1
|
Downs AM, Kmiec G, Catavero CM, Wykoff LA, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. Neurobiol Dis 2025; 208:106883. [PMID: 40122182 PMCID: PMC12056759 DOI: 10.1016/j.nbd.2025.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in ex vivo slices, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Christina M Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Luke A Wykoff
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
2
|
Spruyt L, Mlinarič T, Dusart N, Reinartz M, Meade G, Van Hulle MM, Van Laere K, Dupont P, Vandenberghe R. EEG-based graph network analysis in relation to regional tau in asymptomatic Alzheimer's disease. Brain Commun 2025; 7:fcaf138. [PMID: 40255689 PMCID: PMC12008720 DOI: 10.1093/braincomms/fcaf138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025] Open
Abstract
Tau aggregation in early affected regions in the asymptomatic stage of Alzheimer's disease marks a transitional phase between stable asymptomatic amyloid positivity and the clinically manifest stage. How this early region tau aggregation covertly affects brain function during this asymptomatic stage remains unclear. In this study, 83 participants underwent a 128 electrodes resting-state EEG, a dynamic 100 min tau PET scan (18F-MK6240), an amyloid PET scan, a structural T1 MRI scan and neuropsychological assessment. Tau PET data quality control led to a final sample of 66 subjects. Based on the clinical and cognitive status, amyloid and tau PET biomarkers, the group was composed of 37 cognitively unimpaired amyloid negative subjects, 14 cognitively unimpaired amyloid positive subjects and 15 patients with prodromal Alzheimer's disease. We calculated the average undirected weighted Phase Lag Index in the alpha frequency band with eyes closed and used this as weights for the graph and analysed the global clustering coefficient and characteristic path length in sensor space. As a primary objective, we assessed how these global graph measures correlated with tau PET values, in an a priori defined early metaVOI, comprised of the entorhinal and perirhinal cortex, hippocampus, parahippocampus and fusiform cortex. As secondary analyses, we investigated which specific brain regions were mainly implicated, what the contribution was of amyloid, the effect of electrode density and the relation to cognitive performance. In the overall group and within the cognitively unimpaired amyloid positive subgroup, tau aggregation was associated with a decrease in global clustering coefficient and an increase in characteristic path length. These changes reflect the initial disintegration of the small-world brain network during the transitional phase, even before clinical symptoms are apparent. The correlations are most prominent in the perirhinal cortex, indicating that global deterioration of the network is already present early in the Alzheimer's disease pathology. We obtained similar results with only taking 64 electrodes into account. To conclude, we found that in the asymptomatic stage of Alzheimer's disease, tau PET load in medial temporal cortex is associated with global electrophysiological measures of network disintegration. The study demonstrates the potential value of high-density EEG in the era of biologically defined Alzheimer's disease for characterizing brain function in the asymptomatic stage.
Collapse
Affiliation(s)
- Laure Spruyt
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Tjaša Mlinarič
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven Brain institute, KU Leuven, Leuven 3000, Belgium
| | - Nathalie Dusart
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Mariska Reinartz
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Gabriela Meade
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marc M Van Hulle
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven Brain institute, KU Leuven, Leuven 3000, Belgium
| | - Koen Van Laere
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
- Division of Nuclear Medicine, UZ Leuven, Leuven 3000, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Department of Neurology, UZ Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Lopez A, Siddiqi FH, Villeneuve J, Ureshino RP, Jeon HY, Koulousakis P, Keeling S, McEwan WA, Fleming A, Rubinsztein DC. Carbonic anhydrase inhibition ameliorates tau toxicity via enhanced tau secretion. Nat Chem Biol 2025; 21:577-587. [PMID: 39482469 PMCID: PMC11949835 DOI: 10.1038/s41589-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Tauopathies are neurodegenerative diseases that manifest with intracellular accumulation and aggregation of tau protein. These include Pick's disease, progressive supranuclear palsy, corticobasal degeneration and argyrophilic grain disease, where tau is believed to be the primary disease driver, as well as secondary tauopathies, such as Alzheimer's disease. There is a need to develop effective pharmacological therapies. Here we tested >1,400 clinically approved compounds using transgenic zebrafish tauopathy models. This revealed that carbonic anhydrase (CA) inhibitors protected against tau toxicity. CRISPR experiments confirmed that CA depletion mimicked the effects of these drugs. CA inhibition promoted faster clearance of human tau by promoting lysosomal exocytosis. Importantly, methazolamide, a CA inhibitor used in the clinic, also reduced total and phosphorylated tau levels, increased neuronal survival and ameliorated neurodegeneration in mouse tauopathy models at concentrations similar to those seen in people. These data underscore the feasibility of in vivo drug screens using zebrafish models and suggest serious consideration of CA inhibitors for treating tauopathies.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Farah H Siddiqi
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Julien Villeneuve
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Rodrigo Portes Ureshino
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hee-Yeon Jeon
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Philippos Koulousakis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| |
Collapse
|
4
|
Itsuno M, Tanabe H, Sano E, Sasaki T, Oyama C, Bannai H, Saito K, Nakata K, Endoh-Yamagami S, Okano H, Maeda S. MAPT-A152T mutation drives neuronal hyperactivity through Fyn-NMDAR signaling in human iPSC-Derived neurons: Insights into Alzheimer's pathogenesis. Regen Ther 2025; 28:201-213. [PMID: 39811068 PMCID: PMC11730958 DOI: 10.1016/j.reth.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau (MAPT) gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models. Methods To investigate the effects of MAPT gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs). We then differentiated them into excitatory and inhibitory neurons. As a control, iPSCs in which the MAPT gene was replaced with a fluorescent protein were also created. Results In excitatory neuronal cultures, the A152T mutation was found to enhance spontaneous neuronal activity and the association of tau and Fyn. However, in inhibitory neuron-enriched cultures, the A152T mutation did not affect neuronal activity. Inhibition of NMDA receptors (NMDAR) and the reduction of tau protein levels decreased neuronal excitability in both A152T/A152T and healthy control (WT/WT) excitatory neurons. In addition, the A152T mutation increased the interaction between tau and Fyn. These findings suggest that the tau-Fyn interaction plays a critical role in regulating neuronal activity under physiological conditions, while the A152T mutation enhances neuronal activity by strengthening this endogenous interaction between tau and Fyn. In addition, transcriptomic analysis revealed structural changes specific to excitatory neurons with the A152T mutation. Common changes observed in both A152T and P301S lines recapitulated a dedifferentiation phenotype, consistent with previous reports. Conclusions These data demonstrate that the A152T mutation in the MAPT gene increases neuronal excitability through the tau-Fyn-NMDAR pathway in excitatory neurons, shedding light on its role in AD pathogenesis.
Collapse
Affiliation(s)
- Maika Itsuno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hirokazu Tanabe
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Etsuko Sano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Chisato Oyama
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Koichi Saito
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Kazuhiko Nakata
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Setsu Endoh-Yamagami
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Stewart D, Johnson EL. The Bidirectional Relationship Between Epilepsy and Alzheimer's Disease. Curr Neurol Neurosci Rep 2025; 25:18. [PMID: 39921833 DOI: 10.1007/s11910-025-01404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
PURPOSE OF REVIEW Epilepsy has long been considered a late-stage consequence of Alzheimer's Disease (AD), but recent studies highlight its role early in the disease process, even preceding cognitive symptoms. Population studies reveal a two- to fourfold increased epilepsy risk in AD, particularly in early-onset cases, with seizures clustering around diagnosis. Furthermore, individuals with late-onset unexplained epilepsy have an elevated risk of developing mild cognitive impairment and dementia, underscoring a bidirectional relationship between AD and epilepsy. RECENT FINDINGS Experimental models support this connection, demonstrating amyloid and tau pathology-induced hyperexcitability at pre-symptomatic stages, implicating soluble Aβ oligomers and inhibitory interneuron dysfunction in excitatory/inhibitory imbalance. Subclinical or clinical epileptiform activity, detectable in 20-50% of AD patients, is associated with cognitive decline, possibly due to sleep-related memory consolidation disruption. Emerging biomarkers, such as TIRDA and high-frequency oscillations, show promise for early detection and intervention. Anti-seizure medications (ASMs), particularly low-dose levetiracetam, show potential not only for seizure control but also for mitigating amyloid deposition, tau hyperphosphorylation, and cognitive decline. However, treatment complexities remain due to variable ASM efficacy, age-related side effects, and limited clinical trials. The bidirectional nature of AD and epilepsy emphasizes the need for integrated diagnostics, including EEG and biomarker assessments, to guide early intervention and targeted therapies. Future research should focus on the mechanistic interplay between amyloid, tau, and hyperexcitability, alongside trials of ASM regimens, to refine therapeutic strategies and improve outcomes in this population.
Collapse
Affiliation(s)
- David Stewart
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Emily L Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
- , 600 N. Wolfe St, Meyer 2-147, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Nabizadeh F. Local molecular and connectomic contributions of tau-related neurodegeneration. GeroScience 2025; 47:227-246. [PMID: 39343862 PMCID: PMC11872831 DOI: 10.1007/s11357-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is known to be mostly driven by tau neurofibrillary tangles. However, both tau and neurodegeneration exhibit variability in their distribution across the brain and among individuals, and the relationship between tau and neurodegeneration might be influenced by several factors. I aimed to map local molecular and connectivity characteristics that affect the association between tau pathology and neurodegeneration. The current study was conducted on the cross-sectional tau-PET and longitudinal T1-weighted MRI scan data of 186 participants from the ADNI dataset including 71 cognitively unimpaired (CU) and 115 mild cognitive impairment (MCI) individuals. Furthermore, the normative molecular profile of a region was defined using neurotransmitter receptor densities, gene expression, T1w/T2w ratio (myelination), FDG-PET (glycolytic index, glucose metabolism, and oxygen metabolism), and synaptic density. I found that the excitatory-inhibitory (E:I) ratio, myelination, synaptic density, glycolytic index, and functional connectivity are linked with deviation in the relationship between tau and neurodegeneration. Furthermore, there was spatial similarity between tau pathology and glycolytic index, synaptic density, and functional connectivity across brain regions. The current study demonstrates that the regional susceptibility to tau-related neurodegeneration is associated with specific molecular and connectomic characteristics of the affected neural systems. I found that the molecular and connectivity architecture of the human brain is linked to the different effects of tau pathology on downstream neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
7
|
Renganathan A, Minaya MA, Broder M, Alfradique-Dunham I, Moritz M, Bhagat R, Marsh J, Verbeck A, Galasso G, Starr E, Agard DA, Cruchaga C, Karch CM. A novel lncRNA FAM151B-DT regulates autophagy and degradation of aggregation prone proteins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.22.25320997. [PMID: 39974060 PMCID: PMC11838976 DOI: 10.1101/2025.01.22.25320997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruptions in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleotropic traits have yet to be identified. Here, we discovered a novel long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins enriched in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic flux, reduce phospho-tau and α-synuclein, and reduce tau aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Matthew Broder
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | | | - Michelle Moritz
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Emma Starr
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| |
Collapse
|
8
|
Downs AM, Kmiec G, Catavero CM, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633373. [PMID: 39868303 PMCID: PMC11761406 DOI: 10.1101/2025.01.17.633373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in slice, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christina M. Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zoé A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Lam AD, Thibault EG, Mayblyum DV, Hsieh S, Pellerin KR, Sternberg EJ, Viswanathan A, Buss S, Sarkis RA, Jacobs HIL, Johnson KA, Sperling RA. Association of Seizure Foci and Location of Tau and Amyloid Deposition and Brain Atrophy in Patients With Alzheimer Disease and Seizures. Neurology 2024; 103:e209920. [PMID: 39331846 PMCID: PMC11441794 DOI: 10.1212/wnl.0000000000209920] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is associated with a 2 to 3-fold increased risk of developing late-onset focal epilepsy, yet it remains unclear how development of focal epilepsy in AD is related to AD pathology. The objective of this study was to examine spatial relationships between the epileptogenic zone and tau deposition, amyloid deposition, and brain atrophy in individuals with AD who developed late-onset, otherwise unexplained focal epilepsy. We hypothesized that if network hyperexcitability is mechanistically linked to AD pathology, then there would be increased tau and amyloid deposition within the epileptogenic hemisphere. METHODS In this cross-sectional study, we performed tau and amyloid PET imaging, brain MRI, and overnight scalp EEG in individuals with early clinical stages of AD who developed late-onset, otherwise unexplained focal epilepsy (AD-Ep). Participants were referred from epilepsy and memory disorders clinics at our institutions. We determined epilepsy localization based on EEG findings and seizure semiology. We quantified tau deposition, amyloid deposition, and atrophy across brain regions and calculated asymmetry indices for these measures. We compared findings in AD-Ep with those in a control AD group without epilepsy (AD-NoEp). RESULTS The AD-Ep group included 8 individuals with a mean age of 69.5 ± 4.2 years at PET imaging. The AD-NoEp group included 14 individuals with a mean age of 71.7 ± 9.8 years at PET imaging. In AD-Ep, we found a highly asymmetric pattern of tau deposition, with significantly greater tau in the epileptogenic hemisphere. Amyloid deposition and cortical atrophy were also greater in the epileptogenic hemisphere, although the magnitudes of asymmetry were reduced compared with tau. Compared with AD-NoEp, the AD-Ep group had significantly greater tau asymmetry and trends toward greater asymmetry of amyloid and atrophy. AD-Ep also had significantly greater amyloid burden bilaterally and trends toward greater tau burden within the epileptogenic hemisphere, compared with AD-NoEp. DISCUSSION Our results reveal a spatial association between the epileptogenic focus and tau deposition, amyloid deposition, and neurodegeneration in early clinical stages of AD. Within the limitations of a cross-sectional study with small sample sizes, these findings contribute to our understanding of the clinicopathologic heterogeneity of AD, demonstrating an association between focal epilepsy and lateralized pathology in AD.
Collapse
Affiliation(s)
- Alice D Lam
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Emma G Thibault
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Danielle V Mayblyum
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Stephanie Hsieh
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Kyle R Pellerin
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Eliezer J Sternberg
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Anand Viswanathan
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Stephanie Buss
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Rani A Sarkis
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Heidi I L Jacobs
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Keith A Johnson
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| | - Reisa A Sperling
- From the Department of Neurology (A.D.L., S.H., K.R.P., A.V., K.A.J.), Massachusetts General Hospital, Boston; Harvard Medical School (A.D.L., A.V., S.B., R.A. Sarkis, H.L.J., K.A.J., R.A. Sperling), Boston; Department of Radiology (E.G.T., D.V.M., H.L.J., K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (E.J.S.), Milford Regional Medical Center; Department of Neurology (S.B.), Beth Israel Deaconess Medical Center, Boston; and Department of Neurology (R.A.Sarkis, R.A.Sperling), Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
10
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
11
|
Ng B, Vowles J, Bertherat F, Abey A, Kilfeather P, Beccano-Kelly D, Stefana MI, O'Brien DP, Bengoa-Vergniory N, Carling PJ, Todd JA, Caffrey TM, Connor-Robson N, Cowley SA, Wade-Martins R. Tau depletion in human neurons mitigates Aβ-driven toxicity. Mol Psychiatry 2024; 29:2009-2020. [PMID: 38361127 PMCID: PMC11408257 DOI: 10.1038/s41380-024-02463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-β (Aβ) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aβ-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aβ were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aβ-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aβ-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.
Collapse
Affiliation(s)
- Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | - Féodora Bertherat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ajantha Abey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centres for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Tara M Caffrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK.
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
12
|
Mohl GA, Dixon G, Marzette E, McKetney J, Samelson AJ, Serras CP, Jin J, Li A, Boggess SC, Swaney DL, Kampmann M. The disease-causing tau V337M mutation induces tau hypophosphorylation and perturbs axon morphology pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597496. [PMID: 38895329 PMCID: PMC11185762 DOI: 10.1101/2024.06.04.597496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT, and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers.
Collapse
Affiliation(s)
- Gregory A Mohl
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gary Dixon
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Emily Marzette
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Justin McKetney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Carlota Pereda Serras
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Li
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Steven C Boggess
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Barbour AJ, Gourmaud S, Lancaster E, Li X, Stewart DA, Hoag KF, Irwin DJ, Talos DM, Jensen FE. Seizures exacerbate excitatory: inhibitory imbalance in Alzheimer's disease and 5XFAD mice. Brain 2024; 147:2169-2184. [PMID: 38662500 PMCID: PMC11146435 DOI: 10.1093/brain/awae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024] Open
Abstract
Approximately 22% of Alzheimer's disease (AD) patients suffer from seizures, and the co-occurrence of seizures and epileptiform activity exacerbates AD pathology and related cognitive deficits, suggesting that seizures may be a targetable component of AD progression. Given that alterations in neuronal excitatory:inhibitory (E:I) balance occur in epilepsy, we hypothesized that decreased markers of inhibition relative to those of excitation would be present in AD patients. We similarly hypothesized that in 5XFAD mice, the E:I imbalance would progress from an early stage (prodromal) to later symptomatic stages and be further exacerbated by pentylenetetrazol (PTZ) kindling. Post-mortem AD temporal cortical tissues from patients with or without seizure history were examined for changes in several markers of E:I balance, including levels of the inhibitory GABAA receptor, the sodium potassium chloride cotransporter 1 (NKCC1) and potassium chloride cotransporter 2 (KCC2) and the excitatory NMDA and AMPA type glutamate receptors. We performed patch-clamp electrophysiological recordings from CA1 neurons in hippocampal slices and examined the same markers of E:I balance in prodromal 5XFAD mice. We next examined 5XFAD mice at chronic stages, after PTZ or control protocols, and in response to chronic mTORC1 inhibitor rapamycin, administered following kindled seizures, for markers of E:I balance. We found that AD patients with comorbid seizures had worsened cognitive and functional scores and decreased GABAA receptor subunit expression, as well as increased NKCC1/KCC2 ratios, indicative of depolarizing GABA responses. Patch clamp recordings of prodromal 5XFAD CA1 neurons showed increased intrinsic excitability, along with decreased GABAergic inhibitory transmission and altered glutamatergic neurotransmission, indicating that E:I imbalance may occur in early disease stages. Furthermore, seizure induction in prodromal 5XFAD mice led to later dysregulation of NKCC1/KCC2 and a reduction in GluA2 AMPA glutamate receptor subunit expression, indicative of depolarizing GABA receptors and calcium permeable AMPA receptors. Finally, we found that chronic treatment with the mTORC1 inhibitor, rapamycin, at doses we have previously shown to attenuate seizure-induced amyloid-β pathology and cognitive deficits, could also reverse elevations of the NKCC1/KCC2 ratio in these mice. Our data demonstrate novel mechanisms of interaction between AD and epilepsy and indicate that targeting E:I balance, potentially with US Food and Drug Administration-approved mTOR inhibitors, hold therapeutic promise for AD patients with a seizure history.
Collapse
Affiliation(s)
- Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - Keegan F Hoag
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Voskobiynyk Y, Li Z, Cochran JN, Davis MN, Carullo NVN, Creed RB, Buckingham SC, Hall AM, Wilson SM, Roberson ED. Excitoprotective effects of conditional tau reduction in excitatory neurons and in adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594246. [PMID: 38798487 PMCID: PMC11118377 DOI: 10.1101/2024.05.14.594246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tau reduction is a promising therapeutic strategy for Alzheimer's disease. In numerous models, tau reduction via genetic knockout is beneficial, at least in part due to protection against hyperexcitability and seizures, but the underlying mechanisms are unclear. Here we describe the generation and initial study of a new conditional Tau flox model to address these mechanisms. Given the protective effects of tau reduction against hyperexcitability, we compared the effects of selective tau reduction in excitatory or inhibitory neurons. Tau reduction in excitatory neurons mimicked the protective effects of global tau reduction, while tau reduction in inhibitory neurons had the opposite effect and increased seizure susceptibility. Since most prior studies used knockout mice lacking tau throughout development, we crossed Tau flox mice with inducible Cre mice and found beneficial effects of tau reduction in adulthood. Our findings support the effectiveness of tau reduction in adulthood and indicate that excitatory neurons may be a key site for its excitoprotective effects. SUMMARY A new conditional tau knockout model was generated to study the protective effects of tau reduction against hyperexcitability. Conditional tau reduction in excitatory, but not inhibitory, neurons was excitoprotective, and induced tau reduction in adulthood was excitoprotective without adverse effects.
Collapse
|
15
|
Prabhu P, Morise H, Kudo K, Beagle A, Mizuiri D, Syed F, Kotegar KA, Findlay A, Miller BL, Kramer JH, Rankin KP, Garcia PA, Kirsch HE, Vossel K, Nagarajan SS, Ranasinghe KG. Abnormal gamma phase-amplitude coupling in the parahippocampal cortex is associated with network hyperexcitability in Alzheimer's disease. Brain Commun 2024; 6:fcae121. [PMID: 38665964 PMCID: PMC11043655 DOI: 10.1093/braincomms/fcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.
Collapse
Affiliation(s)
- Pooja Prabhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Hirofumi Morise
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Alexander Beagle
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Faatimah Syed
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Karunakar A Kotegar
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul A Garcia
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Heidi E Kirsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Facal CL, Fernández Bessone I, Muñiz JA, Pereyra AE, Pedroncini O, Páez-Paz I, Clerici-Delville R, Arnaiz C, Urrutia L, Falasco G, Argañaraz CV, Saez T, Marin-Burgin A, Soiza-Reilly M, Falzone T, Avale ME. Tau reduction with artificial microRNAs modulates neuronal physiology and improves tauopathy phenotypes in mice. Mol Ther 2024; 32:1080-1095. [PMID: 38310353 PMCID: PMC11163272 DOI: 10.1016/j.ymthe.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.
Collapse
Affiliation(s)
- Carolina Lucía Facal
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Iván Fernández Bessone
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Javier Andrés Muñiz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - A Ezequiel Pereyra
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - Indiana Páez-Paz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Ramiro Clerici-Delville
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Cayetana Arnaiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - Leandro Urrutia
- Centro de imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Germán Falasco
- Centro de imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Carla Verónica Argañaraz
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Trinidad Saez
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - Mariano Soiza-Reilly
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina
| | - Tomás Falzone
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires, CONICET-UBA, Buenos Aires, Argentina; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Partner Institute of the Max Planck Society, CONICET-MPSP, Buenos Aires, Argentina
| | - María Elena Avale
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Stroh A, Schweiger S, Ramirez JM, Tüscher O. The selfish network: how the brain preserves behavioral function through shifts in neuronal network state. Trends Neurosci 2024; 47:246-258. [PMID: 38485625 DOI: 10.1016/j.tins.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuronal networks possess the ability to regulate their activity states in response to disruptions. How and when neuronal networks turn from physiological into pathological states, leading to the manifestation of neuropsychiatric disorders, remains largely unknown. Here, we propose that neuronal networks intrinsically maintain network stability even at the cost of neuronal loss. Despite the new stable state being potentially maladaptive, neural networks may not reverse back to states associated with better long-term outcomes. These maladaptive states are often associated with hyperactive neurons, marking the starting point for activity-dependent neurodegeneration. Transitions between network states may occur rapidly, and in discrete steps rather than continuously, particularly in neurodegenerative disorders. The self-stabilizing, metastable, and noncontinuous characteristics of these network states can be mathematically described as attractors. Maladaptive attractors may represent a distinct pathophysiological entity that could serve as a target for new therapies and for fostering resilience.
Collapse
Affiliation(s)
- Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Susann Schweiger
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research at the Seattle Children's Research Institute, University of Washington, Seattle, USA
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
18
|
Kamondi A, Grigg-Damberger M, Löscher W, Tanila H, Horvath AA. Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 2024; 20:162-182. [PMID: 38356056 DOI: 10.1038/s41582-024-00932-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline. Thus, detection of epileptiform activity in AD has substantial clinical importance as a potential novel modifiable risk factor for dementia. In this Review, we summarize the epidemiological evidence for the complex bidirectional relationship between AD and epilepsy, examine the effect of epileptiform activity and seizures on cognition in people with AD, and discuss the precision medicine treatment strategies based on the latest research in human and animal models. Finally, we outline some of the unresolved questions of the field that should be addressed by rigorous research, including whether particular clinicopathological subtypes of AD have a stronger association with epilepsy, and the sequence of events between epileptiform activity and amyloid and tau pathology.
Collapse
Affiliation(s)
- Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| | | | - Wolfgang Löscher
- Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Andras Attila Horvath
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Rogers BB, Anderson AG, Lauzon SN, Davis MN, Hauser RM, Roberts SC, Rodriguez-Nunez I, Trausch-Lowther K, Barinaga EA, Hall PI, Knuesel MT, Taylor JW, Mackiewicz M, Roberts BS, Cooper SJ, Rizzardi LF, Myers RM, Cochran JN. Neuronal MAPT expression is mediated by long-range interactions with cis-regulatory elements. Am J Hum Genet 2024; 111:259-279. [PMID: 38232730 PMCID: PMC10870142 DOI: 10.1016/j.ajhg.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.
Collapse
Affiliation(s)
- Brianne B Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Shelby N Lauzon
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - M Natalie Davis
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Rebecca M Hauser
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Sydney C Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - Erin A Barinaga
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Paige I Hall
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jared W Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| | | |
Collapse
|
20
|
Chen K, Gupta R, Martín‐Ávila A, Cui M, Xie Z, Yang G. Anesthesia-induced hippocampal-cortical hyperactivity and tau hyperphosphorylation impair remote memory retrieval in Alzheimer's disease. Alzheimers Dement 2024; 20:494-510. [PMID: 37695022 PMCID: PMC10843666 DOI: 10.1002/alz.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Anesthesia often exacerbates memory recall difficulties in individuals with Alzheimer's disease (AD), but the underlying mechanisms remain unclear. METHODS We used in vivo Ca2+ imaging, viral-based circuit tracing, and chemogenetic approaches to investigate anesthesia-induced remote memory impairment in mouse models of presymptomatic AD. RESULTS Our study identified pyramidal neuron hyperactivity in the anterior cingulate cortex (ACC) as a significant contributor to anesthesia-induced remote memory impairment. This ACC hyperactivation arises from the disinhibition of local inhibitory circuits and increased excitatory inputs from the hippocampal CA1 region. Inhibiting hyperactivity in the CA1-ACC circuit improved memory recall after anesthesia. Moreover, anesthesia led to increased tau phosphorylation in the hippocampus, and inhibiting this hyperphosphorylation prevented ACC hyperactivity and subsequent memory impairment. DISCUSSION Hippocampal-cortical hyperactivity plays a role in anesthesia-induced remote memory impairment. Targeting tau hyperphosphorylation shows promise as a therapeutic strategy to mitigate anesthesia-induced neural network dysfunction and retrograde amnesia in AD.
Collapse
Affiliation(s)
- Kai Chen
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Riya Gupta
- Barnard College of Columbia UniversityNew YorkNew YorkUSA
| | | | - Meng Cui
- Department of BiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Zhongcong Xie
- Geriatric Anesthesia Research UnitDepartment of AnesthesiaCritical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Guang Yang
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
21
|
Leinenga G, Padmanabhan P, Götz J. Improving Cognition Without Clearing Amyloid: Effects of Tau and Ultrasound Neuromodulation. J Alzheimers Dis 2024; 100:S211-S222. [PMID: 39058447 DOI: 10.3233/jad-240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Alzheimer's disease is characterized by progressive impairment of neuronal functions culminating in neuronal loss and dementia. A universal feature of dementia is protein aggregation, a process by which a monomer forms intermediate oligomeric assembly states and filaments that develop into end-stage hallmark lesions. In Alzheimer's disease, this is exemplified by extracellular amyloid-β (Aβ) plaques which have been placed upstream of tau, found in intracellular neurofibrillary tangles and dystrophic neurites. This implies causality that can be modeled as a linear activation cascade. When Aβ load is reduced, for example, in response to an anti-Aβ immunotherapy, cognitive functions improve in plaque-forming mice. They also deteriorate less in clinical trial cohorts although real-world clinical benefits remain to be demonstrated. Given the existence of aged humans with unimpaired cognition despite a high plaque load, the central role of Aβ has been challenged. A counter argument has been that clinical symptoms would eventually develop if these aged individuals were to live long enough. Alternatively, intrinsic mechanisms that protect the brain in the presence of pathology may exist. In fact, Aβ toxicity can be abolished by either reducing or manipulating tau (through which Aβ signals), at least in preclinical models. In addition to manipulating steps in this linear pathocascade model, mechanisms of restoring brain reserve can also counteract Aβ toxicity. Low-intensity ultrasound is a neuromodulatory modality that can improve cognitive functions in Aβ-depositing mice without the need for removing Aβ. Together, this highlights a dissociation of Aβ and cognition, with important implications for therapeutic interventions.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Patow G, Stefanovski L, Ritter P, Deco G, Kobeleva X. Whole-brain modeling of the differential influences of amyloid-beta and tau in Alzheimer's disease. Alzheimers Res Ther 2023; 15:210. [PMID: 38053164 PMCID: PMC10696890 DOI: 10.1186/s13195-023-01349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative condition associated with the accumulation of two misfolded proteins, amyloid-beta (A[Formula: see text]) and tau. We study their effect on neuronal activity, with the aim of assessing their individual and combined impact. METHODS We use a whole-brain dynamic model to find the optimal parameters that best describe the effects of A[Formula: see text] and tau on the excitation-inhibition balance of the local nodes. RESULTS We found a clear dominance of A[Formula: see text] over tau in the early disease stages (MCI), while tau dominates over A[Formula: see text] in the latest stages (AD). We identify crucial roles for A[Formula: see text] and tau in complex neuronal dynamics and demonstrate the viability of using regional distributions to define models of large-scale brain function in AD. CONCLUSIONS Our study provides further insight into the dynamics and complex interplay between these two proteins, opening the path for further investigations on biomarkers and candidate therapeutic targets in-silico.
Collapse
Affiliation(s)
- Gustavo Patow
- ViRVIG, Universitat de Girona, Girona, Spain.
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain.
| | - Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future Berlin, Berlin, Germany
| | - Gustavo Deco
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Xenia Kobeleva
- Computational Neurology Research Group, Ruhr University Bochum, Bochum, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Shen Z, Zhang H, Du L, He X, Sun X. The important role of glial transmitters released by astrocytes in Alzheimer's disease: A perspective from dynamical modeling. CHAOS (WOODBURY, N.Y.) 2023; 33:113109. [PMID: 37921585 DOI: 10.1063/5.0154322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
This paper aims to establish a coupling model of neuronal populations and astrocytes and, on this basis, explore the possible mechanism of electroencephalography (EEG) slowing in Alzheimer's disease (AD) from the viewpoint of dynamical modeling. First and foremost, excitatory and inhibitory time constants are shown to induce the early symptoms of AD. The corresponding dynamic nature is mainly due to changes in the amplitude and frequency of the oscillatory behavior. However, there are also a few cases that can be attributed to the change of the oscillation mode caused by the limit cycle bifurcation and birhythmicity. Then, an improved neural mass model influenced by astrocytes is proposed, considering the important effects of glutamate and adenosine triphosphate (ATP) released by astrocytes on the synaptic transmission process reported in experiments. The results show that a dysfunctional astrocyte disrupts the physiological state, causing three typical EEG slowing phenomena reported clinically: the decreased dominant frequency, the decreased rhythmic activity in the α band, and the increased rhythmic activity in the δ+θ band. In addition, astrocytes may control AD when the effect of ATP on synaptic connections is greater than that of glutamate. The control rate depends on the ratio of the effect of glutamate on excitatory and inhibitory synaptic connections. These modeling results can not only reproduce some experimental and clinical results, but, more importantly, may offer a prediction of some underlying phenomena, helping to inspire the disease mechanisms and therapeutic methods of targeting astrocytes.
Collapse
Affiliation(s)
- Zhuan Shen
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi 710072, China
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Honghui Zhang
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi 710072, China
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lin Du
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi 710072, China
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaoyan He
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
24
|
Quintela-López T, Lezmy J. Homeostatic plasticity of axonal excitable sites in Alzheimer's disease. Front Neurosci 2023; 17:1277251. [PMID: 37937068 PMCID: PMC10626477 DOI: 10.3389/fnins.2023.1277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
| | - Jonathan Lezmy
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
26
|
Signal B, Pérez Suárez TG, Taberlay PC, Woodhouse A. Cellular specificity is key to deciphering epigenetic changes underlying Alzheimer's disease. Neurobiol Dis 2023; 186:106284. [PMID: 37683959 DOI: 10.1016/j.nbd.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Different cell types in the brain play distinct roles in Alzheimer's disease (AD) progression. Late onset AD (LOAD) is a complex disease, with a large genetic component, but many risk loci fall in non-coding genome regions. Epigenetics implicates the non-coding genome with control of gene expression. The epigenome is highly cell-type specific and dynamically responds to the environment. Therefore, epigenetic mechanisms are well placed to explain genetic and environmental factors that are associated with AD. However, given this cellular specificity, purified cell populations or single cells need to be profiled to avoid effect masking. Here we review the current state of cell-type specific genome-wide profiling in LOAD, covering DNA methylation (CpG, CpH, and hydroxymethylation), histone modifications, and chromatin changes. To date, these data reveal that distinct cell types contribute and react differently to AD progression through epigenetic alterations. This review addresses the current gap in prior bulk-tissue derived work by spotlighting cell-specific changes that govern the complex interplay of cells throughout disease progression and are critical in understanding and developing effective treatments for AD.
Collapse
Affiliation(s)
- Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | | | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
27
|
Wang LY, Wang XP, Lv JM, Shan YD, Jia SY, Yu ZF, Miao HT, Xin Y, Zhang DX, Zhang LM. NLRP3-GABA signaling pathway contributes to the pathogenesis of impulsive-like behaviors and cognitive deficits in aged mice. J Neuroinflammation 2023; 20:162. [PMID: 37434240 DOI: 10.1186/s12974-023-02845-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND), such as delirium and cognitive impairment, are commonly encountered complications in aged patients. The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is aberrantly synthesized from reactive astrocytes following inflammatory stimulation and is implicated in the pathophysiology of neurodegenerative diseases. Additionally, the activation of NOD-like receptor protein 3 (NLRP3) inflammasome is involved in PND. Herein, we aimed to investigate whether the NLRP3-GABA signaling pathway contributes to the pathogenesis of aging mice's PND. METHODS 24-month-old C57BL/6 and astrocyte-specific NLRP3 knockout male mice were used to establish a PND model via tibial fracture surgery. The monoamine oxidase-B (MAOB) inhibitor selegiline (1 mg/kg) was intraperitoneally administered once a day for 7 days after the surgery. PND, including impulsive-like behaviors and cognitive impairment, was evaluated by open field test, elevated plus maze, and fear conditioning. Thereafter, pathological changes of neurodegeneration were explored by western blot and immunofluorescence assays. RESULTS Selegiline administration significantly ameliorated TF-induced impulsive-like behaviors and reduced excessive GABA production in reactive hippocampal astrocytes. Moreover, astrocyte-specific NLRP3 knockout mice reversed TF-induced impulsive-like and cognitive impairment behaviors, decreased GABA levels in reactive astrocytes, ameliorated NLRP3-associated inflammatory responses during the early stage, and restored neuronal degeneration in the hippocampus. CONCLUSIONS Our findings suggest that anesthesia and surgical procedures trigger neuroinflammation and cognitive deficits, which may be due to NLRP3-GABA activation in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin-Meng Lv
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yu-Dong Shan
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Shi-Yan Jia
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Zhi-Fang Yu
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
28
|
Qu W, Canoll P, Hargus G. Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience 2023; 518:10-26. [PMID: 35569647 PMCID: PMC9974106 DOI: 10.1016/j.neuroscience.2022.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia resulting in widespread degeneration of the central nervous system with severe cognitive impairment. Despite the devastating toll of AD, the incomplete understanding of the complex molecular mechanisms hinders the expeditious development of effective cures. Emerging evidence from animal studies has shown that different brain cell types play distinct roles in the pathogenesis of AD. Glutamatergic neurons are preferentially affected in AD and pronounced gliosis contributes to the progression of AD in both a cell-autonomous and a non-cell-autonomous manner. Much has been discovered through genetically modified animal models, yet frequently failed translational attempts to clinical applications call for better disease models. Emerging evidence supports the significance of human-induced pluripotent stem cell (iPSC) derived brain cells in modeling disease development and progression, opening new avenues for the discovery of molecular mechanisms. This review summarizes the function of different cell types in the pathogenesis of AD, such as neurons, microglia, and astrocytes, and recognizes the potential of utilizing the rapidly growing iPSC technology in modeling AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.
| |
Collapse
|
29
|
Rogers BB, Anderson AG, Lauzon SN, Davis MN, Hauser RM, Roberts SC, Rodriguez-Nunez I, Trausch-Lowther K, Barinaga EA, Taylor JW, Mackiewicz M, Roberts BS, Cooper SJ, Rizzardi LF, Myers RM, Cochran JN. MAPT expression is mediated by long-range interactions with cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531520. [PMID: 37090552 PMCID: PMC10120716 DOI: 10.1101/2023.03.07.531520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Tauopathies are a group of neurodegenerative diseases driven by abnormal aggregates of tau, a microtubule associated protein encoded by the MAPT gene. MAPT expression is absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression is controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding genetic risk factors. Methods We performed HiC, chromatin conformation capture (Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27Ac and CTCF in NPCs and neurons differentiated from human iPSC cultures. We nominated candidate cis-regulatory elements (cCREs) for MAPT in human NPCs, differentiated neurons, and pure cultures of inhibitory and excitatory neurons. We then assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in AD cases and controls. Results Using orthogonal genomics approaches, we nominated 94 cCREs for MAPT, including the identification of cCREs specifically active in differentiated neurons. Eleven regions enhanced reporter gene transcription in luciferase assays. Using CRISPRi, 5 of the 94 regions tested were identified as necessary for MAPT expression as measured by RT-qPCR and RNA-seq. Rare and predicted damaging genetic variation in both nominated and confirmed CREs was depleted in AD cases relative to controls (OR = 0.40, p = 0.004), consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduce MAPT expression, may be protective against neurodegenerative disease. Conclusions We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the well-described H1/H2 haplotype inversion breakpoint. This study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.
Collapse
Affiliation(s)
- Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | - Jared W. Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | | |
Collapse
|
30
|
Boal AM, McGrady NR, Chamling X, Kagitapalli BS, Zack DJ, Calkins DJ, Risner ML. Microfluidic Platforms Promote Polarization of Human-Derived Retinal Ganglion Cells That Model Axonopathy. Transl Vis Sci Technol 2023; 12:1. [PMID: 37010860 PMCID: PMC10080917 DOI: 10.1167/tvst.12.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023] Open
Abstract
Purpose Axons depend on long-range transport of proteins and organelles which increases susceptibility to metabolic stress in disease. The axon initial segment (AIS) is particularly vulnerable due to the high bioenergetic demand of action potential generation. Here, we prepared retinal ganglion cells derived from human embryonic stem cells (hRGCs) to probe how axonal stress alters AIS morphology. Methods hRGCs were cultured on coverslips or microfluidic platforms. We assayed AIS specification and morphology by immunolabeling against ankyrin G (ankG), an axon-specific protein, and postsynaptic density 95 (PSD-95), a dendrite-specific protein. Using microfluidic platforms that enable fluidic isolation, we added colchicine to the axon compartment to lesion axons. We verified axonopathy by measuring the anterograde axon transport of cholera toxin subunit B and immunolabeling against cleaved caspase 3 (CC3) and phosphorylated neurofilament H (SMI-34). We determined the influence of axon injury on AIS morphology by immunolabeling samples against ankG and measuring AIS distance from soma and length. Results Based on measurements of ankG and PSD-95 immunolabeling, microfluidic platforms promote the formation and separation of distinct somatic-dendritic versus axonal compartments in hRGCs compared to coverslip cultures. Chemical lesioning of axons by colchicine reduced hRGC anterograde axon transport, increased varicosity density, and enhanced expression of CC3 and SMI-34. Interestingly, we found that colchicine selectively affected hRGCs with axon-carrying dendrites by reducing AIS distance from somas and increasing length, thus suggesting reduced capacity to maintain excitability. Conclusions Thus, microfluidic platforms promote polarized hRGCs that enable modeling of axonopathy. Translational Relevance Microfluidic platforms may be used to assay compartmentalized degeneration that occurs during glaucoma.
Collapse
Affiliation(s)
- Andrew M. Boal
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nolan R. McGrady
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xitiz Chamling
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bhanu S. Kagitapalli
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Donald J. Zack
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J. Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael L. Risner
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
32
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
33
|
Andrés-Benito P, Flores Á, Busquet-Areny S, Carmona M, Ausín K, Cartas-Cejudo P, Lachén-Montes M, Del Rio JA, Fernández-Irigoyen J, Santamaría E, Ferrer I. Deregulated Transcription and Proteostasis in Adult mapt Knockout Mouse. Int J Mol Sci 2023; 24:ijms24076559. [PMID: 37047532 PMCID: PMC10095510 DOI: 10.3390/ijms24076559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, β-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - África Flores
- Neuropharmacology & Pain Group, Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Busquet-Areny
- Neuropathology Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropathology Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular and Cellular Neurobiotechnology Group, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), 08028 Barcelona, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008 Pamplona, Navarra, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropathology Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Emeritus Researcher, Bellvitge Biomedical Research Institute (IDIBELL), Emeritus Professor, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
34
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
35
|
Early impairments of visually-driven neuronal ensemble dynamics in the rTg4510 tauopathy mouse model. Neurobiol Dis 2023; 178:106012. [PMID: 36696792 DOI: 10.1016/j.nbd.2023.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.
Collapse
|
36
|
Wang J, Mei Y, Zhang X, Wei X, Zhang Y, Wang D, Huang J, Zhu K, Peng G, Sun B. Aberrant serotonergic signaling contributes to the hyperexcitability of CA1 pyramidal neurons in a mouse model of Alzheimer's disease. Cell Rep 2023; 42:112152. [PMID: 36821438 DOI: 10.1016/j.celrep.2023.112152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Hyperactivity of pyramidal neurons (PNs) in CA1 is an early event in Alzheimer's disease. However, factors accounting for the hyperactivity of CA1 PNs remain to be completely investigated. In the present study, we report that the serotonergic signaling is abnormal in the hippocampus of hAPP-J20 mice. Interestingly, chemogenetic activation of serotonin (5-hydroxytryptamine; 5-HT) neurons in the median raphe nucleus (MRN) attenuates the activity of CA1 PNs in hAPP-J20 mice by regulating the intrinsic properties or inhibitory synaptic transmission of CA1 PNs through 5-HT3aR and/or 5-HT1aR. Furthermore, activating MRN 5-HT neurons improves memory in hAPP-J20 mice, and this effect is mediated by 5-HT3aR and 5-HT1aR. Direct activation of 5-HT3aR and 5-HT1aR with their selective agonists also improves the memory of hAPP-J20 mice. Together, we identify the impaired 5-HT/5-HT3aR and/or 5-HT/5-HT1aR signaling as pathways contributing to the hyperexcitability of CA1 PNs and the impaired cognition in hAPP-J20 mice.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yufei Mei
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| | - Xiaoqin Zhang
- Department of Physiology and Pharmacology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojie Wei
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiping Zhang
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dongpi Wang
- Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310003, China
| | - Jinjin Huang
- Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310003, China
| | - Keqing Zhu
- National Human Brain Bank for Health and Disease and Department of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
37
|
Yang Y, Booker SA, Clegg JM, Quintana-Urzainqui I, Sumera A, Kozic Z, Dando O, Martin Lorenzo S, Herault Y, Kind PC, Price DJ, Pratt T. Identifying foetal forebrain interneurons as a target for monogenic autism risk factors and the polygenic 16p11.2 microdeletion. BMC Neurosci 2023; 24:5. [PMID: 36658491 PMCID: PMC9850541 DOI: 10.1186/s12868-022-00771-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2+/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. METHODS We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2+/- rat cerebral cortex and hippocampus at post-natal day (P) 21. RESULTS We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2+/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. LIMITATIONS The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2+/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. CONCLUSIONS We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2+/- rats.
Collapse
Affiliation(s)
- Yifei Yang
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom
| | - Sam A Booker
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - James M Clegg
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Anna Sumera
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Sandra Martin Lorenzo
- CNRS, Université de Strasbourg, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Yann Herault
- CNRS, Université de Strasbourg, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Peter C Kind
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom. .,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.
| |
Collapse
|
38
|
Bouillet T, Ciba M, Alves CL, Rodrigues FA, Thielemann C, Colin M, Buée L, Halliez S. Revisiting the involvement of tau in complex neural network remodeling: analysis of the extracellular neuronal activity in organotypic brain slice co-cultures. J Neural Eng 2022; 19. [PMID: 36374001 DOI: 10.1088/1741-2552/aca261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Objective.Tau ablation has a protective effect in epilepsy due to inhibition of the hyperexcitability/hypersynchrony. Protection may also occur in transgenic models of Alzheimer's disease by reducing the epileptic activity and normalizing the excitation/inhibition imbalance. However, it is difficult to determine the exact functions of tau, because tau knockout (tauKO) brain networks exhibit elusive phenotypes. In this study, we aimed to further explore the physiological role of tau using brain network remodeling.Approach.The effect of tau ablation was investigated in hippocampal-entorhinal slice co-cultures during network remodeling. We recorded the spontaneous extracellular neuronal activity over 2 weeks in single-slice cultures and co-cultures from control andtauKOmice. We compared the burst activity and applied concepts and analytical tools intended for the analysis of the network synchrony and connectivity.Main results.Comparison of the control andtauKOco-cultures revealed that tau ablation had an anti-synchrony effect on the hippocampal-entorhinal two-slice networks at late stages of culture, in line with the literature. Differences were also found between the single-slice and co-culture conditions, which indicated that tau ablation had differential effects at the sub-network scale. For instance, tau ablation was found to have an anti-synchrony effect on the co-cultured hippocampal slices throughout the culture, possibly due to a reduction in the excitation/inhibition ratio. Conversely, tau ablation led to increased synchrony in the entorhinal slices at early stages of the co-culture, possibly due to homogenization of the connectivity distribution.Significance.The new methodology presented here proved useful for investigating the role of tau in the remodeling of complex brain-derived neural networks. The results confirm previous findings and hypotheses concerning the effects of tau ablation on neural networks. Moreover, the results suggest, for the first time, that tau has multifaceted roles that vary in different brain sub-networks.
Collapse
Affiliation(s)
- Thomas Bouillet
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Manuel Ciba
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Aschaffenburg 63743, Germany
| | - Caroline Lourenço Alves
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Aschaffenburg 63743, Germany.,Institute of Mathematics and Computer Science, University of São Paulo, São Carlos SP 13566-590, Brazil
| | | | - Christiane Thielemann
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Aschaffenburg 63743, Germany
| | - Morvane Colin
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Luc Buée
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Sophie Halliez
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| |
Collapse
|
39
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
40
|
Maffei B, Lignani G. One to Rule Them All: A Unique TAU Therapy for Neurodevelopmental Encephalopathies. Epilepsy Curr 2022; 22:390-391. [PMID: 36426176 PMCID: PMC9661608 DOI: 10.1177/15357597221126332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TAU Ablation in Excitatory Neurons and Postnatal TAU Knockdown Reduce Epilepsy, SUDEP, and Autism Behaviors in a Dravet Syndrome Model Shao E, Chang C-W, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu G-Q, Roberson ED, Mucke L. Sci Transl Med. 2022;14(642):eabm5527. doi:10.1126/scitranslmed.abm5527 Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Benito Maffei
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, United Kingdom
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
41
|
Damuka N, Orr ME, Bansode AH, Krizan I, Miller M, Lee J, Macauley SL, Whitlow CT, Mintz A, Craft S, Solingapuram Sai KK. Preliminary mechanistic insights of a brain-penetrant microtubule imaging PET ligand in a tau-knockout mouse model. EJNMMI Res 2022; 12:41. [PMID: 35881263 PMCID: PMC9325934 DOI: 10.1186/s13550-022-00912-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Microtubules (MTs) are critical for cell structure, function, and survival. MT instability may contribute to Alzheimer's disease (AD) pathogenesis as evidenced by persistent negative regulation (phosphorylation) of the neuronal microtubule-associated protein tau. Hyperphosphorylated tau, not bound to MTs, forms intraneuronal pathology that correlates with dementia and can be tracked using positron emission tomography (PET) imaging. The contribution of MT instability in AD remains unknown, though it may be more proximal to neuronal dysfunction than tau accumulation. Our lab reported the first brain-penetrant MT-based PET ligand, [11C]MPC-6827, and its PET imaging with this ligand in normal rodents and non-human primates demonstrated high brain uptake and excellent pharmacokinetics. Target engagement and mechanism of action using in vitro, in vivo, and ex vivo methods were evaluated here. METHODS In vitro cell uptake assay was performed in SH-SY5Y neuronal cells with [11C]MPC-6827, with various MT stabilizing and destabilizing agents. To validate the in vitro results, wild type (WT) mice (n = 4) treated with a brain-penetrant MT stabilizing drug (EpoD) underwent microPET/CT brain imaging with [11C]MPC-6827. To determine the influence of tau protein on radiotracer binding in the absence of protein accumulation, we utilized tau knockout (KO) mice. In vivo microPET imaging, ex vivo biodistribution, and autoradiography studies were performed in tau KO and WT mice (n = 6/group) with [11C]MPC-6827. Additionally, α, β, and acetylated tubulin levels in both brain samples were determined using commercially available cytoskeleton-based MT kit and capillary electrophoresis immunoblotting assays. RESULTS Cell uptake demonstrated higher radioactive uptake with MT destabilizing agents and lower uptake with stabilizing agents compared to untreated cells. Similarly, acute treatment with EpoD in WT mice decreased [11C]MPC-6827 brain uptake, assessed with microPET/CT imaging. Compared to WT mice, tau KO mice expressed significantly lower β tubulin, which contains the MPC-6827 binding domain, and modestly lower levels of acetylated α tubulin, indicative of unstable MTs. In vivo imaging revealed significantly higher [11C]MPC-6827 uptake in tau KOs than WT, particularly in AD-relevant brain regions known to express high levels of tau. Ex vivo post-PET biodistribution and autoradiography confirmed the in vivo results. CONCLUSIONS Collectively, our data indicate that [11C]MPC-6827 uptake inversely correlates with MT stability and may better reflect the absence of tau than total tubulin levels. Given the radiotracer binding does not require the presence of aggregated tau, we hypothesize that [11C]MPC-6827 may be particularly useful in preclinical stages of AD prior to tau deposition. Our study provides immediate clarity on high uptake of the MT-based radiotracer in AD brains, which directly informs clinical utility in MT/tau-based PET imaging studies.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Miranda E. Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Jillian Lee
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Shannon L. Macauley
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | | | - Akiva Mintz
- Department of Radiology, Columbia Medical Center, New York, NY 10032 USA
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | | |
Collapse
|
42
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|
43
|
Banote RK, Håkansson S, Zetterberg H, Zelano J. CSF biomarkers in patients with epilepsy in Alzheimer’s disease: a nation-wide study. Brain Commun 2022; 4:fcac210. [PMID: 36043137 PMCID: PMC9419062 DOI: 10.1093/braincomms/fcac210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Alzheimer’s disease is the most common neurodegenerative dementia. A subset of Alzheimer’s disease patients develop epilepsy. The risk is higher in young-onset Alzheimer’s disease, but pathophysiological mechanisms remain elusive. The purpose of this study was to assess biomarkers reflecting neurodegeneration in Alzheimer’s disease patients with and without epilepsy. By cross-referencing the largest national laboratory database with Swedish National Patient Register, we could identify CSF biomarker results from 17901 Alzheimer’s disease patients, and compare levels of neurofilament light, glial fibrillary acidic protein, total tau, phosphorylated tau and amyloid beta 42 in patients with (n = 851) and without epilepsy. The concentrations of total tau and phosphorylated tau were higher in Alzheimer’s disease patients with epilepsy than Alzheimer’s disease patients without epilepsy and amyloid beta 42 levels were significantly lower in Alzheimer’s disease patients with epilepsy. No differences in the levels of neurofilament light and glial fibrillary acidic protein were observed. Our study suggests that epilepsy is more common in Alzheimer’s disease patients with more pronounced Alzheimer’s pathology, as determined by the CSF biomarkers. Further studies are needed to investigate the biomarker potential of these CSF markers as predictors of epilepsy course or as indicators of epileptogenesis in Alzheimer’s disease.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Department of Neurology, Sahlgrenska University Hospital , Gothenburg 41345 , Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg , Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg , Sweden
| | - Samuel Håkansson
- Department of Neurology, Sahlgrenska University Hospital , Gothenburg 41345 , Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg , Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg , Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg , Mölndal 43180 , Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal 43180 , Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology , Queen Square, London WC1E 6BT , UK
- UK Dementia Research Institute at UCL , London WC1E 6BT , UK
- Hong Kong Center for Neurodegenerative Diseases , Clear Water Bay , Hong Kong , China
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital , Gothenburg 41345 , Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg , Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg , Sweden
| |
Collapse
|
44
|
Ranasinghe KG, Verma P, Cai C, Xie X, Kudo K, Gao X, Lerner H, Mizuiri D, Strom A, Iaccarino L, La Joie R, Miller BL, Gorno-Tempini ML, Rankin KP, Jagust WJ, Vossel K, Rabinovici GD, Raj A, Nagarajan SS. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease. eLife 2022; 11:e77850. [PMID: 35616532 PMCID: PMC9217132 DOI: 10.7554/elife.77850] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuronal- and circuit-level abnormalities of excitation and inhibition are shown to be associated with tau and amyloid-beta (Aβ) in preclinical models of Alzheimer's disease (AD). These relationships remain poorly understood in patients with AD. Methods Using empirical spectra from magnetoencephalography and computational modeling (neural mass model), we examined excitatory and inhibitory parameters of neuronal subpopulations and investigated their specific associations to regional tau and Aβ, measured by positron emission tomography, in patients with AD. Results Patients with AD showed abnormal excitatory and inhibitory time-constants and neural gains compared to age-matched controls. Increased excitatory time-constants distinctly correlated with higher tau depositions while increased inhibitory time-constants distinctly correlated with higher Aβ depositions. Conclusions Our results provide critical insights about potential mechanistic links between abnormal neural oscillations and cellular correlates of impaired excitatory and inhibitory synaptic functions associated with tau and Aβ in patients with AD. Funding This study was supported by the National Institutes of Health grants: K08AG058749 (KGR), F32AG050434-01A1 (KGR), K23 AG038357 (KAV), P50 AG023501, P01 AG19724 (BLM), P50-AG023501 (BLM and GDR), R01 AG045611 (GDR); AG034570, AG062542 (WJ); NS100440 (SSN), DC176960 (SSN), DC017091 (SSN), AG062196 (SSN); a grant from John Douglas French Alzheimer's Foundation (KAV); grants from Larry L. Hillblom Foundation: 2015-A-034-FEL (KGR), 2019-A-013-SUP (KGR); grants from the Alzheimer's Association: AARG-21-849773 (KGR); PCTRB-13-288476 (KAV), and made possible by Part the CloudTM (ETAC-09-133596); a grant from Tau Consortium (GDR and WJJ), and a gift from the S. D. Bechtel Jr. Foundation.
Collapse
Affiliation(s)
- Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Medical Imaging Business Center, Ricoh CompanyKanazawaJapan
| | - Xiao Gao
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
45
|
Shao E, Chang CW, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu GQ, Roberson ED, Mucke L. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med 2022; 14:eabm5527. [PMID: 35476595 PMCID: PMC9102397 DOI: 10.1126/scitranslmed.abm5527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Zhiyong Li
- Alzheimer’s Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Michelle Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Jessica Speckart
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Julia Holtzman
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
| | - Erik D. Roberson
- Alzheimer’s Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
46
|
Pinky PD, Pfitzer JC, Senfeld J, Hong H, Bhattacharya S, Suppiramaniam V, Qureshi I, Reed MN. Recent Insights on Glutamatergic Dysfunction in Alzheimer's Disease and Therapeutic Implications. Neuroscientist 2022:10738584211069897. [PMID: 35073787 DOI: 10.1177/10738584211069897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) poses a critical public health challenge, and there is an urgent need for novel treatment options. Glutamate, the principal excitatory neurotransmitter in the human brain, plays a critical role in mediating cognitive and behavioral functions; and clinical symptoms in AD patients are highly correlated with the loss of glutamatergic synapses. In this review, we highlight how dysregulated glutamatergic mechanisms can underpin cognitive and behavioral impairments and contribute to the progression of AD via complex interactions with neuronal and neural network hyperactivity, Aβ, tau, glial dysfunction, and other disease-associated factors. We focus on the tripartite synapse, where glutamatergic neurotransmission occurs, and evidence elucidating how the tripartite synapse can be pathologically altered in AD. We also discuss promising therapeutic approaches that have the potential to rescue these deficits. These emerging data support the development of novel glutamatergic drug candidates as compelling approaches for treating AD.
Collapse
Affiliation(s)
- Priyanka D Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jeremiah C Pfitzer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jared Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | | | - Miranda N Reed
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
47
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|