1
|
Lortal L, Lyon CM, Sprague JL, Sonnberger J, Paulin OKA, Wickramasinghe DN, Richardson JP, Hube B, Naglik JR. Candidalysin biology and activation of host cells. mBio 2025:e0060324. [PMID: 40293285 DOI: 10.1128/mbio.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance.
Collapse
Affiliation(s)
- Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Claire M Lyon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olivia K A Paulin
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Don N Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Ren WW, Kawahara R, Suzuki KG, Dipta P, Yang G, Thaysen-Andersen M, Fujita M. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. J Cell Biol 2025; 224:e202407068. [PMID: 39751400 PMCID: PMC11697975 DOI: 10.1083/jcb.202407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis. Interestingly, lysosomal exocytosis preferentially occurred in the vicinity of focal adhesions, protein complexes connecting the actin cytoskeleton to the extracellular matrix. Through genome-wide knockout screening, we identified that MYO18B, an actin crosslinker, is required for focal adhesion maturation, facilitating lysosomal exocytosis and the release of paucimannosidic lysosomal proteins to the extracellular milieu. Moreover, a mechanosensitive cation channel PIEZO1 locally activated at focal adhesions imports Ca2+ necessary for lysosome-plasma membrane fusion. Collectively, our study unveiled an intimate relationship between lysosomal exocytosis and focal adhesion, shedding light on the unexpected interplay between lysosomal activities and cellular mechanosensing.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Kenichi G.N. Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Morten Thaysen-Andersen
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Morelli M, Queiroz K. Breaking Barriers: Candidalysin Disrupts Epithelial Integrity and Induces Inflammation in a Gut-on-Chip Model. Toxins (Basel) 2025; 17:89. [PMID: 39998106 PMCID: PMC11861147 DOI: 10.3390/toxins17020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast commonly found in the gastrointestinal tract of healthy humans. Under certain conditions, it can become invasive and cause life-threatening systemic infections. One mechanism used by C.albicans to breach the epithelial barrier is the secretion of candidalysin, a cytolytic peptide toxin. Candidalysin damages epithelial membranes and activates the innate immune response, making it key to C.albicans' pathogenicity and a promising therapeutic target. Although candidalysin mediates C. albicans translocation through intestinal layers, its impact on epithelial responses is not fully understood. This study aims to characterize this response and develop scalable, quantitative methodologies to assess candidalysin's toxicological effects using gut-on-chip models. We used the OrganoPlate® platform to expose Caco-2 tubules to candidalysin and evaluated their response with trans-epithelial electrical resistance (TEER), protein detection, and immunostaining. We then validated our findings in a proof-of-concept experiment using human intestinal organoid tubules. Candidalysin impaired barrier integrity, induced actin remodeling, and increased cell permeability. It also induced the release of LDH, cytokines, and the antimicrobial peptide LL37, suggesting cellular damage, inflammation, and antimicrobial activity. This study strengthens our understanding of candidalysin's role in C. albicans pathogenesis and suggests new therapeutic strategies targeting this toxin. Moreover, patient-derived organoids show promise for capturing patient heterogeneity and developing personalized treatments.
Collapse
Affiliation(s)
- Moran Morelli
- MIMETAS B.V., De Limes 7, 2342 DH Oegstgeest, The Netherlands
| | | |
Collapse
|
5
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin. Nat Microbiol 2024; 9:2553-2569. [PMID: 39285260 PMCID: PMC11734966 DOI: 10.1038/s41564-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
6
|
Wickramasinghe DN, Lyon CM, Lee S, Hepworth OW, Priest EL, Maufrais C, Ryan AP, Permal E, Sullivan D, McManus BA, Hube B, Butler G, d'Enfert C, Naglik JR, Richardson JP. Variations in candidalysin amino acid sequence influence toxicity and host responses. mBio 2024; 15:e0335123. [PMID: 38953356 PMCID: PMC11323794 DOI: 10.1128/mbio.03351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.
Collapse
Affiliation(s)
- Don N. Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Claire M. Lyon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Olivia W. Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Adam P. Ryan
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Emmanuelle Permal
- Institut Pasteur, Université Paris Cité, INRAe USC 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Derek Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Brenda A. McManus
- Division of Oral Biosciences, Dublin Dental University Hospital, and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Mills KAM, Aufiero MA, Hohl TM. Epithelial responses to fungal pathogens. Curr Opin Microbiol 2024; 80:102508. [PMID: 38986398 PMCID: PMC11331878 DOI: 10.1016/j.mib.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Epithelial cells orchestrate immune responses against fungal pathogens. This review highlights advances in integrating epithelial cells in immune responses against inhaled molds and dimorphic fungi, and against Candida species that colonize mucosal surfaces. In the lung, epithelial cells respond to interleukin-1 (IL-1) and interferon signaling to regulate effector cell influx and fungal killing. In the alimentary and vulvovaginal tracts, epithelial cells modulate fungal commensalism, invasive growth, and local immune tone, in part by responding to damage caused by candidalysin, a C. albicans peptide toxin, and through IL-17-dependent release of antimicrobial peptides that contribute to Candida colonization resistance. Understanding fungal-epithelial interactions in mammalian models of disease is critical to predict vulnerabilities and to identify opportunities for immune-based strategies to treat fungal infections.
Collapse
Affiliation(s)
- Kathleen A M Mills
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Mariano A Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
9
|
Stanca SE, Mogavero S, Fritzsche W, Krafft C, Hube B, Popp J. Isotope labeled 3D-Raman confocal imaging and atomic force microscopy study on epithelial cells interacting with the fungus Candida albicans. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 59:102750. [PMID: 38734040 DOI: 10.1016/j.nano.2024.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The human pathogenic fungus Candida albicans damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of C. albicans wild type cells, the secreted C. albicans peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100-2200 cm-1 attributed to carbon‑deuterium bending and at 477 cm-1, attributed to the nitrogen‑deuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during C. albicans infection.
Collapse
Affiliation(s)
- Sarmiza Elena Stanca
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Selene Mogavero
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Bernhard Hube
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| |
Collapse
|
10
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+-sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. Proc Natl Acad Sci U S A 2024; 121:e2318412121. [PMID: 38781205 PMCID: PMC11145288 DOI: 10.1073/pnas.2318412121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Madeline M. Motsinger
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Jiaqian Li
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Kevin P. Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Phyllis I. Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| |
Collapse
|
12
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis-Swidergall NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. A genome-scale screen identifies sulfated glycosaminoglycans as pivotal in epithelial cell damage by Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595417. [PMID: 38826446 PMCID: PMC11142209 DOI: 10.1101/2024.05.23.595417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Candidalysin is a cytolytic peptide produced by the opportunistic fungal pathogen Candida albicans. This peptide is a key virulence factor in mouse models of mucosal and hematogenously disseminated candidiasis. Despite intense interest in the role of candidalysin in C. albicans pathogenicity, its host cell targets have remained elusive. To fill this knowledge gap, we performed a genome-wide loss-of-function CRISPR screen in a human oral epithelial cell line to identify specific host factors required for susceptibility to candidalysin-induced cellular damage. Among the top hits were XYLT2, B3GALT6 and B3GAT3, genes that function in glycosaminoglycan (GAG) biosynthesis. Deletion of these genes led to the absence of GAGs such as heparan sulfate on the epithelial cell surface and increased resistance to damage induced by both candidalysin and live C. albicans. Biophysical analyses including surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin physically binds to sulfated GAGs, facilitating its oligomerization or enrichment on the host cell surface. The addition of exogenous sulfated GAGs or the GAG analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate, but not non-sulfated dextran, also inhibited epithelial cell endocytosis of C. albicans and fungal-induced epithelial cell cytokine and chemokine production. In a murine model of vulvovaginal candidiasis, topical dextran sulfate administration reduced host tissue damage and decreased intravaginal IL-1β and neutrophil levels. Collectively, these data indicate that GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V Solis-Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
13
|
Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol 2024; 156:93-106. [PMID: 37648621 PMCID: PMC10872800 DOI: 10.1016/j.semcdb.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Collapse
Affiliation(s)
- Shiqi Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Tyler J Yang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Valentine M, Rudolph P, Dietschmann A, Tsavou A, Mogavero S, Lee S, Priest EL, Zhurgenbayeva G, Jablonowski N, Timme S, Eggeling C, Allert S, Dolk E, Naglik JR, Figge MT, Gresnigt MS, Hube B. Nanobody-mediated neutralization of candidalysin prevents epithelial damage and inflammatory responses that drive vulvovaginal candidiasis pathogenesis. mBio 2024; 15:e0340923. [PMID: 38349176 PMCID: PMC10936171 DOI: 10.1128/mbio.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.
Collapse
Affiliation(s)
- Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Paul Rudolph
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Gaukhar Zhurgenbayeva
- Institute of Applied Optics and Biophysics, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Nadja Jablonowski
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Sandra Timme
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Biophysical Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Jena Center for Soft Matter (JCSM), Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | | | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Marc T. Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
15
|
Müller R, König A, Groth S, Zarnowski R, Visser C, Handrianz T, Maufrais C, Krüger T, Himmel M, Lee S, Priest EL, Yildirim D, Richardson JP, Blango MG, Bougnoux ME, Kniemeyer O, d'Enfert C, Brakhage AA, Andes DR, Trümper V, Nehls C, Kasper L, Mogavero S, Gutsmann T, Naglik JR, Allert S, Hube B. Secretion of the fungal toxin candidalysin is dependent on conserved precursor peptide sequences. Nat Microbiol 2024; 9:669-683. [PMID: 38388771 DOI: 10.1038/s41564-024-01606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.
Collapse
Affiliation(s)
- Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sabrina Groth
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Corissa Visser
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Tom Handrianz
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily L Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Deniz Yildirim
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Matthew G Blango
- RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Christian Nehls
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
16
|
Sprague JL, Schille TB, Allert S, Trümper V, Lier A, Großmann P, Priest EL, Tsavou A, Panagiotou G, Naglik JR, Wilson D, Schäuble S, Kasper L, Hube B. Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFκB-mediated barrier protection. PLoS Pathog 2024; 20:e1012031. [PMID: 38427950 PMCID: PMC10907035 DOI: 10.1371/journal.ppat.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Jakob L. Sprague
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Tim B. Schille
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Adrian Lier
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Peter Großmann
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Gianni Panagiotou
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
17
|
Gerstenmaier L, Colasanti O, Behrens H, Kolonko M, Hammann C, Hagedorn M. Recruitment of both the ESCRT and autophagic machineries to ejecting Mycobacterium marinum. Mol Microbiol 2024; 121:385-393. [PMID: 37230756 DOI: 10.1111/mmi.15075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cytosolic Mycobacterium marinum are ejected from host cells such as macrophages or the amoeba Dictyostelium discoideum in a non-lytic fashion. As described previously, the autophagic machinery is recruited to ejecting bacteria and supports host cell integrity during egress. Here, we show that the ESCRT machinery is also recruited to ejecting bacteria, partially dependent on an intact autophagic pathway. As such, the AAA-ATPase Vps4 shows a distinct localization at the ejectosome structure in comparison to fluorescently tagged Vps32, Tsg101 and Alix. Along the bacterium engaged in ejection, ESCRT and the autophagic component Atg8 show partial colocalization. We hypothesize that both, the ESCRT and autophagic machinery localize to the bacterium as part of a membrane damage response, as well as part of a "frustrated autophagosome" that is unable to engulf the ejecting bacterium.
Collapse
Affiliation(s)
| | | | - Hannah Behrens
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Margot Kolonko
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| | - Monica Hagedorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| |
Collapse
|
18
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
19
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+ -sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578682. [PMID: 38352356 PMCID: PMC10862787 DOI: 10.1101/2024.02.04.578682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the cathepsin C-metabolized osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that widely used concentrations of GPN rupture only a small fraction of lysosomes, but surprisingly trigger Ca 2+ release from nearly all. Chelating cytoplasmic Ca 2+ using BAPTA makes lysosomes more likely to rupture under GPN-induced stress, suggesting that Ca 2+ plays a role in protecting or rapidly repairing lysosomal membranes. Mechanistically, we establish that GPN causes the Ca 2+ -sensitive protein Apoptosis Linked Gene-2 (ALG-2) and interacting ESCRT proteins to redistribute onto lysosomes, improving their resistance to membrane stress created by GPN as well as the lysosomotropic drug chlorpromazine. Furthermore, we show that activating the cation channel TRPML1, with or without blocking the endoplasmic reticulum Ca 2+ pump, creates local Ca 2+ signals that protect lysosomes from rupture by recruiting ALG-2 and ESCRTs without any membrane damage. These findings reveal that Ca 2+ , through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress. SIGNIFICANCE As the degradative hub of the cell, lysosomes are full of toxic content that can spill into the cytoplasm. There has been much recent interest in how cells sense and repair lysosomal membrane damage using ESCRTs and cholesterol to rapidly fix "nanoscale damage". Here, we extend understanding of how ESCRTs contribute by uncovering a preventative role of the ESCRT machinery. We show that ESCRTs, when recruited by the Ca 2+ -sensor ALG-2, play a critical role in stabilizing the lysosomal membrane against osmotically-induced rupture. This finding suggests that cells have mechanisms not just for repairing but also for actively protecting lysosomes from stress-induced membrane damage.
Collapse
|
20
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
21
|
Unger L, Skoluda S, Backman E, Amulic B, Ponce‐Garcia FM, Etiaba CNC, Yellagunda S, Krüger R, von Bernuth H, Bylund J, Hube B, Naglik JR, Urban CF. Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin. EMBO Rep 2023; 24:e57571. [PMID: 37795769 PMCID: PMC10626426 DOI: 10.15252/embr.202357571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.
Collapse
Affiliation(s)
- Lucas Unger
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Samuel Skoluda
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Emelie Backman
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Borko Amulic
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | | | - Chinelo NC Etiaba
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Sujan Yellagunda
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinBerlinGermany
- Department of ImmunologyLabor Berlin Labor Berlin – Charité Vivantes GmbHBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)BerlinGermany
| | - Johan Bylund
- Department of Oral Microbiology & Immunology, Institute of OdontologySahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans‐Knoell‐InstituteJenaGermany
- Friedrich Schiller UniversityJenaGermany
| | - Julian R Naglik
- Centre for Host‐Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Constantin F Urban
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| |
Collapse
|
22
|
Nozawa T, Toh H, Iibushi J, Kogai K, Minowa-Nozawa A, Satoh J, Ito S, Murase K, Nakagawa I. Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat Commun 2023; 14:6230. [PMID: 37802980 PMCID: PMC10558455 DOI: 10.1038/s41467-023-42039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Xenophagy, a type of selective autophagy, is a bactericidal membrane trafficking that targets cytosolic bacterial pathogens, but the membrane homeostatic system to cope with bacterial infection in xenophagy is not known. Here, we show that the endosomal sorting complexes required for transport (ESCRT) machinery is needed to maintain homeostasis of xenophagolysosomes damaged by a bacterial toxin, which is regulated through the TOM1L2-Rab41 pathway that recruits AAA-ATPase VPS4. We screened Rab GTPases and identified Rab41 as critical for maintaining the acidification of xenophagolysosomes. Confocal microscopy revealed that ESCRT components were recruited to the entire xenophagolysosome, and this recruitment was inhibited by intrabody expression against bacterial cytolysin, indicating that ESCRT targets xenophagolysosomes in response to a bacterial toxin. Rab41 translocates to damaged autophagic membranes via adaptor protein TOM1L2 and recruits VPS4 to complete ESCRT-mediated membrane repair in a unique GTPase-independent manner. Finally, we demonstrate that the TOM1L2-Rab41 pathway-mediated ESCRT is critical for the efficient clearance of bacteria through xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Kogai
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
23
|
Cristovao B, Rodrigues L, Catarino S, Abreu M, Gonçalves T, Domingues N, Girao H. Cx43-mediated hyphal folding counteracts phagosome integrity loss during fungal infection. Microbiol Spectr 2023; 11:e0123823. [PMID: 37733471 PMCID: PMC10581180 DOI: 10.1128/spectrum.01238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Phagolysosomes are crucial organelles during the elimination of pathogens by host cells. The maintenance of their membrane integrity is vital during stressful conditions, such as during Candida albicans infection. As the fungal hyphae grow, the phagolysosome membrane expands to ensure that the growing fungus remains entrapped. Additionally, actin structures surrounding the hyphae-containing phagosome were recently described to damage and constrain these pathogens inside the host vacuoles by inducing their folding. However, the molecular mechanism involved in the phagosome membrane adaptation during this extreme expansion process is still unclear. The main goal of this study was to unveil the interplay between phagosomal membrane integrity and folding capacity of C. albicans-infected macrophages. We show that components of the repair machinery are gradually recruited to the expanding phagolysosomal membrane and that their inhibition diminishes macrophage folding capacity. Through an analysis of an RNAseq data set of C. albicans-infected macrophages, we identified Cx43, a gap junction protein, as a putative player involved in the interplay between lysosomal homeostasis and actin-related processes. Our findings further reveal that Cx43 is recruited to expand phagosomes and potentiates the hyphal folding capacity of macrophages, promoting their survival. Additionally, we reveal that Cx43 can act as an anchor for complexes involved in Arp2-mediated actin nucleation during the assembly of actin rings around hyphae-containing phagosomes. Overall, this work brings new insights on the mechanisms by which macrophages cope with C. albicans infection ascribing to Cx43 a new noncanonical regulatory role in phagosome dynamics during pathogen phagocytosis. IMPORTANCE Invasive candidiasis is a life-threatening fungal infection that can become increasingly resistant to treatment. Thus, strategies to improve immune system efficiency, such as the macrophage response during the clearance of the fungal infection, are crucial to ameliorate the current therapies. Engulfed Candida albicans, one of the most common Candida species, is able to quickly transit from yeast-to-hypha form, which can elicit a phagosomal membrane injury and ultimately lead to macrophage death. Here, we extend the understanding of phagosome membrane homeostasis during the hypha expansion and folding process. We found that loss of phagosomal membrane integrity decreases the capacity of macrophages to fold the hyphae. Furthermore, through a bioinformatic analysis, we reveal a new window of opportunities to disclose the mechanisms underlying the hyphal constraining process. We identified Cx43 as a new weapon in the armamentarium to tackle infection by potentiating hyphal folding and promoting macrophage survival.
Collapse
Affiliation(s)
- Beatriz Cristovao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Center for Neurosciences and Cell Biology (CNC-UC), University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Monica Abreu
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology (CNC-UC), University of Coimbra, Coimbra, Portugal
| | - Neuza Domingues
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Nozaki K, Miao EA. Bucket lists must be completed during cell death. Trends Cell Biol 2023; 33:803-815. [PMID: 36958996 PMCID: PMC10440244 DOI: 10.1016/j.tcb.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Regulated cell death occurs in many forms, including apoptosis, pyroptosis, necroptosis, and NETosis. Most obviously, the purpose of these pathways is to kill the cell. However, many cells need to complete a set of effector programs before they die, which we define as a cellular 'bucket list'. These effector programs are specific to the cell type, and mode and circumstances of death. For example, intestinal epithelial cells need to complete the process of extrusion before they die. Cells use regulatory mechanisms to temporarily prolong their life, including endosomal sorting complex required for transport (ESCRT)- and acid sphingomyelinase (ASM)-driven membrane repair. These allow cells to complete their bucket lists before they die.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
25
|
Pedrera L, Ros U, García-Sáez AJ. Calcium as a master regulator of ferroptosis and other types of regulated necrosis. Cell Calcium 2023; 114:102778. [PMID: 37356350 DOI: 10.1016/j.ceca.2023.102778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Regulation of proliferation and cell death is fundamental for organismal development and for restoring tissue homeostasis after biological stress. During the last years, several forms of regulated cell death have been discovered that share the loss of plasma membrane integrity as a common hallmark and that are collectively known as regulated necrosis (RN) pathways. During RN, plasma membrane damage is sensed by the cell by increases in the levels of intracellular calcium. Interestingly, cytosolic calcium influx can either lead to cell death or survival, given the versatile role of this ion in regulating multiple signaling processes. Among them, membrane repair enables the cells to tolerate the injury and, even in some conditions, survive. Here, we review calcium signaling in the context of RN pathways, with a focus on ferroptosis, a type of RN in which plasma membrane damage is elicited by the accumulation of oxidized lipids. In contrast, other forms of RN such as necroptosis and pyroptosis require dedicated pore-forming proteins for plasma membrane damage and cell death. We first focus on the current knowledge regarding the contribution of calcium to ferroptosis, and then illustrate the similarities and differences in calcium signaling with necroptosis and pyroptosis. Calcium signaling emerges as a key event in the cellular responses to membrane damage and in the regulation of cell death.
Collapse
Affiliation(s)
- Lohans Pedrera
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.
| |
Collapse
|
26
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
27
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
28
|
Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, Grinstein S, Freeman SA. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol 2023; 33:1282-1294.e5. [PMID: 36898371 DOI: 10.1016/j.cub.2023.02.060] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
The ongoing metabolic and microbicidal pathways that support and protect cellular life generate potentially damaging reactive oxygen species (ROS). To counteract damage, cells express peroxidases, which are antioxidant enzymes that catalyze the reduction of oxidized biomolecules. Glutathione peroxidase 4 (GPX4) is the major hydroperoxidase specifically responsible for reducing lipid peroxides; this homeostatic mechanism is essential, and its inhibition causes a unique type of lytic cell death, ferroptosis. The mechanism(s) that lead to cell lysis in ferroptosis, however, are unclear. We report that the lipid peroxides formed during ferroptosis accumulate preferentially at the plasma membrane. Oxidation of surface membrane lipids increased tension on the plasma membrane and led to the activation of Piezo1 and TRP channels. Oxidized membranes thus became permeable to cations, ultimately leading to the gain of cellular Na+ and Ca2+ concomitant with loss of K+. These effects were reduced by deletion of Piezo1 and completely inhibited by blocking cation channel conductance with ruthenium red or 2-aminoethoxydiphenyl borate (2-APB). We also found that the oxidation of lipids depressed the activity of the Na+/K+-ATPase, exacerbating the dissipation of monovalent cation gradients. Preventing the changes in cation content attenuated ferroptosis. Altogether, our study establishes that increased membrane permeability to cations is a critical step in the execution of ferroptosis and identifies Piezo1, TRP channels, and the Na+/K+-ATPase as targets/effectors of this type of cell death.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ruiqi Cai
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Allen Volchuk
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Nishikawa Y, Tomotake Y, Kawano H, Naruishi K, Kido JI, Hiroshima Y, Murakami A, Ichikawa T, Yumoto H. Effects of Candidalysin Derived from Candida albicans on the Expression of Pro-Inflammatory Mediators in Human Gingival Fibroblasts. Int J Mol Sci 2023; 24:ijms24043256. [PMID: 36834667 PMCID: PMC9963793 DOI: 10.3390/ijms24043256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Candida albicans (Ca) is frequently detected in the peri-implant sulcus with peri-implantitis, a major postoperative complication after oral implant therapy. However, the involvement of Ca in the pathogenesis of peri-implantitis remains unclear. In this study, we aimed to clarify Ca prevalence in the peri-implant sulcus and investigated the effects of candidalysin (Clys), a toxin produced by Ca, on human gingival fibroblasts (HGFs). Peri-implant crevicular fluid (PICF) was cultured using CHROMagar and Ca colonization rate and colony numbers were calculated. The levels of interleukin (IL)-1β and soluble IL-6 receptor (sIL-6R) in PICF were quantified by enzyme-linked immunosorbent assay (ELISA). Pro-inflammatory mediator production and intracellular signaling pathway (MAPK) activation in HGFs were measured by ELISA and Western blotting, respectively. The Ca colonization rate and the average number of colonies in the peri-implantitis group tended to be higher than those in the healthy group. IL-1β and sIL-6R levels in the PICF were significantly higher in the peri-implantitis group than in the healthy group. Clys significantly induced IL-6 and pro-matrix metalloproteinase (MMP)-1 productions in HGFs, and co-stimulation with Clys and sIL-6R increased IL-6, pro-MMP-1, and IL-8 production levels in HGFs compared with Clys stimulation alone. These findings suggest that Clys from Ca plays a role in the pathogenesis of peri-implantitis by inducing pro-inflammatory mediators.
Collapse
Affiliation(s)
- Yasufumi Nishikawa
- Oral Implant Center, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoritoki Tomotake
- Oral Implant Center, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiromichi Kawano
- Oral Implant Center, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Jun-ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yuka Hiroshima
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Akikazu Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Tetsuo Ichikawa
- Department of Prosthodontics and Oral Rehabilitation, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
- Correspondence:
| |
Collapse
|
30
|
Russell CM, Rybak JA, Miao J, Peters BM, Barrera FN. Candidalysin: Connecting the pore forming mechanism of this virulence factor to its immunostimulatory properties. J Biol Chem 2023; 299:102829. [PMID: 36581211 PMCID: PMC9852700 DOI: 10.1016/j.jbc.2022.102829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Candida albicans is a deadly pathogen responsible for millions of mucosal and systemic infections per year. The pathobiology of C. albicans is largely dependent on the damaging and immunostimulatory properties of the peptide candidalysin (CL), a key virulence factor. When CL forms pores in the plasma membrane of epithelial cells, it activates a response network grounded in activation of the epidermal growth factor receptor. Prior reviews have characterized the resulting CL immune activation schemas but lacked insights into the molecular mechanism of CL membrane damage. We recently demonstrated that CL functions by undergoing a unique self-assembly process; CL forms polymers and loops in aqueous solution prior to inserting and forming pores in cell membranes. This mechanism, the first of its kind to be observed, informs new therapeutic avenues to treat Candida infections. Recently, variants of CL were identified in other Candida species, providing an opportunity to identify the residues that are key for CL to function. In this review, we connect the ability of CL to damage cell membranes to its immunostimulatory properties.
Collapse
Affiliation(s)
- Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jennifer A Rybak
- School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jian Miao
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
31
|
Ponde NO, Lortal L, Tsavou A, Hepworth OW, Wickramasinghe DN, Ho J, Richardson JP, Moyes DL, Gaffen SL, Naglik JR. Receptor-kinase EGFR-MAPK adaptor proteins mediate the epithelial response to Candida albicans via the cytolytic peptide toxin, candidalysin. J Biol Chem 2022; 298:102419. [PMID: 36037968 PMCID: PMC9530844 DOI: 10.1016/j.jbc.2022.102419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.
Collapse
Affiliation(s)
- Nicole O Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Olivia W Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Don N Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, USA.
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
32
|
Solubility affects IL-1β-producing activity of the synthetic candidalysin peptide. PLoS One 2022; 17:e0273663. [PMID: 36040970 PMCID: PMC9426886 DOI: 10.1371/journal.pone.0273663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Candidalysin, a peptide toxin produced specifically from hyphae of Candida albicans, plays a crucial role in C. albicans pathogenesis in the oral cavity and vagina. Synthetic peptides have been widely used in previous studies to investigate the bioactivity of candidalysin. Although the solubility of the peptide, which is expected to have a hydrophobic property, has not been well characterized, candidalysin solutions are usually prepared in water. In this study, we prepared the synthetic peptide candidalysin in water (CLw) or in dimethyl sulfoxide (CLd) and compared their cytotoxicity and interleukin (IL)-1β-producing activity to determine whether the activity of the peptide would be affected. In addition, we evaluated whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway or other pathways were involved in their activities. Unexpectedly, we found that CLw was not completely solubilized and contained abundant insoluble microparticles. CLw was active at comparably high concentrations (≥ 10 μM). In contrast, CLd is completely solubilized and sufficiently active at low concentrations, that is, 1 μM or less. CLw showed weak cytotoxicity and NLRP3-dependent and cathepsin B-dependent IL-1β-producing activity, whereas CLd showed strong cytotoxicity and cathepsin B-dependent IL-1β-producing activity. Fractionation of CLw revealed that NLRP3-dependent activity was caused by insoluble microparticles. Furthermore, nanoparticle tracking of CLd revealed that the peptide was present as nanoparticles with a size of 96 nm. CLw contained a small amount of such nanoparticles. Thus, the bioactivities of the synthetic peptide candidalysin, especially the IL-1β-producing activity, are affected by the solubility of the peptide depending on the solvent employed. The NLRP3-dependent activity of the synthetic peptide is caused by insoluble microparticles and may not be the intrinsic activity of candidalysin.
Collapse
|
33
|
Shukla S, Larsen KP, Ou C, Rose K, Hurley JH. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc Natl Acad Sci U S A 2022; 119:e2205590119. [PMID: 35994655 PMCID: PMC9436306 DOI: 10.1073/pnas.2205590119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is centrally involved in the repair of damage to both the plasma and lysosome membranes. ESCRT recruitment to sites of damage occurs on a fast time scale, and Ca2+ has been proposed to play a key signaling role in the process. Here, we show that the Ca2+-binding regulatory protein ALG-2 binds directly to negatively charged membranes in a Ca2+-dependent manner. Next, by monitoring the colocalization of ALIX with ALG-2 on negatively charged membranes, we show that ALG-2 recruits ALIX to the membrane. Furthermore, we show that ALIX recruitment to the membrane orchestrates the downstream assembly of late-acting CHMP4B, CHMP3, and CHMP2A subunits along with the AAA+ ATPase VPS4B. Finally, we show that ALG-2 can also recruit the ESCRT-III machinery to the membrane via the canonical ESCRT-I/II pathway. Our reconstitution experiments delineate the minimal sets of components needed to assemble the entire membrane repair machinery and open an avenue for the mechanistic understanding of endolysosomal membrane repair.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Chenxi Ou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin Rose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun 2022; 13:3781. [PMID: 35773250 PMCID: PMC9246882 DOI: 10.1038/s41467-022-31237-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional 'volume' electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo 'inflations' linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.
Collapse
Affiliation(s)
- Joy Lachat
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Alice Pascault
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Delphine Thibaut
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Allon Weiner
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France.
| |
Collapse
|
35
|
The ESCRT Machinery: Remodeling, Repairing, and Sealing Membranes. MEMBRANES 2022; 12:membranes12060633. [PMID: 35736340 PMCID: PMC9229795 DOI: 10.3390/membranes12060633] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is used by the cell to perform reverse membrane scission in essential processes like protein degradation, cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association with upstream targeting factors. Here, we review recent advances in our understanding of the molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a key function to preserve cellular viability and organellar function.
Collapse
|
36
|
Lan Y, He W, Wang G, Wang Z, Chen Y, Gao F, Song D. Potential Antiviral Strategy Exploiting Dependence of SARS-CoV-2 Replication on Lysosome-Based Pathway. Int J Mol Sci 2022; 23:ijms23116188. [PMID: 35682877 PMCID: PMC9181800 DOI: 10.3390/ijms23116188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The recent novel coronavirus (SARS-CoV-2) disease (COVID-19) outbreak created a severe public health burden worldwide. Unfortunately, the SARS-CoV-2 variant is still spreading at an unprecedented speed in many countries and regions. There is still a lack of effective treatment for moderate and severe COVID-19 patients, due to a lack of understanding of the SARS-CoV-2 life cycle. Lysosomes, which act as “garbage disposals” for nearly all types of eukaryotic cells, were shown in numerous studies to support SARS-CoV-2 replication. Lysosome-associated pathways are required for virus entry and exit during replication. In this review, we summarize experimental evidence demonstrating a correlation between lysosomal function and SARS-CoV-2 replication, and the development of lysosomal perturbation drugs as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
- Correspondence: (Y.L.); (D.S.)
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130022, China;
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Yuzhu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
- Correspondence: (Y.L.); (D.S.)
| |
Collapse
|
37
|
Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR, Parker PJ. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal 2022; 15:eabj6915. [PMID: 35380879 PMCID: PMC7612652 DOI: 10.1126/scisignal.abj6915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.
Collapse
Affiliation(s)
- Spyridoula-Angeliki Nikou
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Natalia K. Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Bianca M. Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Mary J. Green
- Experimental Histopathology Lab, The Francis Crick Institute; London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Peter J. Parker
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- School of Cancer and Pharmaceutical Sciences, New Hunt’s House, King’s College London; London, UK
| |
Collapse
|