cases (p-value = 0.008). The serum levels of IFN- γ were statistically different between HGEOC and LGEOC (p-value < 0.001), while the serum levels of TNF-α didn't differ statistically between the two groups. CONCLUSION IFN-γ could be used as a biomarker to discriminate HGEOC and LGEOC. Initial evidence for the possible association between HE4 and the progression of HPV-associated EOC was speculated.
Collapse
Affiliation(s)
- Nourhan E Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nasra F Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| | - Ahmed M Lymona
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sarah S Nasr
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Fatma M Abdelwahed
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Auhood Nassar
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
16
|
Wang B, Zhang F, Wu X, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Front Immunol 2024; 15:1433321. [PMID: 39161768 PMCID: PMC11330819 DOI: 10.3389/fimmu.2024.1433321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
TANK-binding kinase 1 (TBK1) is a member of the IKK family and plays a crucial role in the activation of non-canonical NF-κB signaling and type I interferon responses. The aberrant activation of TBK1 contributes to the proliferation and survival of various types of tumor cells, particularly in specific mutational or tumorous contexts. Inhibitors targeting TBK1 are under development and application in both in vivo and in vitro settings, yet their clinical efficacy remains limited. Numerous literatures have shown that TBK1 can exhibit both tumor promoting and tumor inhibiting effects. TBK1 acts as a pivotal node within the innate immune pathway, mediating anti-tumor immunity through the activation of innate immune responses. Facilitating interferon-I (IFN-I) production represents a critical mechanism through which TBK1 bridges these processes. IFN has been shown to exert both beneficial and detrimental effects on tumor progression. Hence, the paradoxical role of TBK1 in tumor development may necessitate acknowledgment in light of its downstream IFN-I signaling cascade. In this paper, we review the signaling pathways mediated by TBK1 in various tumor contexts and summarize the dual roles of TBK1 and the TBK1-IFN pathways in both promoting and inhibiting tumor progression. Additionally, we highlight the significance of the TBK1-IFN pathway in clinical therapy, particularly in the context of immune response. We anticipate further advancements in the development of TBK1 inhibitors as part of novel cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
17
|
Çallıoğlu N, Gül DK, Arslan İÖ, Geyikoğlu İ, Demirçivi E. Inflammatory markers in systemic immune-inflammatory index and inflammatory response index to predict early pregnancy loss. Saudi Med J 2024; 45:808-813. [PMID: 39074885 PMCID: PMC11288500 DOI: 10.15537/smj.2024.45.8.20240404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To uncover the predictive value of systemic immune-inflammatory index (SII) and systemic inflammatory response index (SIRI) on early pregnancy loss. METHODS A total of 535 individuals were enrolled in this retrospective analysis. The early pregnancy losses (EPL) group included patients between 18-35 years old who experienced EPL. The control group comprised healthy pregnant women who gave birth at ≥37 weeks. RESULTS The EPL group had significantly lower plateletcrit (p=0.04), platelet distribution width (PDW, p<0.0001), and RDW (p<0.0001) and higher monocyte (p<0.0001) and SIRI (p<0.0001) values than the control group. The hemoglobin, white blood cells, platelet count, neutrophil count, lymphocyte count, mean platelet volume, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and SII values were not significantly different between the EPL and control groups (p>0.05). The cut-off value for the SIRI that offers the best sensitivity/specificity balance was 1.48 (sensitivity of 63%; specificity of 63%) in the receiver operating characteristics curve. Among the inflammatory parameters for predicting EPL, PDW had highest specificity (84%), and RDW had the highest sensitivity (80%). CONCLUSION This study provides compelling evidence that various inflammatory pathways may significantly contribute to EPL pathogenesis. Moreover, our findings suggest that SIRI could be a more effective marker than NLR, PLR, MLR, and SII in predicting EPL in an ongoing pregnancy, thereby potentially revolutionizing early pregnancy loss diagnostics.
Collapse
Affiliation(s)
- Nihal Çallıoğlu
- From the Department of Perinatology (Çallıoğlu); from the Department of Obstetrics and Gynecology (Geyikoğlu), Başakşehir Çam and Sakura City Hospital, from the Department of Obstetrics and Gynecology (Gül), Medipol University School of Medicine Health, from the Department of Obstetrıc and Gynecology (Demirçivi), Clinic of Obstetrics and Gynecology, Istanbul Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, and from the Department of Obstetrics and Gynecology (Arslan), Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Derya K. Gül
- From the Department of Perinatology (Çallıoğlu); from the Department of Obstetrics and Gynecology (Geyikoğlu), Başakşehir Çam and Sakura City Hospital, from the Department of Obstetrics and Gynecology (Gül), Medipol University School of Medicine Health, from the Department of Obstetrıc and Gynecology (Demirçivi), Clinic of Obstetrics and Gynecology, Istanbul Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, and from the Department of Obstetrics and Gynecology (Arslan), Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - İlke Ö. Arslan
- From the Department of Perinatology (Çallıoğlu); from the Department of Obstetrics and Gynecology (Geyikoğlu), Başakşehir Çam and Sakura City Hospital, from the Department of Obstetrics and Gynecology (Gül), Medipol University School of Medicine Health, from the Department of Obstetrıc and Gynecology (Demirçivi), Clinic of Obstetrics and Gynecology, Istanbul Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, and from the Department of Obstetrics and Gynecology (Arslan), Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - İpek Geyikoğlu
- From the Department of Perinatology (Çallıoğlu); from the Department of Obstetrics and Gynecology (Geyikoğlu), Başakşehir Çam and Sakura City Hospital, from the Department of Obstetrics and Gynecology (Gül), Medipol University School of Medicine Health, from the Department of Obstetrıc and Gynecology (Demirçivi), Clinic of Obstetrics and Gynecology, Istanbul Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, and from the Department of Obstetrics and Gynecology (Arslan), Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Ergül Demirçivi
- From the Department of Perinatology (Çallıoğlu); from the Department of Obstetrics and Gynecology (Geyikoğlu), Başakşehir Çam and Sakura City Hospital, from the Department of Obstetrics and Gynecology (Gül), Medipol University School of Medicine Health, from the Department of Obstetrıc and Gynecology (Demirçivi), Clinic of Obstetrics and Gynecology, Istanbul Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, and from the Department of Obstetrics and Gynecology (Arslan), Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| |
Collapse
|
18
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Xu H, Gitto SB, Ho GY, Medvedev S, Shield-Artin K, Kim H, Beard S, Kinose Y, Wang X, Barker HE, Ratnayake G, Hwang WT, Hansen RJ, Strouse B, Milutinovic S, Hassig C, Wakefield MJ, Vandenberg CJ, Scott CL, Simpkins F. CHK1 inhibitor SRA737 is active in PARP inhibitor resistant and CCNE1 amplified ovarian cancer. iScience 2024; 27:109978. [PMID: 39021796 PMCID: PMC11253285 DOI: 10.1016/j.isci.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 07/20/2024] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) with homologous recombination deficiency (HRD) are initially responsive to poly (ADP-ribose) polymerase inhibitors (PARPi), but resistance ultimately emerges. HGSOC with CCNE1 amplification (CCNE1 amp) are associated with resistance to PARPi and platinum treatments. High replication stress in HRD and CCNE1 amp HGSOC leads to increased reliance on checkpoint kinase 1 (CHK1), a key regulator of cell cycle progression and the replication stress response. Here, we investigated the anti-tumor activity of the potent, highly selective, orally bioavailable CHK1 inhibitor (CHK1i), SRA737, in both acquired PARPi-resistant BRCA1/2 mutant and CCNE1 amp HGSOC models. We demonstrated that SRA737 increased replication stress and induced subsequent cell death in vitro. SRA737 monotherapy in vivo prolonged survival in CCNE1 amp models, suggesting a potential biomarker for CHK1i therapy. Combination SRA737 and PARPi therapy increased tumor regression in both PARPi-resistant and CCNE1 amp patient-derived xenograft models, warranting further study in these HGSOC subgroups.
Collapse
Affiliation(s)
- Haineng Xu
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah B. Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gwo-Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sergey Medvedev
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hyoung Kim
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sally Beard
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Yasuto Kinose
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaolei Wang
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Australian Ovarian Cancer Study
- Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Ryan J. Hansen
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Bryan Strouse
- Sierra Oncology, Inc, 885 West Georgia Street, Suite 2150, Vancouver, BC V6C 3E8, Canada
| | - Snezana Milutinovic
- Sierra Oncology, Inc, 885 West Georgia Street, Suite 2150, Vancouver, BC V6C 3E8, Canada
| | - Christian Hassig
- Sierra Oncology, Inc, 885 West Georgia Street, Suite 2150, Vancouver, BC V6C 3E8, Canada
| | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
- Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Zhang LL, Du MY, Du X, Duan J, Yao DM, Jing J, Feng C, Song L. Correlation analysis of human papillomavirus E6/E7 mRNA detection with diagnosis, prognosis and recurrence risk in patients with cervical epithelioma. World J Clin Cases 2024; 12:4146-4153. [PMID: 39015927 PMCID: PMC11235549 DOI: 10.12998/wjcc.v12.i20.4146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Cervical intraepithelial neoplasia (CIN) is an important precursor of cervical cancer. Early detection and treatment can reduce the incidence of cervical cancer. AIM To investigate the detection rate of human papillomavirus (HPV) E6/E7 mRNA in cervical tissue of patients with different types of epithelial cell neoplasia (CIN) and its relationship with CIN progression and diagnosis. METHODS One hundred women with HPV infection detected by cervical exfoliation cytology between January 2022 and January 2023 were retrospectively selected. These patients were graded CIN based on colposcopy and cervical pathology. The positive expression rates of HPV E6/E7 mRNA and HPV [polymerase chain reaction (PCR)-reverse dot crossing] were compared among all groups. Patients with HPV E6/E7 mRNA expression in the grade 1 CIN group were followed up for 1 yr. The relationship between atypical squamous epithelium and high malignant epithelial neoplasia was investigated by univariate and multivariate analysis. RESULTS The diagnostic sensitivity, specificity, and sensitivity of PCR-reverse point hybridization technology for secondary CIN were 70.41%, 70.66%, and 0.714, respectively. Sensitivity and specificity for secondary CIN were 752% and 7853%, respectively, the area under the curve value was 0.789. Logistic Multifactorial model analysis revealed that the HPV positive rates and the HPV E6/E7 mRNA positive rates were independent risk factors of CIN grade I (P < 0.05). In CIN grade I patients with positive for HPV E6/E7 mRNA, in its orientation to grade CIN patients, in its orientation to grade CIN patients, at 69.2%, compared with patients negative for HPV E6/E7 mRNA (30.8%), significant difference (P < 0.05). CONCLUSION HPV E6/E7 mRNA and HPV (PCR-reverse dot hybrid) positive expression have a close relationship with CIN-grade disease progression and is an independent risk factor for high-grade CIN lesions.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Ming-Yan Du
- Department of Gynaecology, China Resources WISCO General Hospital, Wuhan 430080, Hubei Province, China
| | - Xin Du
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Jie Duan
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Dong-Mei Yao
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Jing Jing
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Chun Feng
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Lin Song
- Department of Surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| |
Collapse
|
21
|
Wang Z, Li A, Lu Y, Han M, Ruan M, Wang C, Zhang X, Zhu C, Shen K, Dong L, Chen X. Association of tumor immune infiltration and prognosis with homologous recombination repair genes mutations in early triple-negative breast cancer. Front Immunol 2024; 15:1407837. [PMID: 39026672 PMCID: PMC11254810 DOI: 10.3389/fimmu.2024.1407837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
The aim of this study was to evaluate the mutation spectrum of homologous recombination repair (HRR) genes and its association with tumor immune infiltration and prognosis in triple-negative breast cancer (TNBC). TNBC patients (434 patients from Ruijin cohort) were evaluated with targeted next-generating sequencing for mutations in HRR genes. The frequencies of mutations were compared with public reference cohorts (320 TNBC patients from METABRIC, 105 from TCGA, and 225 from MSKCC 2018). Associations between mutation status and tumor immune infiltration and prognosis were analyzed. HRR genes mutations were seen in 21.89% patients, with BRCA1/2 mutations significantly enriched in tumors with breast/ovarian cancer family history (P = 0.025) and high Ki-67 levels (P = 0.018). HRR genes mutations were not related with recurrence-free survival (RFS) (adjusted P = 0.070) and overall survival (OS) (adjusted P = 0.318) for TNBC patients, regardless of carboplatin treatment (P > 0.05). Moreover, tumor immune infiltration and PD-L1 expression was positively associated with HRR or BRCA1/2 mutation (all P < 0.001). Patients with both HRR mutation and high CD8+ T cell counts had the best RFS and OS, whereas patients with no HRR mutation and low CD8+ T cell counts had the worst outcomes (RFS P < 0.001, OS P = 0.019). High frequency of HRR gene mutations was found in early TNBC, with no prognostic significance. Immune infiltration and PD-L1 expression was positively associated with HRR mutation, and both HRR mutation and high CD8+ T cell infiltration levels were associated with superior disease outcome.
Collapse
Affiliation(s)
- Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Lu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Han
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Ruan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotian Zhang
- Department of Translational Oncology, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Changbin Zhu
- Department of Translational Oncology, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
23
|
Xia Y, Li X, Bie N, Pan W, Miao YR, Yang M, Gao Y, Chen C, Liu H, Gan L, Guo AY. A method for predicting drugs that can boost the efficacy of immune checkpoint blockade. Nat Immunol 2024; 25:659-670. [PMID: 38499799 DOI: 10.1038/s41590-024-01789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Combination therapy is a promising therapeutic strategy to enhance the efficacy of immune checkpoint blockade (ICB); however, predicting drugs for effective combination is challenging. Here we developed a general data-driven method called CM-Drug for screening compounds that can boost ICB treatment efficacy based on core and minor gene sets identified between responsive and nonresponsive samples in ICB therapy. The CM-Drug method was validated using melanoma and lung cancer mouse models, with combined therapeutic efficacy demonstrated in eight of nine predicted compounds. Among these compounds, taltirelin had the strongest synergistic effect. Mechanistic analysis and experimental verification demonstrated that taltirelin can stimulate CD8+ T cells and is mediated by the induction of thyroid-stimulating hormone. This study provides an effective and general method for predicting and evaluating drugs for combination therapy and identifies candidate compounds for future ICB combination therapy.
Collapse
Affiliation(s)
- Yun Xia
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Pan
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ru Miao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Yang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Gao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanqing Liu
- Department of Breast and Thyroid Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Uekusa R, Yokoi A, Watanabe E, Yoshida K, Yoshihara M, Tamauchi S, Shimizu Y, Ikeda Y, Yoshikawa N, Niimi K, Suzuki S, Kajiyama H. Real-world data of poly (ADP-ribose) polymerase inhibitor response in Japanese patients with ovarian cancer. Cancer Med 2024; 13:e7149. [PMID: 38572951 PMCID: PMC10993710 DOI: 10.1002/cam4.7149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP) inhibitors have been increasingly used in the treatment of ovarian cancer, with BRCA positivity and homologous recombination deficiency (HRD) being common biomarkers used for predicting their efficacy. However, given the limitations of these biomarkers, new ones need to be explored. METHODS This retrospective study included 181 ovarian cancer patients who received olaparib or niraparib at two independent hospitals in Japan between May 2018 and December 2022. Clinical information and blood sampling data were collected. Patient characteristics, treatment history, and predictability of treatment duration based on blood data before treatment initiation were examined. RESULTS High-grade serous carcinoma, BRCA positivity, HRD, and maintenance therapy after recurrence treatment were observed more frequently in the olaparib group than in the niraparib group. The most common reasons for treatment interruption were anemia, fatigue, and nausea in the olaparib group and thrombocytopenia in the niraparib group. Regarding response to olaparib treatment, complete response to the most recent treatment, maintenance therapy after the first chemotherapy, high-grade serous carcinoma, and germline BRCA positivity were observed significantly more frequently among responders than among non-responders. Furthermore, neutrophil counts were significantly higher among responders than among non-responders. CONCLUSIONS Inflammation-related blood data, such as neutrophil count, obtained at the initial pre-treatment visit might serve as potential predictors for prolonged olaparib treatment. While this study offers valuable insights into potential indicators for prolonged olaparib treatment, it underscores the need for more expansive research to strengthen our understanding of PARP inhibitors and optimize treatment strategies in ovarian cancer.
Collapse
Affiliation(s)
- Ryosuke Uekusa
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Akira Yokoi
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
| | - Eri Watanabe
- Department of Gynecologic OncologyAichi Cancer Center HospitalNagoyaJapan
| | - Kosuke Yoshida
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
| | - Masato Yoshihara
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Satoshi Tamauchi
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Shimizu
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshiki Ikeda
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kaoru Niimi
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shiro Suzuki
- Department of Gynecologic OncologyAichi Cancer Center HospitalNagoyaJapan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
25
|
Mavroeidi D, Georganta A, Panagiotou E, Syrigos K, Souliotis VL. Targeting ATR Pathway in Solid Tumors: Evidence of Improving Therapeutic Outcomes. Int J Mol Sci 2024; 25:2767. [PMID: 38474014 DOI: 10.3390/ijms25052767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Emmanouil Panagiotou
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantinos Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| |
Collapse
|
26
|
Barras D, Ghisoni E, Chiffelle J, Orcurto A, Dagher J, Fahr N, Benedetti F, Crespo I, Grimm AJ, Morotti M, Zimmermann S, Duran R, Imbimbo M, de Olza MO, Navarro B, Homicsko K, Bobisse S, Labes D, Tsourti Z, Andriakopoulou C, Herrera F, Pétremand R, Dummer R, Berthod G, Kraemer AI, Huber F, Thevenet J, Bassani-Sternberg M, Schaefer N, Prior JO, Matter M, Aedo V, Dromain C, Corria-Osorio J, Tissot S, Kandalaft LE, Gottardo R, Pittet M, Sempoux C, Michielin O, Dafni U, Trueb L, Harari A, Laniti DD, Coukos G. Response to tumor-infiltrating lymphocyte adoptive therapy is associated with preexisting CD8 + T-myeloid cell networks in melanoma. Sci Immunol 2024; 9:eadg7995. [PMID: 38306416 DOI: 10.1126/sciimmunol.adg7995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.
Collapse
Affiliation(s)
- David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Angela Orcurto
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Dagher
- Unit of Translational Oncopathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Stefan Zimmermann
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Martina Imbimbo
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Maria Ochoa de Olza
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Navarro
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Krisztian Homicsko
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Danny Labes
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Zoe Tsourti
- Scientific Research Consulting Hellas, Athens, Greece
| | | | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Service of Radiation Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregoire Berthod
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anne I Kraemer
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Jonathan Thevenet
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Department of Oncology, Center of Experimental Therapeutics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Maurice Matter
- Department of Visceral Surgery, Lausanne University Hospital, and University of Lausanne, Lausannne, Switzerland
| | - Veronica Aedo
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Stéphanie Tissot
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Department of Oncology, Center of Experimental Therapeutics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Department of Oncology, Center of Experimental Therapeutics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Raphael Gottardo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Biomedical Data Science Center and Swiss Institute of Bioinformatics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikaël Pittet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christine Sempoux
- Unit of Translational Oncopathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Urania Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Lionel Trueb
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
27
|
Pinjusic K, Ambrosini G, Lourenco J, Fournier N, Iseli C, Guex N, Egorova O, Nassiri S, Constam DB. Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING. Front Immunol 2024; 14:1335207. [PMID: 38304252 PMCID: PMC10830842 DOI: 10.3389/fimmu.2023.1335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
The transforming growth factor-β (TGF-β) family member activin A (hereafter Activin-A) is overexpressed in many cancer types, often correlating with cancer-associated cachexia and poor prognosis. Activin-A secretion by melanoma cells indirectly impedes CD8+ T cell-mediated anti-tumor immunity and promotes resistance to immunotherapies, even though Activin-A can be proinflammatory in other contexts. To identify underlying mechanisms, we here analyzed the effect of Activin-A on syngeneic grafts of Braf mutant YUMM3.3 mouse melanoma cells and on their microenvironment using single-cell RNA sequencing. We found that the Activin-A-induced immune evasion was accompanied by a proinflammatory interferon signature across multiple cell types, and that the associated increase in tumor growth depended at least in part on pernicious STING activity within the melanoma cells. Besides corroborating a role for proinflammatory signals in facilitating immune evasion, our results suggest that STING holds considerable potential as a therapeutic target to mitigate tumor-promoting Activin-A signaling at least in melanoma.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Joao Lourenco
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Olga Egorova
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| | - Sina Nassiri
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| |
Collapse
|
28
|
Bhat-Nakshatri P, Khatpe AS, Chen D, Batic K, Mang H, Herodotou C, McGuire PC, Xuei X, Erdogan C, Gao H, Liu Y, Sandusky G, Storniolo AM, Nakshatri H. Signaling Pathway Alterations Driven by BRCA1 and BRCA2 Germline Mutations are Sufficient to Initiate Breast Tumorigenesis by the PIK3CAH1047R Oncogene. CANCER RESEARCH COMMUNICATIONS 2024; 4:38-54. [PMID: 38059556 PMCID: PMC10774565 DOI: 10.1158/2767-9764.crc-23-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Single-cell transcriptomics studies have begun to identify breast epithelial cell and stromal cell specific transcriptome differences between BRCA1/2 mutation carriers and non-carriers. We generated a single-cell transcriptome atlas of breast tissues from BRCA1, BRCA2 mutation carriers and compared this single-cell atlas of mutation carriers with our previously described single-cell breast atlas of healthy non-carriers. We observed that BRCA1 but not BRCA2 mutations altered the ratio between basal (basal-myoepithelial), luminal progenitor (luminal adaptive secretory precursor, LASP), and mature luminal (luminal hormone sensing) cells in breast tissues. A unique subcluster of cells within LASP cells is underrepresented in case of BRCA1 and BRCA2 mutation carriers compared with non-carriers. Both BRCA1 and BRCA2 mutations specifically altered transcriptomes in epithelial cells which are an integral part of NFκB, LARP1, and MYC signaling. Signaling pathway alterations in epithelial cells unique to BRCA1 mutations included STAT3, BRD4, SMARCA4, HIF2A/EPAS1, and Inhibin A signaling. BRCA2 mutations were associated with upregulation of IL6, PDK1, FOXO3, and TNFSF11 signaling. These signaling pathway alterations are sufficient to alter sensitivity of BRCA1/BRCA2-mutant breast epithelial cells to transformation as epithelial cells from BRCA1 mutation carriers overexpressing hTERT + PIK3CAH1047R generated adenocarcinomas, whereas similarly modified mutant BRCA2 cells generated basal carcinomas in NSG mice. Thus, our studies provide a high-resolution transcriptome atlas of breast epithelial cells of BRCA1 and BRCA2 mutation carriers and reveal their susceptibility to PIK3CA mutation-driven transformation. SIGNIFICANCE This study provides a single-cell atlas of breast tissues of BRCA1/2 mutation carriers and demonstrates that aberrant signaling due to BRCA1/2 mutations is sufficient to initiate breast cancer by mutant PIK3CA.
Collapse
Affiliation(s)
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Patrick C. McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cihat Erdogan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
29
|
Zhang J, Yu S, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0440. [PMID: 38172538 PMCID: PMC10875285 DOI: 10.20892/j.issn.2095-3941.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/β), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Peng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
30
|
Liang H, Yin G, Shi G, Liu Z, Liu X, Li J. Echinacoside regulates PI3K/AKT/HIF-1α/VEGF cross signaling axis in proliferation and apoptosis of breast cancer. Anal Biochem 2024; 684:115360. [PMID: 37865269 DOI: 10.1016/j.ab.2023.115360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
CONTEXT Echinacoside (ECH) is a natural anti-cancer compound and is of great value in cancer treatment. However, the mechanism underlying this effect on breast cancer (BC) was unclear. OBJECTIVE To explore the mechanism of ECH treating BC by network pharmacology and experimental validation. MATERIALS & METHODS Several databases were searched to screen potential targets of ECH and obtain information on targets related to BC. STRING was applied to construct a Protein-protein interaction (PPI) network. DAVID was applied for Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was searched for the relationship between the expression profile and overall survival of major targets in normal breast and BC tissues. Finally, the results of network pharmacology analysis were validated by experiments. RESULTS Seventeen targets of ECH overlapped with targets in BC. Ten hub targets were determined through PPI. By GO and KEGG analysis 15 entries and 25 pathways were obtained, in which phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) played greater roles. Validation of key targets in the GEPIA database showed that PIK3R1 and PIK3CD remained consistent with the results of the study. Experiments in vitro showed ECH inhibited proliferation, induced apoptosis and reduced mRNA levels and protein expression of PI3K, AKT, hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Furthermore, experiments in vivo revealed that ECH significantly reduced tumor growth, promoted apoptosis and decreased the related mRNA levels and protein expression, suggesting ECH works on BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. DISCUSSION & CONCLUSION In summary, ECH played an important role in anti-BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. Furthermore, ECH had multi-target and multi-pathway effects, which may be a promising natural compound for treating BC.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
32
|
Farokhi Boroujeni S, Rodriguez G, Galpin K, Yakubovich E, Murshed H, Ibrahim D, Asif S, Vanderhyden BC. BRCA1 and BRCA2 deficient tumour models generate distinct ovarian tumour microenvironments and differential responses to therapy. J Ovarian Res 2023; 16:231. [PMID: 38017453 PMCID: PMC10683289 DOI: 10.1186/s13048-023-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Clinical trials are currently exploring combinations of PARP inhibitors and immunotherapies for the treatment of ovarian cancer, but their effects on the ovarian tumour microenvironment (TME) remain unclear. Here, we investigate how olaparib, PD-L1 monoclonal antibodies, and their combination can influence TME composition and survival of tumour-bearing mice. We further explored how BRCA deficiencies can influence the response to therapy. Olaparib and combination therapies similarly improved the median survival of Brca1- and Brca2-deficient tumour-bearing mice. Anti-PD-L1 monotherapy improved the survival of mice with Brca1-null tumours, but not Brca2-null tumours. A detailed analysis of the TME revealed that olaparib monotherapy resulted in a large number of immunosuppressive and immunomodulatory effects in the more inflamed Brca1-deficient TME but not Brca2-deficient tumours. Anti-PD-L1 treatment was mostly immunosuppressive, resulting in a systemic reduction of cytokines and a compensatory increase in PD-L1 expression. The results of the combination therapy generally resembled the effects of one or both of the monotherapies, along with unique changes observed in certain immune populations. In-silico analysis of RNA-seq data also revealed numerous differences between Brca-deficient tumour models, such as the expression of genes involved in inflammation, angiogenesis and PD-L1 expression. In summary, these findings shed light on the influence of novel therapeutics and BRCA mutations on the ovarian TME.
Collapse
Affiliation(s)
- Salar Farokhi Boroujeni
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Kristianne Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Dalia Ibrahim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sara Asif
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
33
|
Yan M, Cao H, Tao K, Xiao B, Chu Y, Ma D, Huang X, Han Y, Ji T. HDACs alters negatively to the tumor immune microenvironment in gynecologic cancers. Gene 2023; 885:147704. [PMID: 37572797 DOI: 10.1016/j.gene.2023.147704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The role of histone deacetylases (HDACs) in the tumor immune microenvironment of gynecologic tumors remains unexplored. We integrated data from The Cancer Genome Atlas and Human Protein Atlas to examine HDAC expression in breast, cervical, ovarian, and endometrial cancers. Elevated HDAC expression correlated with poor prognosis and highly malignant cancer subtypes. Gene Set Enrichment Analysis revealed positive associations between HDAC expression and tumor proliferation signature, while negative associations were found with tumor inflammation signature. Increased HDAC expression was linked to reduced infiltration of natural killer (NK), NKT, and CD8+ T cells, along with negative associations with the expression of PSMB10, NKG7, CCL5, CD27, HLA-DQA1, and HLA-DQB1. In a murine 4T1 breast cancer model, treatment with suberoylanilide hydroxamic acid (SAHA; HDAC inhibitor) and PD-1 antibody significantly inhibited tumor growth and infiltration of CD3+ and CD8+ T cells. Real-time polymerase chain reaction revealed upregulated expressions of Psmb10, Nkg7, Ccl5, Cd8a, Cxcr6, and Cxcl9 genes, while Ctnnb1 and Myc genes were inhibited, indicating tumor suppression and immune microenvironment activation. Our study revealed that HDACs play tumor-promoting and immunosuppressive roles in gynecologic cancers, suggesting HDAC inhibitors as potential therapeutic agents for these cancers.
Collapse
Affiliation(s)
- Miao Yan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Cao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangjia Tao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Chu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Ji
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Sahnane N, Libera L, Facchi S, Carnevali I, Ronchi S, Albeni C, Cromi A, Casarin J, Sessa F, Tibiletti MG. Similarities and differences in gene expression profiles of BRCA1 methylated and mutated epithelial ovarian cancers. Front Oncol 2023; 13:1268127. [PMID: 37854675 PMCID: PMC10579792 DOI: 10.3389/fonc.2023.1268127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction BRCA1 methylated (BRCA1met) epithelial ovarian cancer (EOC) is a recently defined and not well-investigated subset of neoplasms. To date, no studies have focused on the transcriptional profiles of BRCA1met cases, and, as a matter of fact, we still do not know if this subset of EOCs is similar, and to what extent, to BRCA1 mutated (BRCA1mut) cases. Methods We compared a group of 17 BRCA1met cases against 10 BRCA1mut cases using a subset of carefully selected 17 BRCAwt EOCs as a control group. Results First, BRCA1met cases showed a downregulation of the relative transcript, while this association was not observed for BRCA1mut EOCs. The BRCA1met group exhibited a general upregulation of homologous recombination (HR)-related genes, as well as BRCA1mut. Overall, BRCA1met had a different gene expression profile, characterized by diffuse downregulation, whereas BRCA1mut showed a general upregulation (p < 0.0001). Both BRCA1-defective groups showed a slightly activated immune response mediated by interferon (IFN) gamma pathways. Discussion In conclusion, even if the expression profile of many genes related to DNA damage and repair system is shared between BRCA1mut and BRCA1met EOCs supporting that BRCA1met EOCs may benefit from PARPi therapies, our data demonstrate that BRCA1mut and BRCA1met EOCs show different expression profiles, suggesting a different mechanism of carcinogenesis that can be reflected in different responses to therapies and disease recovery.
Collapse
Affiliation(s)
- Nora Sahnane
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Laura Libera
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sofia Facchi
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Susanna Ronchi
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Chiara Albeni
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
| | - Antonella Cromi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Jvan Casarin
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria Grazia Tibiletti
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| |
Collapse
|
35
|
Yndestad S, Engebrethsen C, Herencia-Ropero A, Nikolaienko O, Vintermyr OK, Lillestøl RK, Minsaas L, Leirvaag B, Iversen GT, Gilje B, Blix ES, Espelid H, Lundgren S, Geisler J, Aase HS, Aas T, Gudlaugsson EG, Llop-Guevara A, Serra V, Janssen EAM, Lønning PE, Knappskog S, Eikesdal HP. Homologous Recombination Deficiency Across Subtypes of Primary Breast Cancer. JCO Precis Oncol 2023; 7:e2300338. [PMID: 38039432 DOI: 10.1200/po.23.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 12/03/2023] Open
Abstract
PURPOSE Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. METHODS HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. RESULTS HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P < .001). CONCLUSION The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christina Engebrethsen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Oleksii Nikolaienko
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Reidun K Lillestøl
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Minsaas
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Beryl Leirvaag
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gjertrud T Iversen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Egil S Blix
- Immunology Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Helge Espelid
- Department of Surgery, Haugesund Hospital, Haugesund, Norway
| | - Steinar Lundgren
- Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hildegunn S Aase
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, Stavanger University, Stavanger, Norway
| | - Per E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans P Eikesdal
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Deceased
| |
Collapse
|
36
|
Shi A, Zhao L, Sheng G, Zhang G, Tang Y, Li K, Zhang Z. SMAD4 regulates the progression of cholangiocarcinoma by modulating the expression of STING1. J Cell Mol Med 2023; 27:2547-2561. [PMID: 37488750 PMCID: PMC10468663 DOI: 10.1111/jcmm.17857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
SMAD4 is a tumour suppressor and an important regulator of tumour immune scape which is downregulated in cholangiocarcinoma (CCA). STING1 is a vital sensing factor of abnormal DNA; however, the correlation between SMAD4 and STING1 and the role of the SMAD4-STING1 interaction in the progression of CCA have not yet been evaluated. Public database was analysed to reveal the expression of SMAD4 and STING1. A cohort comprising 50 iCCA, 113 pCCA and 119 dCCA patients was assembled for the study. Immunohistochemistry was employed to evaluate the expression levels of STING1 and SMAD4. In vitro transwell and CCK8 assays, along with luciferase reporter assay, were conducted to analyse the potential regulatory mechanisms of SMAD4 on the expression of STING1. Expression of SMAD4 and STING1 were downregulated in CCA tumours and STING1 expression correlated with SMAD4 expression. The overexpression of SMAD4 was found to suppress the migration, invasion and proliferation capabilities of CCA cells; whereas, the knockdown of SMAD4 enhanced these abilities. Furthermore, it was observed that SMAD4 translocated into the nucleus following TGF-β1 stimulation. Knockdown of SMAD4 resulted in the inhibition of STING1 transcriptional activity, whereas the overexpression of SMAD4 promoted the transcriptional activity of STING1. Clinically, low STING1 and SMAD4 expression indicated poor prognosis in CCA, and simultaneously low expression of STING1 and SMAD4 predicts poorer patient survival. SMAD4 regulates the expression of STING1 through its transcription regulating function. Dual low expression of STING1 and SMAD4 had more power in predicting patient survival. These results indicate that SMAD4-silenced CCA may downregulate its STING1 expression to adapt to the immune system.
Collapse
Affiliation(s)
- An‐da Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Li‐ming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Guo‐li Sheng
- Department of General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Ge‐ning Zhang
- Master of Public HealthThe University of QueenslandBrisbaneQueenslandAustralia
| | - Yong‐chang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Kang‐shuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zong‐li Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
37
|
Fan X, Song X, Chen W, Liang H, Nakatsukasa H, Zhang D. cGAS‐STING signaling in cancer: Regulation and therapeutic targeting. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy has revolutionized antitumor therapy. Since the discovery of stimulators of interferon genes (STING), efforts have been made to elucidate their mechanisms and physiological functions and explore the potential of STING as a therapeutic target in immune‐related diseases and malignant tumors. In recent years, STING agonists have become a popular research topic. Activation of the cyclic GMP–AMP synthase (cGAS)‐STING pathway produces large amounts of type I interferons, which play key roles in activating innate and acquired immune responses. The cGAS‐STING pathway influences almost all aspects of tumorigenesis and has great antitumor potential. In addition, the activation of the cGAS‐STING pathway is associated with tumor regression, prolonged survival of patients with cancer, and enhanced immunotherapy. Given the positive role of STING in antitumor immunity, the development of STING‐targeted drugs is important. In this review, we summarize the activation and potential mechanisms of the cGAS‐STING pathway, discuss the association of the cGAS‐STING pathway with tumors and autoimmune diseases, and highlight research progress, clinical applications, and combination drug strategies for STING agonists.
Collapse
Affiliation(s)
- Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Hiroko Nakatsukasa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences Chiba University Chiba Japan
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
38
|
Xu C, Mi Z, Dong Z, Chen X, Ji G, Kang H, Li K, Zhao B, Wang F. Platelet-Derived Exosomes Alleviate Knee Osteoarthritis by Attenuating Cartilage Degeneration and Subchondral Bone Loss. Am J Sports Med 2023; 51:2975-2985. [PMID: 37551685 DOI: 10.1177/03635465231188122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. However, current treatments for OA are limited to alleviating symptoms, with no therapies that prevent and regenerate cartilage deterioration. PURPOSE To assess the effects of platelet-derived exosomes (Plt-exos) on OA and then to explore the potential molecular mechanism. STUDY DESIGN Controlled laboratory study. METHODS Exosomes derived from human apheresis platelets were isolated and identified. The effects of Plt-exos in protecting chondrocytes under interleukin 1β stimulation were evaluated by analyzing the proliferation and migration in human primary chondrocytes. RNA sequencing was later performed in vitro for primary chondrocytes to reveal the underlying mechanisms of Plt-exo treatment. Anterior cruciate ligament transection was used to construct an OA mice model, and intra-articular injection of Plt-exos was given once a week for 6 weeks. Mice were sacrificed 4 weeks after the last injection. Histologic and immunohistochemistry staining and micro-computed tomography analysis were performed to assess alterations of articular cartilage and subchondral bone. RESULTS Plt-exos significantly promoted proliferation and migration of chondrocytes within a dose-dependent manner, as well as dramatically promoted cartilage regeneration and attenuated abnormal tibial subchondral bone remodeling, thus slowing the progression of OA. After being treated with Plt-exos, 1797 genes were differentially expressed in chondrocytes (923 upregulated and 874 downregulated genes). Functional enrichment results and hub genes were mainly involved in anti-inflammatory effects, mediating cell adhesion, stimulating cartilage repair, promoting anabolism, and inhibiting catabolism. CONCLUSION Our results demonstrated that Plt-exos promoted chondrocyte proliferation and migration in vitro, as well as attenuated cartilage degeneration, improved the microarchitecture of subchondral bone, and retarded OA progression in vivo. CLINICAL RELEVANCE Our study illustrated that the administered Plt-exos could alleviate knee OA by attenuating cartilage degeneration and subchondral bone loss, possibly serving as a novel promising treatment for OA in the future.
Collapse
Affiliation(s)
- Chenyue Xu
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Ziyue Mi
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Zhenyue Dong
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Xiaobo Chen
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Gang Ji
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Huijun Kang
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Kehan Li
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bo Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Wang
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
39
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
40
|
Smith P, Bradley T, Gavarró LM, Goranova T, Ennis DP, Mirza HB, De Silva D, Piskorz AM, Sauer CM, Al-Khalidi S, Funingana IG, Reinius MAV, Giannone G, Lewsley LA, Stobo J, McQueen J, Bryson G, Eldridge M, Macintyre G, Markowetz F, Brenton JD, McNeish IA. The copy number and mutational landscape of recurrent ovarian high-grade serous carcinoma. Nat Commun 2023; 14:4387. [PMID: 37474499 PMCID: PMC10359414 DOI: 10.1038/s41467-023-39867-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
The drivers of recurrence and resistance in ovarian high grade serous carcinoma remain unclear. We investigate the acquisition of resistance by collecting tumour biopsies from a cohort of 276 women with relapsed ovarian high grade serous carcinoma in the BriTROC-1 study. Panel sequencing shows close concordance between diagnosis and relapse, with only four discordant cases. There is also very strong concordance in copy number between diagnosis and relapse, with no significant difference in purity, ploidy or focal somatic copy number alterations, even when stratified by platinum sensitivity or prior chemotherapy lines. Copy number signatures are strongly correlated with immune cell infiltration, whilst diagnosis samples from patients with primary platinum resistance have increased rates of CCNE1 and KRAS amplification and copy number signature 1 exposure. Our data show that the ovarian high grade serous carcinoma genome is remarkably stable between diagnosis and relapse and acquired chemotherapy resistance does not select for common copy number drivers.
Collapse
Affiliation(s)
- Philip Smith
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Thomas Bradley
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Teodora Goranova
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Darren P Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hasan B Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Dilrini De Silva
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Anna M Piskorz
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carolin M Sauer
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Ionut-Gabriel Funingana
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marika A V Reinius
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gaia Giannone
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Liz-Anne Lewsley
- CRUK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jamie Stobo
- CRUK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John McQueen
- CRUK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Gareth Bryson
- Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Matthew Eldridge
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Geoff Macintyre
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | - James D Brenton
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Iain A McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
41
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
42
|
Ali AT, Al-ani O, Al-ani F. Epidemiology and risk factors for ovarian cancer. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2023; 22:93-104. [PMID: 37674925 PMCID: PMC10477765 DOI: 10.5114/pm.2023.128661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 09/08/2023]
Abstract
Ovarian cancer is a complex disease, mostly observed in postmenopausal women, and is associated with poor survival rates. It is the sixth most common cancer and the fifth most common cause of death due to cancer among women in developed countries. Thus, despite representing less than one third of all gynaecologic cancers, deaths due to ovarian cancer account for more than two thirds of deaths due to gynaecologic cancers. Its prevalence is higher in Western Europe and Northern America than Asia and Africa. In sub-Saharan Africa, there is a considerably lower prevalence of ovarian cancer than other parts of Africa. Ovarian cancer is multifaceted, involving many factors, complex biological processes and unpredictable consequences. Unlike other female cancers that have early warning symptoms, ovarian cancer's symptoms are non-specific. As a result, ovarian cancers are normally undetected until advanced stages (III or IV). The major risk factors for ovarian cancer include older age, genetics, family history, hormone replacement therapy, nulliparity, and dietary fat. Controversial factors include obesity, infertility, talc powder, radiation exposure, fertility medications and in vitro fertilization. The current review discusses the aetiology, epidemiology and risk factors for ovarian cancer. Nevertheless, identification of the main risk factors for ovarian cancer may increase the awareness among women of the general population. This should help to decrease the incidence rate of ovarian cancer and increase the five-year survival rate.
Collapse
Affiliation(s)
- Aus Tariq Ali
- Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Osamah Al-ani
- Faculty of Medicine, Odessa National Medical University, Odessa, Ukraine
| | - Faisal Al-ani
- Faculty of Medicine, Odessa National Medical University, Odessa, Ukraine
| |
Collapse
|
43
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
44
|
Yi XF, Gao RL, Sun L, Wu ZX, Zhang SL, Huang LT, Han CB, Ma JT. Dual antitumor immunomodulatory effects of PARP inhibitor on the tumor microenvironment: A counterbalance between anti-tumor and pro-tumor. Biomed Pharmacother 2023; 163:114770. [PMID: 37105074 DOI: 10.1016/j.biopha.2023.114770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Poly (ADP-ribose)-polymerases (PARPs) play an essential role in the maintenance of genome integrity, DNA repair, and apoptosis. PARP inhibitors (PARPi) exert antitumor effects via synthetic lethality and PARP trapping. PARPi impact the antitumor immune response by modulating the tumor microenvironment, and their effect has dual properties of promoting and inhibiting the antitumor immune response. PARPi promote M1 macrophage polarization, antigen presentation by dendritic cells, infiltration of B and T cells and their killing capacity and inhibit tumor angiogenesis. PARPi can also inhibit the activation and function of immune cells by upregulating PD-L1. In this review, we summarize the dual immunomodulatory effects and possible underlying mechanisms of PARPi, providing a basis for the design of combination regimens for clinical treatment and the identification of populations who may benefit from these therapies.
Collapse
Affiliation(s)
- Xiao-Fang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruo-Lin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi-Xuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
45
|
Li T, Wang X, Qin S, Chen B, Yi M, Zhou J. Targeting PARP for the optimal immunotherapy efficiency in gynecologic malignancies. Biomed Pharmacother 2023; 162:114712. [PMID: 37075667 DOI: 10.1016/j.biopha.2023.114712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Gynecologic cancer, which includes ovarian, cervical, endometrial, vulvar, and vaginal cancer, is a major health concern for women all over the world. Despite the availability of various treatment options, many patients eventually progress to advanced stages and face high mortality rates. PARPi (poly (ADP-ribose) polymerase inhibitor) and immune checkpoint inhibitor (ICI) have both shown significant efficacy in the treatment of advanced and metastatic gynecologic cancer. However, both treatments have limitations, including inevitable resistance and a narrow therapeutic window, making PARPi and ICI combination therapy a promising approach to treating gynecologic malignancies. Preclinical and clinical trials have looked into the combination therapy of PARPi and ICI. PARPi improves ICI efficacy by inducing DNA damage and increasing tumor immunogenicity, resulting in a stronger immune response against cancer cells. ICI, conversly, can increase PARPi sensitivity by priming and activating immune cells, consequently prompting immune cytotoxic effect. Several clinical trials in gynecologic cancer patients have investigated the combination therapy of PARPi and ICI. When compared to monotherapy, the combination of PARPi and ICI increased progression-free survival and overall survival in ovarian cancer patients. The combination therapy has also been studied in other types of gynecologic cancer, including endometrial and cervical cancer, with promising results. Finally, the combination therapeutic strategy of PARPi and ICI is a promising approach in the treatment of gynecologic cancer, particularly advanced and metastatic stages. Preclinical studies and clinical trials have demonstrated the safety and efficacy of this combination therapy in improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
46
|
Planas‐Paz L, Pliego‐Mendieta A, Hagedorn C, Aguilera‐Garcia D, Haberecker M, Arnold F, Herzog M, Bankel L, Guggenberger R, Steiner S, Chen Y, Kahraman A, Zoche M, Rubin MA, Moch H, Britschgi C, Pauli C. Unravelling homologous recombination repair deficiency and therapeutic opportunities in soft tissue and bone sarcoma. EMBO Mol Med 2023; 15:e16863. [PMID: 36779660 PMCID: PMC10086583 DOI: 10.15252/emmm.202216863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability. Furthermore, sarcomas carrying HRDness traits exhibit a distinct SARC-HRD transcriptional signature that predicts PARP inhibitor sensitivity in patient-derived sarcoma cells. Concomitantly, HRDhigh sarcoma cells lack RAD51 nuclear foci formation upon DNA damage, further evidencing defects in HRR. We further identify the WEE1 kinase as a therapeutic vulnerability for sarcomas with HRDness and demonstrate the clinical benefit of combining DNA damaging agents and inhibitors of DNA repair pathways ex vivo and in the clinic. In summary, we provide a personalized oncological approach to treat sarcoma patients successfully.
Collapse
Affiliation(s)
- Lara Planas‐Paz
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Alicia Pliego‐Mendieta
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Catherine Hagedorn
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Domingo Aguilera‐Garcia
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Martina Haberecker
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Fabian Arnold
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Marius Herzog
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Lorenz Bankel
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Roman Guggenberger
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
| | - Sabrina Steiner
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Yanjiang Chen
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Martin Zoche
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Mark A Rubin
- Precision Oncology Laboratory, Department for Biomedical ResearchBern Center for Precision MedicineBernSwitzerland
| | - Holger Moch
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Chantal Pauli
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Medical FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
47
|
Shakfa N, Li D, Conseil G, Lightbody ED, Wilson-Sanchez J, Hamade A, Chenard S, Jawa NA, Laight BJ, Afriyie-Asante A, Tyryshkin K, Koebel M, Koti M. Cancer cell genotype associated tumor immune microenvironment exhibits differential response to therapeutic STING pathway activation in high-grade serous ovarian cancer. J Immunother Cancer 2023; 11:jitc-2022-006170. [PMID: 37015760 PMCID: PMC10083863 DOI: 10.1136/jitc-2022-006170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundHigh-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy characterized by resistance to chemotherapy and high rates of recurrence. HGSC tumors display a high prevalence of tumor suppressor gene loss. Given the type 1 interferon regulatory function ofBRCA1andPTENgenes and their associated contrasting T-cell infiltrated and non-infiltrated tumor immune microenvironment (TIME) states, respectively, in this study we investigated the potential of stimulator of interferon genes (STING) pathway activation in improving overall survival via enhancing chemotherapy response, specifically in tumors with PTEN deficiency.MethodsExpression of PTEN protein was evaluated in tissue microarrays generated using pretreatment tumors collected from a cohort of 110 patients with HGSC. Multiplex immunofluorescence staining was performed to determine spatial profiles and density of selected lymphoid and myeloid cells. In vivo studies using the syngeneic murine HGSC cell lines, ID8-Trp53–/–;Pten–/–and ID8-Trp53–/–;Brca1–/–, were conducted to characterize the TIME and response to carboplatin chemotherapy in combination with exogenous STING activation therapy.ResultsPatient tumors with absence of PTEN protein exhibited a significantly decreased disease specific survival and intraepithelial CD68+ macrophage infiltration as compared with intact PTEN expression. In vivo studies demonstrated thatPten-deficient ovarian cancer cells establish an immunosuppressed TIME characterized by increased proportions of M2-like macrophages, GR1+MDSCs in the ascites, and reduced effector CD8+ cytotoxic T-cell function compared withBrca1-deficient cells; further, tumors from mice injected withPten-deficient ID8 cells exhibited an aggressive behavior due to suppressive macrophage dominance in the malignant ascites. In combination with chemotherapy, exogenous STING activation resulted in longer overall survival in mice injected withPten-deficient ID8 cells, reprogrammed intraperitoneal M2-like macrophages derived fromPten-deficient ascites to M1-like phenotype and rescued CD8+ cytotoxic T-cell activation.ConclusionsThis study reveals the importance of considering the influence of cancer cell intrinsic genetic alterations on the TIME for therapeutic selection. We establish the rationale for the optimal incorporation of interferon activating therapies as a novel combination strategy in PTEN-deficient HGSC.
Collapse
Affiliation(s)
- Noor Shakfa
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Deyang Li
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Gwenaelle Conseil
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | - Juliette Wilson-Sanchez
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Ali Hamade
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Stephen Chenard
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Natasha A Jawa
- Centre for Neuroscience Studies & School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brian J Laight
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Kathrin Tyryshkin
- Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Martin Koebel
- Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Madhuri Koti
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
48
|
Li XY, Shi LX, Shi NN, Chen WW, Qu XW, Li QQ, Duan XJ, Li XT, Li QS. Multiple stimulus-response berberine plus baicalin micelles with particle size-charge-release triple variable properties for breast cancer therapy. Drug Dev Ind Pharm 2023; 49:189-206. [PMID: 36971392 DOI: 10.1080/03639045.2023.2195501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The aim was to develop a nanoscale drug delivery system with enzyme responsive and acid sensitive particle size and intelligent degradation aiming to research the inhibitory effect on breast cancer. SIGNIFICANCE The delivery system addressed the problems of tissue targeting, cellular internalization, and slow drug release at the target site, which could improve the efficiency of drug delivery and provide a feasible therapeutic approach for breast cancer. METHODS The acid sensitive functional material DSPE-PEG2000-dyn-PEG-R9 was synthesized by Michael addition reaction. Then, the berberine plus baicalin intelligent micelles were prepared by thin-film hydration. Subsequently, we characterized the physical and chemical properties of berberine plus baicalin intelligent micelles, evaluated its anti-tumor effects in vivo and in vitro. RESULTS The target molecule was successfully synthesized, and the intelligent micelles showed excellent chemical and physical properties, delayed drug release and high encapsulation efficiency. In vitro and in vivo experiments also confirmed that the intelligent micelles could effectively target tumor sites, penetrate tumor tissues, enrich in tumor cells, inhibit tumor cell proliferation, inhibit tumor cell invasion and migration, and induce tumor cell apoptosis. CONCLUSION Berberine plus baicalin intelligent micelles have excellent anti-tumor effects and no toxicity to normal tissues, which provides a new potential drug delivery strategy for the treatment of breast cancer.
Collapse
|
49
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
50
|
Burdett NL, Willis MO, Alsop K, Hunt AL, Pandey A, Hamilton PT, Abulez T, Liu X, Hoang T, Craig S, Fereday S, Hendley J, Garsed DW, Milne K, Kalaria S, Marshall A, Hood BL, Wilson KN, Conrads KA, Pishas KI, Ananda S, Scott CL, Antill Y, McNally O, Mileshkin L, Hamilton A, Au-Yeung G, Devereux L, Thorne H, Bild A, Bateman NW, Maxwell GL, Chang JT, Conrads TP, Nelson BH, Bowtell DDL, Christie EL. Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer. Nat Genet 2023; 55:437-450. [PMID: 36849657 DOI: 10.1038/s41588-023-01320-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2023] [Indexed: 03/01/2023]
Abstract
High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.
Collapse
Affiliation(s)
- Nikki L Burdett
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Eastern Health, Box Hill, Victoria, Australia
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Annandale, Victoria, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Xuan Liu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stuart Craig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Ashley Marshall
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kathleen I Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sumitra Ananda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medical Oncology, Western Health, St Albans, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, St Albans, Victoria, Australia
- Epworth Healthcare, East Melbourne, Victoria, Australia
| | - Clare L Scott
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yoland Antill
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
- Department of Medical Oncology, Peninsula health, Frankston, Victoria, Australia
| | - Orla McNally
- The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anne Hamilton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- The Royal Women's Hospital, Parkville, Victoria, Australia
| | - George Au-Yeung
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa Devereux
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrea Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Annandale, Victoria, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|