1
|
Reyes-Chapero RM, Tapia D, Ortega A, Laville A, Padilla-Orozco M, Fuentes-Serrano A, Serrano-Reyes M, Bargas J, Galarraga E. Cortical parvalbumin-expressing interneurons sample network oscillations in their synaptic activity. Neuroscience 2025; 573:25-41. [PMID: 40088965 DOI: 10.1016/j.neuroscience.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Synaptic activity is thought to be the primary input of the frequency bands conveyed in the electroencephalogram (EEG) and local field potentials (LFPs) recorded on the cortex. Here we ask whether synaptic activity observed in parvalbumin expressing (PV + ) neurons recorded in isolated cortical tissue bear these frequency bands. The muscarinic agonist carbachol (CCh) was used to increase cortical excitability. PV + neurons play a significant role in perisomatic inhibition and the synchronization of cortical ensembles to generate gamma (γ) oscillations during cholinergic modulation. γ-oscillations associate with cognitive activities co-existing with slower rhythms. While CCh induces depolarization and firing in pyramidal neurons, it only causes barrages of synaptic potentials without firing in most PV + neurons. We show that the frequency spectra of CCh-induced synaptic events recorded onto layer 5 PV + neurons display the various frequency bands generated by cortical networks: from δ to γ. Isolation of inhibitory events shows potency increases in the δ band and decreases in other bands. Isolated excitatory events exhibit a decrease in the β-band. Excitatory potentials appear to drive the circuitry while inhibitory ones appear to regulate events frequency. Muscarinic M1-class receptors are mainly responsible for the synaptic activity from which oscillatory bands emerge. These results demonstrate that PV + interneurons "sample" network activity through the ligand-gated synaptic events that receive from it. We conclude that random synaptic events recorded in single neurons contain the wide range of brain oscillations as revealed by frequency spectra and power density analyses.
Collapse
Affiliation(s)
- Rosa M Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Alejandra Fuentes-Serrano
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México; Departamento de Ingeniería en Sistemas Biomédicos, Centro de Ingeniería Avanzada, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México.
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México.
| |
Collapse
|
2
|
Griesius S, Richardson A, Kullmann DM. Supralinear dendritic integration in murine dendrite-targeting interneurons. eLife 2025; 13:RP100268. [PMID: 39887034 PMCID: PMC11785373 DOI: 10.7554/elife.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.
Collapse
Affiliation(s)
- Simonas Griesius
- Department of Clinical Experimental and Epilepsy, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Amy Richardson
- Department of Clinical Experimental and Epilepsy, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Dimitri Michael Kullmann
- Department of Clinical Experimental and Epilepsy, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Sinha A, Gleeson P, Marin B, Dura-Bernal S, Panagiotou S, Crook S, Cantarelli M, Cannon RC, Davison AP, Gurnani H, Silver RA. The NeuroML ecosystem for standardized multi-scale modeling in neuroscience. eLife 2025; 13:RP95135. [PMID: 39792574 PMCID: PMC11723582 DOI: 10.7554/elife.95135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows. NeuroML, a model description language for computational neuroscience, was developed to address this fragmentation in modeling tools. Since its inception, NeuroML has evolved into a mature community standard that encompasses a wide range of model types and approaches in computational neuroscience. It has enabled the development of a large ecosystem of interoperable open-source software tools for the creation, visualization, validation, and simulation of data-driven models. Here, we describe how the NeuroML ecosystem can be incorporated into research workflows to simplify the construction, testing, and analysis of standardized models of neural systems, and supports the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, thus promoting open, transparent and reproducible science.
Collapse
Affiliation(s)
- Ankur Sinha
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Padraig Gleeson
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Bóris Marin
- Universidade Federal do ABCSão Bernardo do CampoBrazil
| | - Salvador Dura-Bernal
- SUNY Downstate Medical CenterBrooklynUnited States
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | | | | | | | | | | | | | - Robin Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Ichim AM, Barzan H, Moca VV, Nagy-Dabacan A, Ciuparu A, Hapca A, Vervaeke K, Muresan RC. The gamma rhythm as a guardian of brain health. eLife 2024; 13:e100238. [PMID: 39565646 DOI: 10.7554/elife.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Gamma oscillations in brain activity (30-150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a 'servicing' rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.
Collapse
Grants
- RO-NO-2019-0504 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERA-NET-FLAG-ERA-ModelDXConsciousness Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-UnscrAMBLY Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-FLAG-ERA-MONAD Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-IBRAA Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-RESIST-D Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-IV-P8-8.1-PRE-HE-ORG-2024-0185 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- 952096 NEUROTWIN European Commission
- INSPIRE POC 488/1/1/2014+/127725 Ministerul Investițiilor și Proiectelor Europene
Collapse
Affiliation(s)
- Ana Maria Ichim
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Preclinical MRI Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Harald Barzan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adriana Nagy-Dabacan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adela Hapca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Koen Vervaeke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raul Cristian Muresan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Yao Y, Li Q. The Role of Parvalbumin Interneurons in Autism Spectrum Disorder. J Neurosci Res 2024; 102:e25391. [PMID: 39400385 DOI: 10.1002/jnr.25391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
As an important subtype of GABAergic interneurons, parvalbumin (PV) interneurons play a critical role in regulating cortical circuits and neural networks. Abnormalities in the development or function of PV interneurons have been linked to autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by social and language deficits. In this review, we focus on the abnormalities of PV interneurons in ASD, including quantity and function and discuss the underlying mechanisms of impairments in PV interneurons in the pathology of ASD. Finally, we propose potential therapeutic approaches targeting PV interneurons, such as transplanting MGE progenitor cells and utilizing optogenetic stimulation in the treatment of ASD.
Collapse
Affiliation(s)
- Yiwei Yao
- Department of Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Li
- Department of Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
7
|
Laham BJ, Gore IR, Brown CJ, Gould E. Adult-born granule cells modulate CA2 network activity during retrieval of developmental memories of the mother. eLife 2024; 12:RP90600. [PMID: 38833278 PMCID: PMC11149928 DOI: 10.7554/elife.90600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Adult-born granule cells (abGCs) project to the CA2 region of the hippocampus, but it remains unknown how this circuit affects behavioral function. Here, we show that abGC input to the CA2 of adult mice is involved in the retrieval of remote developmental memories of the mother. Ablation of abGCs impaired the ability to discriminate between a caregiving mother and a novel mother, and this ability returned after abGCs were regenerated. Chemogenetic inhibition of projections from abGCs to the CA2 also temporarily prevented the retrieval of remote mother memories. These findings were observed when abGCs were inhibited at 4-6 weeks old, but not when they were inhibited at 10-12 weeks old. We also found that abGCs are necessary for differentiating features of CA2 network activity, including theta-gamma coupling and sharp wave ripples, in response to novel versus familiar social stimuli. Taken together, these findings suggest that abGCs are necessary for neuronal oscillations associated with discriminating between social stimuli, thus enabling retrieval of remote developmental memories of the mother by their adult offspring.
Collapse
Affiliation(s)
- Blake J Laham
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Casey J Brown
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
8
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
9
|
Baravalle R, Canavier CC. Synchrony in Networks of Type 2 Interneurons Is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes. eNeuro 2024; 11:ENEURO.0399-23.2024. [PMID: 38471777 PMCID: PMC10972736 DOI: 10.1523/eneuro.0399-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Synchronization in the gamma band (25-150 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's Type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for Type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition.
Collapse
Affiliation(s)
- Roman Baravalle
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana 70112
| | - Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
10
|
Zhao M, Gu H, Pan W, Liu P, Zhu T, Shang H, Jia M, Yang J. SynCAM1 deficiency in the hippocampal parvalbumin interneurons contributes to sevoflurane-induced cognitive impairment in neonatal rats. CNS Neurosci Ther 2024; 30:e14554. [PMID: 38105652 PMCID: PMC10805405 DOI: 10.1111/cns.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
AIMS Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined. METHODS Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air. The Y maze test (YMT) and Morris water maze (MWM) tests were performed in some cohorts from age P35 to assess cognitive functions, and their brain samples were harvested at age P14, 21, 28, 35, and 42 for measurements of various molecular entities and in vivo electrophysiology experiments at age P35. RESULTS Sevoflurane exposure resulted in cognitive impairment that was associated with decreased synCAM1 expression in parvalbumin (PV) interneurons, a reduction of PV phenotype, disturbed gamma oscillations, and dendritic spine loss in the hippocampal CA3 region. Enriched environment (EE) increased synCAM1 expression in the PV interneurons and attenuated sevoflurane-induced cognitive impairment. The synCAM1 overexpression by the adeno-associated virus vector in the hippocampal CA3 region restored sevoflurane-induced cognitive impairment, PV phenotype loss, gamma oscillations decrease, and dendritic spine loss. CONCLUSION Our data suggested that neonatal sevoflurane exposure results in cognitive impairment through decreased synCAM1 expression in PV interneurons in the hippocampus.
Collapse
Affiliation(s)
- Ming‐ming Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Han‐wen Gu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wei‐tong Pan
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Pan‐miao Liu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ting‐ting Zhu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Hui‐jie Shang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
11
|
Kang Q, Jiang S, Min J, Hu F, Xu R. Parvalbumin interneurons dysfunction is potentially associated with FαMNs decrease and NRG1-ErbB4 signaling inhibition in spinal cord in amyotrophic lateral sclerosis. Aging (Albany NY) 2023; 15:15324-15339. [PMID: 38157256 PMCID: PMC10781496 DOI: 10.18632/aging.205351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To investigate the alteration of PV interneurons in ALS mainly focusing its dynamic changes and its relationship with motor neurons and ErbB4 signaling. METHODS SOD1G93A mice were used as ALS model. ALS animals were divided into different groups according to birth age: symptomatic prophase (50~60 days), symptomatic phase (90~100 days), and symptomatic progression (130~140 days). Immunofluorescence was performed for measurement of PV-positive interneurons, MMP-9, ChAT, NeuN and ErbB4. RT-qPCR and western blot were used to determine the expression of PV and MMP-9. RESULTS PV expression was remarkably higher in the anterior horn of gray matter compared with posterior horn and area in the middle of gray matter in control mice. In ALS mice, PV, MMP-9 and ErbB4 levels were gradually decreased along with onset. PV, MMP-9 and ErbB4 levels in ALS mice were significantly down-regulated than control mice after onset, indicating the alteration of PV interneurons, FαMNs and ErbB4. SαMNs levels only decreased remarkably at symptomatic progression in ALS mice compared with control mice, while γMNs levels showed no significant change during whole period in all mice. MMP-9 and ErbB4 were positively correlated with PV. NRG1 treatment significantly enhanced the expression of ErBb4, PV and MMP-9 in ALS mice. CONCLUSION PV interneurons decrease is along with FαMNs and ErbB4 decrease in ALS mice.
Collapse
Affiliation(s)
- Qin Kang
- Department of Neurology, Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Neurology, Jiangxi Provincial People’s Hospital, First Affiliated Hospital of Nanchang Medical College, Clinical College of Nanchang Medical College, Nanchang 330006, Jiangxi, P.R. China
| | - Shishi Jiang
- Department of Neurology, Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People’s Hospital, First Affiliated Hospital of Nanchang Medical College, Clinical College of Nanchang Medical College, Nanchang 330006, Jiangxi, P.R. China
| | - Renshi Xu
- Department of Neurology, Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Neurology, Jiangxi Provincial People’s Hospital, First Affiliated Hospital of Nanchang Medical College, Clinical College of Nanchang Medical College, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
12
|
Milicevic KD, Barbeau BL, Lovic DD, Patel AA, Ivanova VO, Antic SD. Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100121. [PMID: 38616956 PMCID: PMC11015061 DOI: 10.1016/j.crneur.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 04/16/2024] Open
Abstract
Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Brianna L. Barbeau
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Darko D. Lovic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Aayushi A. Patel
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Violetta O. Ivanova
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Srdjan D. Antic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| |
Collapse
|
13
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Richard S, Ren J, Flamant F. Thyroid hormone action during GABAergic neuron maturation: The quest for mechanisms. Front Endocrinol (Lausanne) 2023; 14:1256877. [PMID: 37854197 PMCID: PMC10579935 DOI: 10.3389/fendo.2023.1256877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.
Collapse
Affiliation(s)
| | | | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, USC1370 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Lyon, France
| |
Collapse
|
15
|
Baravalle R, Canavier CC. Synchrony in Networks of Type 2 Interneurons is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560219. [PMID: 37873166 PMCID: PMC10592850 DOI: 10.1101/2023.09.29.560219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synchronization in the gamma band (30-80 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator, as previously shown for type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and stochastic population oscillator regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition. Significance Statement Brain rhythms in the gamma frequency band (30-80 Hz) depend on the activity of inhibitory interneurons and evidence for a causal role for gamma oscillations in cognitive functions is accumulating. Here we extend previous studies on synchronization mechanisms to interneurons that have an abrupt threshold frequency below which they cannot sustain firing. In addition to current based synapses, we examined inhibitory networks with conductance based synapses. We found that if the reversal potential for inhibition was below the average membrane potential (hyperpolarizing), synchrony was more robust to noise than if the reversal potential was very close to the average potential (shunting). These results have implications for therapies to ameliorate cognitive deficits.
Collapse
|
16
|
Kilpatrick LA, Zhang K, Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Labus JS, Naliboff BD, Mayer EA, Gupta A. Mediation of the association between disadvantaged neighborhoods and cortical microstructure by body mass index. COMMUNICATIONS MEDICINE 2023; 3:122. [PMID: 37714947 PMCID: PMC10504354 DOI: 10.1038/s43856-023-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Living in a disadvantaged neighborhood is associated with worse health outcomes, including brain health, yet the underlying biological mechanisms are incompletely understood. We investigated the relationship between neighborhood disadvantage and cortical microstructure, assessed as the T1-weighted/T2-weighted ratio (T1w/T2w) on magnetic resonance imaging, and the potential mediating roles of body mass index (BMI) and stress, as well as the relationship between trans-fatty acid intake and cortical microstructure. METHODS Participants comprised 92 adults (27 men; 65 women) who underwent neuroimaging and provided residential address information. Neighborhood disadvantage was assessed as the 2020 California State area deprivation index (ADI). The T1w/T2w ratio was calculated at four cortical ribbon levels (deep, lower-middle, upper-middle, and superficial). Perceived stress and BMI were assessed as potential mediating factors. Dietary data was collected in 81 participants. RESULTS Here, we show that worse ADI is positively correlated with BMI (r = 0.27, p = .01) and perceived stress (r = 0.22, p = .04); decreased T1w/T2w ratio in middle/deep cortex in supramarginal, temporal, and primary motor regions (p < .001); and increased T1w/T2w ratio in superficial cortex in medial prefrontal and cingulate regions (p < .001). Increased BMI partially mediates the relationship between worse ADI and observed T1w/T2w ratio increases (p = .02). Further, trans-fatty acid intake (high in fried fast foods and obesogenic) is correlated with these T1w/T2w ratio increases (p = .03). CONCLUSIONS Obesogenic aspects of neighborhood disadvantage, including poor dietary quality, may disrupt information processing flexibility in regions involved in reward, emotion regulation, and cognition. These data further suggest ramifications of living in a disadvantaged neighborhood on brain health.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA.
| | - Keying Zhang
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Gilbert C Gee
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- California Center for Population Research, University of California, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- California Center for Population Research, University of California, Los Angeles, CA, USA
| | - May Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Bruce D Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
18
|
Kilpatrick L, Zhang K, Dong T, Gee G, Beltran-Sanchez H, Wang M, Labus J, Naliboff B, Mayer E, Gupta A. Mediating role of obesity on the association between disadvantaged neighborhoods and intracortical myelination. RESEARCH SQUARE 2023:rs.3.rs-2592087. [PMID: 36993600 PMCID: PMC10055549 DOI: 10.21203/rs.3.rs-2592087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We investigated the relationship between neighborhood disadvantage (area deprivation index [ADI]) and intracortical myelination (T1-weighted/T2-weighted ratio at deep to superficial cortical levels), and the potential mediating role of the body mass index (BMI) and perceived stress in 92 adults. Worse ADI was correlated with increased BMI and perceived stress (p's<.05). Non-rotated partial least squares analysis revealed associations between worse ADI and decreased myelination in middle/deep cortex in supramarginal, temporal, and primary motor regions and increased myelination in superficial cortex in medial prefrontal and cingulate regions (p<.001); thus, neighborhood disadvantage may influence the flexibility of information processing involved in reward, emotion regulation, and cognition. Structural equation modelling revealed increased BMI as partially mediating the relationship between worse ADI and observed myelination increases (p=.02). Further, trans-fatty acid intake was correlated with observed myelination increases (p=.03), suggesting the importance of dietary quality. These data further suggest ramifications of neighborhood disadvantage on brain health.
Collapse
Affiliation(s)
| | | | - Tien Dong
- University of California Los Angeles
| | | | | | - May Wang
- University of California Los Angeles
| | | | | | | | | |
Collapse
|
19
|
Mueller-Buehl C, Wegrzyn D, Bauch J, Faissner A. Regulation of the E/I-balance by the neural matrisome. Front Mol Neurosci 2023; 16:1102334. [PMID: 37143468 PMCID: PMC10151766 DOI: 10.3389/fnmol.2023.1102334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In the mammalian cortex a proper excitatory/inhibitory (E/I) balance is fundamental for cognitive functions. Especially γ-aminobutyric acid (GABA)-releasing interneurons regulate the activity of excitatory projection neurons which form the second main class of neurons in the cortex. During development, the maturation of fast-spiking parvalbumin-expressing interneurons goes along with the formation of net-like structures covering their soma and proximal dendrites. These so-called perineuronal nets (PNNs) represent a specialized form of the extracellular matrix (ECM, also designated as matrisome) that stabilize structural synapses but prevent the formation of new connections. Consequently, PNNs are highly involved in the regulation of the synaptic balance. Previous studies revealed that the formation of perineuronal nets is accompanied by an establishment of mature neuronal circuits and by a closure of critical windows of synaptic plasticity. Furthermore, it has been shown that PNNs differentially impinge the integrity of excitatory and inhibitory synapses. In various neurological and neuropsychiatric disorders alterations of PNNs were described and aroused more attention in the last years. The following review gives an update about the role of PNNs for the maturation of parvalbumin-expressing interneurons and summarizes recent findings about the impact of PNNs in different neurological and neuropsychiatric disorders like schizophrenia or epilepsy. A targeted manipulation of PNNs might provide an interesting new possibility to indirectly modulate the synaptic balance and the E/I ratio in pathological conditions.
Collapse
|
20
|
Via G, Baravalle R, Fernandez FR, White JA, Canavier CC. Interneuronal network model of theta-nested fast oscillations predicts differential effects of heterogeneity, gap junctions and short term depression for hyperpolarizing versus shunting inhibition. PLoS Comput Biol 2022; 18:e1010094. [PMID: 36455063 PMCID: PMC9747050 DOI: 10.1371/journal.pcbi.1010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/13/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Theta and gamma oscillations in the hippocampus have been hypothesized to play a role in the encoding and retrieval of memories. Recently, it was shown that an intrinsic fast gamma mechanism in medial entorhinal cortex can be recruited by optogenetic stimulation at theta frequencies, which can persist with fast excitatory synaptic transmission blocked, suggesting a contribution of interneuronal network gamma (ING). We calibrated the passive and active properties of a 100-neuron model network to capture the range of passive properties and frequency/current relationships of experimentally recorded PV+ neurons in the medial entorhinal cortex (mEC). The strength and probabilities of chemical and electrical synapses were also calibrated using paired recordings, as were the kinetics and short-term depression (STD) of the chemical synapses. Gap junctions that contribute a noticeable fraction of the input resistance were required for synchrony with hyperpolarizing inhibition; these networks exhibited theta-nested high frequency oscillations similar to the putative ING observed experimentally in the optogenetically-driven PV-ChR2 mice. With STD included in the model, the network desynchronized at frequencies above ~200 Hz, so for sufficiently strong drive, fast oscillations were only observed before the peak of the theta. Because hyperpolarizing synapses provide a synchronizing drive that contributes to robustness in the presence of heterogeneity, synchronization decreases as the hyperpolarizing inhibition becomes weaker. In contrast, networks with shunting inhibition required non-physiological levels of gap junctions to synchronize using conduction delays within the measured range.
Collapse
Affiliation(s)
- Guillem Via
- Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana, United States of America
| | - Roman Baravalle
- Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana, United States of America
| | - Fernando R. Fernandez
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| | - John A. White
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| | - Carmen C. Canavier
- Louisiana State University Health Sciences Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana, United States of America
| |
Collapse
|