1
|
Theme 7 Pre-Clinical Therapeutic Strategies. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:197-217. [PMID: 39508670 DOI: 10.1080/21678421.2024.2403304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
2
|
Gong C, Chang L, Huang R, Sun X, Liu Y, Wu S, Wang L, Xu B, Wang L. LIM kinase 2 activates cardiac fibroblasts and exacerbates postinfarction left ventricular remodeling via crosstalk between the canonical and non-canonical Wnt pathways. Pharmacol Res 2024; 208:107347. [PMID: 39153710 DOI: 10.1016/j.phrs.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Ischemic heart failure rates rise despite decreased acute myocardial infarction (MI) mortality. Excessive myofibroblast activation post-MI leads to adverse remodeling. LIM kinases (LIMK1 and LIMK2) regulate cytoskeleton homeostasis and are pro-fibrotic markers in atrial fibrillation. However, their roles and mechanisms in postinfarction fibrosis and ventricular remodeling remain unclear. This study found that the expression of LIMKs elevated in the border zone (BZ) in mice MI models. LIMK1/2 double knockout (DKO) restrained pathological remodeling and reduced mortality by suppressing myofibroblast activation. By using adeno-associated virus (AAV) with a periostin promoter to overexpress LIMK1 or LIMK2, this study found that myofibroblast-specific LIMK2 overexpression diminished these effects in DKO mice, while LIMK1 did not. LIMK2 kinase activity was critical for myofibroblast proliferation by using AAV overexpressing mutant LIMK2 lack of kinase activity. According to phosphoproteome analysis, functional rescue experiments, co-immunoprecipitation, and protein-protein docking, LIMK2 led to the phosphorylation of β-catenin at Ser 552. LIMK2 nuclear translocation also played a role in myofibroblast proliferation after MI with the help of AAV overexpressing mutant LIMK2 without nuclear location signal. Chromatin immunoprecipitation sequencing identified that LIMK2 bound to Lrp6 promoter region in TGF-β treated cardiac fibroblasts, positively regulating Wnt signaling via Wnt receptor internalization. This study demonstrated that LIMK2 promoted myofibroblast proliferation and adverse cardiac remodeling after MI, by enhancing phospho-β-catenin (Ser552) and Lrp6 signaling. This suggested that LIMK2 could be a target for the treatment of postinfarction injury.
Collapse
Affiliation(s)
- Chenyi Gong
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China; Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Rong Huang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Shaojun Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Lintao Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
3
|
Synaptic plasticity in Schizophrenia pathophysiology. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Ni MZ, Zhang YM, Li Y, Wu QT, Zhang ZZ, Chen J, Luo BL, Li XW, Chen GH. Environmental enrichment improves declined cognition induced by prenatal inflammatory exposure in aged CD-1 mice: Role of NGPF2 and PSD-95. Front Aging Neurosci 2022; 14:1021237. [PMID: 36479357 PMCID: PMC9720164 DOI: 10.3389/fnagi.2022.1021237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research suggests that prenatal inflammatory exposure could accelerate age-related cognitive decline that may be resulted from neuroinflammation and synaptic dysfunction during aging. Environmental enrichment (EE) may mitigate the cognitive and synaptic deficits. Neurite growth-promoting factor 2 (NGPF2) and postsynaptic density protein 95 (PSD-95) play critical roles in neuroinflammation and synaptic function, respectively. METHODS We examined whether this adversity and EE exposure can cause alterations in Ngpf2 and Psd-95 expression. In this study, CD-1 mice received intraperitoneal injection of lipopolysaccharide (50 μg/kg) or normal saline from gestational days 15-17. After weaning, half of the male offspring under each treatment were exposed to EE. The Morris water maze was used to assess spatial learning and memory at 3 and 15 months of age, whereas quantitative real-time polymerase chain reaction and Western blotting were used to measure hippocampal mRNA and protein levels of NGPF2 and PSD-95, respectively. Meanwhile, serum levels of IL-6, IL-1β, and TNF-α were determined by enzyme-linked immunosorbent assay. RESULTS The results showed that aged mice exhibited poor spatial learning and memory ability, elevated NGPF2 mRNA and protein levels, and decreased PSD-95 mRNA and protein levels relative to their young counterparts during natural aging. Embryonic inflammatory exposure accelerated age-related changes in spatial cognition, and in Ngpf2 and Psd-95 expression. Additionally, the levels of Ngpf2 and Psd-95 products were significantly positively and negatively correlated with cognitive dysfunction, respectively, particularly in prenatal inflammation-exposed aged mice. Changes in serum levels of IL-6, IL-1β, and TNF-α reflective of systemic inflammation and their correlation with cognitive decline during accelerated aging were similar to those of hippocampal NGPF2. EE exposure could partially restore the accelerated decline in age-related cognitive function and in Psd-95 expression, especially in aged mice. DISCUSSION Overall, the aggravated cognitive disabilities in aged mice may be related to the alterations in Ngpf2 and Psd-95 expression and in systemic state of inflammation due to prenatal inflammatory exposure, and long-term EE exposure may ameliorate this cognitive impairment by upregulating Psd-95 expression.
Collapse
Affiliation(s)
- Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Zhang K, Liao P, Wen J, Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep 2022; 13:478-487. [PMID: 36590092 PMCID: PMC9795311 DOI: 10.1016/j.ibneur.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric syndrome with psychotic behavioral abnormalities and marked cognitive deficits. It is widely accepted that genetic and environmental factors contribute to the onset of schizophrenia. However, the etiology and pathology of the disease remain largely unexplored. Recently, the synaptopathology and the dysregulated synaptic plasticity and function have emerging as intriguing and prominent biological mechanisms of schizophrenia pathogenesis. Synaptic plasticity is the ability of neurons to change the strength of their connections in response to internal or external stimuli, which is essential for brain development and function, learning and memory, and vast majority of behavior responses relevant to psychiatric diseases including schizophrenia. Here, we reviewed molecular and cellular mechanisms of the multiple forms synaptic plasticity, and the functional regulations of schizophrenia-risk factors including disease susceptible genes and environmental alterations on synaptic plasticity and animal behavior. Recent genome-wide association studies have provided fruitful findings of hundreds of risk gene variances associated with schizophrenia, thus further clarifying the role of these disease-risk genes in synaptic transmission and plasticity will be beneficial to advance our understanding of schizophrenia pathology, as well as the molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China
| | - Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, PR China,Correspondence to: Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, PR China.
| |
Collapse
|
6
|
He G, Wang XY, Jia Z, Zhou Z. Characterizing neurotrophic factor-induced synaptic growth in primary mouse neuronal cultures. STAR Protoc 2022; 3:101112. [PMID: 35098164 PMCID: PMC8783201 DOI: 10.1016/j.xpro.2021.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neurotrophic factors and their signaling cascades play important roles in synaptic growth, which can be investigated in cultured primary neurons to better control the concentrations and timing of neurotrophic factor treatment. Here, we provide a protocol detailing the preparation of cultured primary mouse neurons and the neurotrophic factor treatment. We then describe electrophysiological recording of synaptic transmission, immunocytochemistry of AMPA receptor expression, and imaging analysis of dendritic spines. This platform enables characterization of synaptic growth at functional and morphological levels. For complete details on the use and execution of this profile, please refer to Zhou et al. (2021). Detailed protocol to characterize synaptic growth in primary mouse neuronal cultures Utilizes electrophysiological recording, fluorescence labeling and confocal imaging Enables assessment of synaptic growth at both functional and morphological levels
Collapse
Affiliation(s)
- Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Xin-Yue Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Corresponding author
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
- Corresponding author
| |
Collapse
|