1
|
Zeng Y, Antoniou A. Regulation of synaptic mitochondria by extracellular vesicles and its implications for neuronal metabolism and synaptic plasticity. J Cereb Blood Flow Metab 2025:271678X251337630. [PMID: 40367393 DOI: 10.1177/0271678x251337630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Mitochondrial metabolism in neurons is necessary for energetically costly processes like synaptic transmission and plasticity. As post-mitotic cells, neurons are therefore faced with the challenge of maintaining healthy functioning mitochondria throughout lifetime. The precise mechanisms of mitochondrial maintenance in neurons, and particularly in morphologically complex dendrites and axons, are not fully understood. Evidence from several biological systems suggests the regulation of cellular metabolism by extracellular vesicles (EVs), secretory lipid-enclosed vesicles that have emerged as important mediators of cell communication. In the nervous system, neuronal and glial EVs were shown to regulate neuronal circuit development and function, at least in part via the transfer of protein and RNA cargo. Interestingly, EVs have been implicated in diseases characterized by altered metabolism, such as cancer and neurodegenerative diseases. Furthermore, nervous system EVs were shown to contain proteins related to metabolic processes, mitochondrial proteins and even intact mitochondria. Here, we present the current knowledge of the mechanisms underlying neuronal mitochondrial maintenance, and highlight recent evidence suggesting the regulation of synaptic mitochondria by neuronal and glial cell EVs. We further discuss the potential implications of EV-mediated regulation of mitochondrial maintenance and function in neuronal circuit development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuzhou Zeng
- Medical Faculty, University of Bonn, Bonn, Germany
| | - Anna Antoniou
- Medical Faculty, University of Bonn, Bonn, Germany
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Zhang J, Cheng X, Hu A, Zhang X, Zhang M, Zhang L, Dai J, Yan G, Shen H, Fei G. A comprehensive view of the molecular features within the serum and serum EV of Alzheimer's disease. Analyst 2025; 150:922-935. [PMID: 39895359 DOI: 10.1039/d4an01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Conventional Alzheimer's disease research mainly focuses on cerebrospinal fluid, which requires an invasive sampling procedure. This method carries inherent risks for patients and could potentially lower patient compliance. EVs (Extracellular Vesicles) and blood are two emerging noninvasive mediators reflecting the pathological changes of Alzheimer's disease. Integrating the two serum proteomic information based on DIA (Data Independent Acquisition) is conducive to the comparison of serological research strategies, mining pathological information of AD, and evaluating the potential of EVs and blood in the diagnosis of AD. We generated a combined proteomic data resource of 39 serum samples derived from patients with AD and from age-matched controls (AMC) and identified 639 PGs (protein groups) in serum samples and 714 PGs in serum EV samples. The differentially expressed protein groups identified in both serum and serum EV provide a reflective profile of the pathological characteristics associated with AD. The combined strategy performed well, identifying 40 potential diagnostic markers with AUC values above 0.85, including two molecular diagnostic models that achieved an effectiveness score of 0.991.
Collapse
Affiliation(s)
- Jiayi Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Anqi Hu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xin Zhang
- Art school, Jiangsu University, Jiangsu, 212000, China
| | - Meng Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Jiawei Dai
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Guoquan Yan
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China.
| |
Collapse
|
3
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
4
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
5
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Huynh T, Cang Z. Topological and geometric analysis of cell states in single-cell transcriptomic data. Brief Bioinform 2024; 25:bbae176. [PMID: 38632952 PMCID: PMC11024518 DOI: 10.1093/bib/bbae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/29/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables dissecting cellular heterogeneity in tissues, resulting in numerous biological discoveries. Various computational methods have been devised to delineate cell types by clustering scRNA-seq data, where clusters are often annotated using prior knowledge of marker genes. In addition to identifying pure cell types, several methods have been developed to identify cells undergoing state transitions, which often rely on prior clustering results. The present computational approaches predominantly investigate the local and first-order structures of scRNA-seq data using graph representations, while scRNA-seq data frequently display complex high-dimensional structures. Here, we introduce scGeom, a tool that exploits the multiscale and multidimensional structures in scRNA-seq data by analyzing the geometry and topology through curvature and persistent homology of both cell and gene networks. We demonstrate the utility of these structural features to reflect biological properties and functions in several applications, where we show that curvatures and topological signatures of cell and gene networks can help indicate transition cells and the differentiation potential of cells. We also illustrate that structural characteristics can improve the classification of cell types.
Collapse
Affiliation(s)
- Tram Huynh
- Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, NC 27695, USA
| | - Zixuan Cang
- Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, NC 27695, USA
| |
Collapse
|
7
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
8
|
Yu H, Tai Q, Yang C, Gao M, Zhang X. Technological development of multidimensional liquid chromatography-mass spectrometry in proteome research. J Chromatogr A 2023; 1700:464048. [PMID: 37167805 DOI: 10.1016/j.chroma.2023.464048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for high-throughput proteomic research. Limited by the peak capacity, the separation performance of conventional single-dimensional LC hampers the development of proteomics. Combining different separation modes orthogonally, multidimensional liquid chromatography (MDLC) with high peak capacity was developed to address this challenge. MDLC has evolved rapidly since its establishment, and the progress of proteomics has been greatly facilitated by the advent of novel MDLC-MS-based methods. In this paper, we will review the advances of MDLC-MS-based methodologies and technologies in proteomics studies, from different perspectives including novel application scenarios and proteomic targets, automation, miniaturization, and the improvement of the classic methods in recent years. In addition, attempts regarding new MDLC-MS models are also mentioned together with the outlook of MDLC-MS-based proteomics methods.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Chemistry, Fudan University, 200438, China
| | - Qunfei Tai
- Department of Chemistry, Fudan University, 200438, China
| | - Chenjie Yang
- Department of Chemistry, Fudan University, 200438, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, 200438, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, 200438, China.
| |
Collapse
|
9
|
The molecular memory code and synaptic plasticity: A synthesis. Biosystems 2023; 224:104825. [PMID: 36610586 DOI: 10.1016/j.biosystems.2022.104825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
The most widely accepted view of memory in the brain holds that synapses are the storage sites of memory, and that memories are formed through associative modification of synapses. This view has been challenged on conceptual and empirical grounds. As an alternative, it has been proposed that molecules within the cell body are the storage sites of memory, and that memories are formed through biochemical operations on these molecules. This paper proposes a synthesis of these two views, grounded in a computational model of memory. Synapses are conceived as storage sites for the parameters of an approximate posterior probability distribution over latent causes. Intracellular molecules are conceived as storage sites for the parameters of a generative model. The model stipulates how these two components work together as part of an integrated algorithm for learning and inference.
Collapse
|
10
|
Ribarič S. Detecting Early Cognitive Decline in Alzheimer's Disease with Brain Synaptic Structural and Functional Evaluation. Biomedicines 2023; 11:355. [PMID: 36830892 PMCID: PMC9952956 DOI: 10.3390/biomedicines11020355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Early cognitive decline in patients with Alzheimer's (AD) is associated with quantifiable structural and functional connectivity changes in the brain. AD dysregulation of Aβ and tau metabolism progressively disrupt normal synaptic function, leading to loss of synapses, decreased hippocampal synaptic density and early hippocampal atrophy. Advances in brain imaging techniques in living patients have enabled the transition from clinical signs and symptoms-based AD diagnosis to biomarkers-based diagnosis, with functional brain imaging techniques, quantitative EEG, and body fluids sampling. The hippocampus has a central role in semantic and episodic memory processing. This cognitive function is critically dependent on normal intrahippocampal connections and normal hippocampal functional connectivity with many cortical regions, including the perirhinal and the entorhinal cortex, parahippocampal cortex, association regions in the temporal and parietal lobes, and prefrontal cortex. Therefore, decreased hippocampal synaptic density is reflected in the altered functional connectivity of intrinsic brain networks (aka large-scale networks), including the parietal memory, default mode, and salience networks. This narrative review discusses recent critical issues related to detecting AD-associated early cognitive decline with brain synaptic structural and functional markers in high-risk or neuropsychologically diagnosed patients with subjective cognitive impairment or mild cognitive impairment.
Collapse
Affiliation(s)
- Samo Ribarič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Ge WY, Deng X, Shi WP, Lin WJ, Chen LL, Liang H, Wang XT, Zhang TD, Zhao FZ, Guo WH, Yin DC. Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases In Vivo. Biomacromolecules 2023; 24:1-18. [PMID: 36507729 DOI: 10.1021/acs.biomac.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.
Collapse
Affiliation(s)
- Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng-Zhu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Non-commissioned Officer School, Army Medical University, Shijiazhuang 050081, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
12
|
Mathew B, Bathla S, Williams KR, Nairn AC. Deciphering Spatial Protein-Protein Interactions in Brain Using Proximity Labeling. Mol Cell Proteomics 2022; 21:100422. [PMID: 36198386 PMCID: PMC9650050 DOI: 10.1016/j.mcpro.2022.100422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular biomolecular complexes including protein-protein, protein-RNA, and protein-DNA interactions regulate and execute most biological functions. In particular in brain, protein-protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell-cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte-neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Department of Psychiatry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
13
|
Identification of Target Proteins Involved in Cochlear Hair Cell Progenitor Cytotoxicity following Gentamicin Exposure. J Clin Med 2022; 11:jcm11144072. [PMID: 35887836 PMCID: PMC9319054 DOI: 10.3390/jcm11144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.
Collapse
|
14
|
Kim G, Chen X, Yang Y. Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics 2022; 19:1119-1132. [PMID: 35426061 PMCID: PMC9587178 DOI: 10.1007/s13311-022-01232-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), once considered a pathway for cells to remove waste, have now emerged as an important mechanism for intercellular communication. EVs are particularly appealing in understanding the central nervous system (CNS) communication, given that there are very diverse cell types in the CNS and constant communications among various cells to respond to the frequently changing environment. While they are heterogeneous and new vesicles are continuously to be discovered, EVs are primarily classified as plasma membrane-derived microvesicles (MVs) and endosome-derived exosomes. Secretion of EVs has been shown from all CNS cell types in vitro and intercellular EV signaling has been implicated in neural development, axon integrity, neuron to glia communication, and propagation of protein aggregates formed by disease pathogenic proteins. However, significant hurdles remain to be tackled in understanding their physiological and pathological roles as well as how they can be developed as biomarkers or new therapeutics. Here we provide our summary on the known cell biology of EVs and discuss opportunities and challenges in understanding EV biology in the CNS and particularly their involvement in ALS pathogenesis.
Collapse
Affiliation(s)
- Gloria Kim
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Xuan Chen
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Claes M, Geeraerts E, Plaisance S, Mentens S, Van den Haute C, De Groef L, Arckens L, Moons L. Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature. Cells 2022; 11:1784. [PMID: 35681479 PMCID: PMC9179903 DOI: 10.3390/cells11111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.
Collapse
Affiliation(s)
- Marie Claes
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | | | - Stephanie Mentens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- KU Leuven Viral Vector Core, 3000 Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| |
Collapse
|