1
|
Fisler G, Brewer MR, Yaipen O, Deutschman CS, Taylor MD. Age influences the circulating immune profile in pediatric sepsis. Front Immunol 2025; 16:1527142. [PMID: 39935482 PMCID: PMC11810941 DOI: 10.3389/fimmu.2025.1527142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Background The immune response changes as patients age, yet studies on the immune dysregulation of sepsis often do not consider age as a key variable. Objective We hypothesized that age would influence the immune response in septic children and that there would be a distinct variation in the immune profile in healthy children and children with either sepsis, uncomplicated infection, or acute organ dysfunction without infection. We characterized the circulating immune profile of children presenting to our tertiary care children's hospital. Methods This investigation was a prospective, observational cohort study that enrolled patients from July 2020 - September 2022. Patients were included if they were < 21 years, admitted to the PICU, and received fluid resuscitation and antibiotics. Peripheral blood mononuclear cells were isolated from samples collected on PICU day 1. Results Eighty patients were enrolled. Children with sepsis had more regulatory CD4+ T cells and memory CD4+ T cells and less CD4+IL-10+ and CD8+T-bet+ T cells than healthy children. After ex vivo stimulation, sepsis samples had less of a reduction in CD4+ T cells producing IL-10 than healthy controls. Memory CD4+ T cells and regulatory CD4+ T cells were positively associated with age in sepsis alone. Conclusion A regulatory T cell failure may contribute to pediatric sepsis pathogenesis. Age is an important variable affecting sepsis-associated immune dysregulation and memory T cells in peripheral circulation correlate with age in sepsis alone.
Collapse
Affiliation(s)
- Grace Fisler
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Northwell, Division of Pediatric Critical Care Medicine, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mariana R. Brewer
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Northwell, Division of Neonatology, New Hyde Park, NY, United States
| | - Omar Yaipen
- Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Clifford S. Deutschman
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Northwell, Division of Pediatric Critical Care Medicine, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew D. Taylor
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Northwell, Division of Pediatric Critical Care Medicine, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
2
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
3
|
Zhao XJ, Li M, Zhang S, Li K, Wei WQ, Chen JJ, Xu Q, Lv CL, Liu T, Wang GL, Fang LQ. Epidemiological and immunological characteristics of middle-aged and elderly people in housing estates after Omicron BA.5 wave in Jinan, China. Heliyon 2024; 10:e38382. [PMID: 39398026 PMCID: PMC11467590 DOI: 10.1016/j.heliyon.2024.e38382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
A great number of COVID-19 patients was caused by Omicron BA.5 subvariant between December 2022 and January 2023 after the end of the zero-COVID-19 policy in China. In this study, we clarified the epidemiological and immunological characteristics of 457 enrolled middle-aged and elderly population in two housing estates after Omicron BA.5 wave. A total of 89.9 % (411/457) individuals have suffered Omicron BA.5 infection, among which 78.1 % (321/411) were symptomatic. The elderly patients were more likely to show fatigue and had longer symptomatic period than that of middle-aged patients post Omicron BA.5 infection. Omicron XBB and BA.2.86 subvariants extensively escaped the immunity elicited by Omicron BA.5 infection. The level of neutralizing antibody was mostly affected by vaccination doses rather than underlying disease status in these participants. It is very important to strengthen the epidemiological investigation and immune resistance assessment among elderly population for control of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ke Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Wang-Qian Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Zhang J, Meng Y, Yang M, Hao W, Liu J, Wu L, Yu X, Zhang Y, Lin B, Xie C, Ge L, Zhijie Zhang, Tong W, Chang Q, Liu Y, Zhang Y, Qin X. A prospective cohort-based artificial intelligence evaluation system for the protective efficacy and immune response of SARS-CoV-2 inactivated vaccines. Int Immunopharmacol 2024; 134:112141. [PMID: 38733819 DOI: 10.1016/j.intimp.2024.112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Novel coronaviruses constitute a significant health threat, prompting the adoption of vaccination as the primary preventive measure. However, current evaluations of immune response and vaccine efficacy are deemed inadequate. OBJECTIVES The study sought to explore the evolving dynamics of immune response at various vaccination time points and during breakthrough infections. It aimed to elucidate the synergistic effects of epidemiological factors, humoral immunity, and cellular immunity. Additionally, regression curves were used to determine the correlation between the protective efficacy of the vaccine and the stimulated immune response. METHODS Employing LASSO for high-dimensional data analysis, the study utilised four machine learning algorithms-logistical regression, random forest, LGBM classifier, and AdaBoost classifier-to comprehensively assess the immune response following booster vaccination. RESULTS Neutralising antibody levels exhibited a rapid surge post-booster, escalating to 102.38 AU/mL at one week and peaking at 298.02 AU/mL at two weeks. Influential factors such as sex, age, disease history, and smoking status significantly impacted post-booster antibody levels. The study further constructed regression curves for neutralising antibodies, non-switched memory B cells, CD4+T cells, and CD8+T cells using LASSO combined with the random forest algorithm. CONCLUSION The establishment of an artificial intelligence evaluation system emerges as pivotal for predicting breakthrough infection prognosis after the COVID-19 booster vaccination. This research underscores the intricate interplay between various components of immunity and external factors, elucidating key insights to enhance vaccine effectiveness. 3D modelling discerned distinctive interactions between humoral and cellular immunity within prognostic groups (Class 0-2). This underscores the critical role of the synergistic effect of humoral immunity, cellular immunity, and epidemiological factors in determining the protective efficacy of COVID-19 vaccines post-booster administration.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuan Meng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaojun Yu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lili Ge
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Trevino TN, Almousawi AA, Robinson KF, Fogel AB, Class J, Minshall RD, Tai LM, Richner JM, Lutz SE. Caveolin-1 mediates blood-brain barrier permeability, neuroinflammation, and cognitive impairment in SARS-CoV-2 infection. J Neuroimmunol 2024; 388:578309. [PMID: 38335781 PMCID: PMC11212674 DOI: 10.1016/j.jneuroim.2024.578309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Blood-brain barrier (BBB) permeability can cause neuroinflammation and cognitive impairment. Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on the BBB and consequent neurological outcomes in respiratory viral infections is unknown. We used Cav-1-deficient mice with genetically encoded fluorescent endothelial tight junctions to determine how Cav-1 influences BBB permeability, neuroinflammation, and cognitive impairment following respiratory infection with mouse adapted (MA10) SARS-CoV-2 as a model for COVID-19. We found that SARS-CoV-2 infection increased brain endothelial Cav-1 and increased transcellular BBB permeability to albumin, decreased paracellular BBB Claudin-5 tight junctions, and caused T lymphocyte infiltration in the hippocampus, a region important for learning and memory. Concordantly, we observed learning and memory deficits in SARS-CoV-2 infected mice. Importantly, genetic deficiency in Cav-1 attenuated transcellular BBB permeability and paracellular BBB tight junction losses, T lymphocyte infiltration, and gliosis induced by SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results establish the contribution of Cav-1 to BBB permeability and behavioral dysfunction induced by SARS-CoV-2 neuroinflammation.
Collapse
Affiliation(s)
- Troy N Trevino
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Ali A Almousawi
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - KaReisha F Robinson
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Avital B Fogel
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Jake Class
- Departments of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, USA
| | - Richard D Minshall
- Departments of Anesthesiology, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, USA
| | - Leon M Tai
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Justin M Richner
- Departments of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, USA
| | - Sarah E Lutz
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA.
| |
Collapse
|
6
|
Usai C, Ainsua-Enrich E, Gales VU, Pradenas E, Lorca-Oró C, Tarrés-Freixas F, Roca N, Pérez M, Ávila-Nieto C, Rodríguez de la Concepción ML, Pedreño-Lopez N, Carabelli J, Trinité B, Ballana E, Riveira-Muñoz E, Izquierdo-Useros N, Clotet B, Blanco J, Guallar V, Cantero G, Vergara-Alert J, Carrillo J, Segalés J. Immunisation efficacy of a stabilised SARS-CoV-2 spike glycoprotein in two geriatric animal models. NPJ Vaccines 2024; 9:48. [PMID: 38413645 PMCID: PMC10899648 DOI: 10.1038/s41541-024-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.
Collapse
Affiliation(s)
- Carla Usai
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | - Cristina Lorca-Oró
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ferran Tarrés-Freixas
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Mónica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | | | | | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Catalonia, Spain
- Fundació Lluita contra les Infeccions, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Catalonia, Spain
| | - Victor Guallar
- Life Science Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain.
- CIBERINFEC. ISCIII, Madrid, Spain.
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la UAB, Bellaterra, Spain.
| |
Collapse
|
7
|
Clever S, Schünemann LM, Armando F, Meyer zu Natrup C, Tuchel T, Tscherne A, Ciurkiewicz M, Baumgärtner W, Sutter G, Volz A. Protective MVA-ST Vaccination Robustly Activates T Cells and Antibodies in an Aged-Hamster Model for COVID-19. Vaccines (Basel) 2024; 12:52. [PMID: 38250865 PMCID: PMC10819389 DOI: 10.3390/vaccines12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is associated with a decline in immune system functionality. So-called immunosenescence may impair the successful vaccination of elderly people. Thus, improved vaccination strategies also suitable for an aged immune system are required. Modified Vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient vaccinia virus that has been established as a multipurpose viral vector for vaccine development against various infections. We characterized a recombinant MVA expressing a prefusion-stabilized version of SARS-CoV-2 S protein (MVA-ST) in an aged-hamster model for COVID-19. Intramuscular MVA-ST immunization resulted in protection from disease and severe lung pathology. Importantly, this protection was correlated with a potent activation of SARS-CoV-2 specific T-cells and neutralizing antibodies. Our results suggest that MVA vector vaccines merit further evaluation in preclinical models to contribute to future clinical development as candidate vaccines in elderly people to overcome the limitations of age-dependent immunosenescence.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany (W.B.)
- Pathology Unit, Department of Veterinary Science, University of Parma, 43121 Parma, Italy
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany; (A.T.); (G.S.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany (W.B.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany; (A.T.); (G.S.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| |
Collapse
|
8
|
Esparcia-Pinedo L, Lancho-Sánchez Á, Tsukalov I, Pacheco MI, Martínez-Fleta P, Pérez-Miés B, Palacios-Calvo J, Sánchez-Madrid F, Martín-Gayo E, Alfranca A. T regulatory lymphocytes specific for SARS-CoV-2 display increased functional plasticity. Clin Immunol 2023; 256:109806. [PMID: 37827267 DOI: 10.1016/j.clim.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Ángel Lancho-Sánchez
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | | | - María I Pacheco
- Medical Oncology Department Hospital Universitario de La Princesa, and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Belén Pérez-Miés
- Pathology Department, Ramón y Cajal University Hospital, CIBERONC, IRYCIS and University of Alcalá, Madrid, Spain
| | - José Palacios-Calvo
- Pathology Department, Ramón y Cajal University Hospital, CIBERONC, IRYCIS and University of Alcalá, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Enrique Martín-Gayo
- Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Zhang H, Xu N, Xu Y, Qin P, Dai R, Xu B, Wang S, Ding L, Fu J, Zhang S, Hua Q, Liao Y, Yang J, Hu X, Jiang J, Lv H. Safety and immunogenicity of Ad5-nCoV immunization after three-dose priming with inactivated SARS-CoV-2 vaccine in Chinese adults. Nat Commun 2023; 14:4757. [PMID: 37553338 PMCID: PMC10409730 DOI: 10.1038/s41467-023-40489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Data on the safety and immunity of a heterologous booster (fourth dose) after three-doses of inactivated SARS-CoV-2 vaccine in Chinese adults are limited. We evaluate the safety and immunogenicity of Ad5-nCoV in a randomized, double-blind, parallel-controlled phase 4 clinical trial in Zhejiang, China (NCT05373030). Participants aged 18-80 years (100 per group), administered three doses of inactivated SARS-CoV-2 vaccine ≥6 months earlier, are enrolled and randomized 1:1 into two groups, which are administered intramuscular Ad5-nCoV or inactivated SARS-CoV-2 vaccine (CoronaVac or Covilo). All observed adverse reactions are predictable and manageable. Ad5-nCoV elicits significantly higher RBD-specific IgG levels, with a geometric mean concentration of 2924.0 on day 14 post-booster, 7.8-fold that of the inactivated vaccine. Pseudovirus-neutralizing antibodies to Omicron BA.4/5 show a similar pattern, with geometric mean titers of 228.9 in Ad5-nCoV group and 65.5 in inactivated vaccine group. Ad5-nCoV booster maintains high antibody levels on day 90, with seroconversion of 71.4%, while that of inactivated vaccine is 5.2%, almost pre-booster levels. A fourth Ad5-nCoV vaccination following three-doses of inactivated SARS-CoV-2 vaccine is immunogenic, tolerable, and more efficient than inactivated SARS-CoV-2 vaccine. Ad5-nCoV elicits a stronger humoral response against Omicron BA.4/5 and maintains antibody levels for longer than homologous boosting.
Collapse
Affiliation(s)
- Hangjie Zhang
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Nani Xu
- Xihu District Center for Disease Control and Prevention, Hangzhou, 310007, China
| | - Yu Xu
- CanSino Biologics, Tianjin, 300457, China
| | - Pan Qin
- Xihu District Center for Disease Control and Prevention, Hangzhou, 310007, China
| | - Rongrong Dai
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Bicheng Xu
- CanSino Biologics, Tianjin, 300457, China
| | - Shenyu Wang
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Linling Ding
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Jian Fu
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | | | - Qianhui Hua
- School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuting Liao
- School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Juan Yang
- School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Xiaowei Hu
- Xihu District Center for Disease Control and Prevention, Hangzhou, 310007, China
| | - Jianmin Jiang
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, 310057, China
| | - Huakun Lv
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China.
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, 310057, China.
| |
Collapse
|
10
|
Hurst JH, Mohan AA, Dalapati T, George IA, Aquino JN, Lugo DJ, Pfeiffer TS, Rodriguez J, Rotta AT, Turner NA, Burke TW, McClain MT, Henao R, DeMarco CT, Louzao R, Denny TN, Walsh KM, Xu Z, Mejias A, Ramilo O, Woods CW, Kelly MS. Differential host responses within the upper respiratory tract and peripheral blood of children and adults with SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.31.23293337. [PMID: 37577568 PMCID: PMC10418569 DOI: 10.1101/2023.07.31.23293337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is among the strongest risk factors for severe outcomes from SARS-CoV-2 infection. We sought to evaluate associations between age and both mucosal and systemic host responses to SARS-CoV-2 infection. We profiled the upper respiratory tract (URT) and peripheral blood transcriptomes of 201 participants (age range of 1 week to 83 years), including 137 non-hospitalized individuals with mild SARS-CoV-2 infection and 64 uninfected individuals. Among uninfected children and adolescents, young age was associated with upregulation of innate and adaptive immune pathways within the URT, suggesting that young children are primed to mount robust mucosal immune responses to exogeneous respiratory pathogens. SARS-CoV-2 infection was associated with broad induction of innate and adaptive immune responses within the URT of children and adolescents. Peripheral blood responses among SARS-CoV-2-infected children and adolescents were dominated by interferon pathways, while upregulation of myeloid activation, inflammatory, and coagulation pathways was observed only in adults. Systemic symptoms among SARS-CoV-2-infected subjects were associated with blunted innate and adaptive immune responses in the URT and upregulation of many of these same pathways within peripheral blood. Finally, within individuals, robust URT immune responses were correlated with decreased peripheral immune activation, suggesting that effective immune responses in the URT may promote local viral control and limit systemic immune activation and symptoms. These findings demonstrate that there are differences in immune responses to SARS-CoV-2 across the lifespan, including between young children and adolescents, and suggest that these varied host responses contribute to observed differences in the clinical presentation of SARS-CoV-2 infection by age. One Sentence Summary Age is associated with distinct upper respiratory and peripheral blood transcriptional responses among children and adults with SARS-CoV-2 infection.
Collapse
|
11
|
Fomin G, Tabynov K, Islamov R, Turebekov N, Yessimseit D, Yerubaev T. Cytokine response and damages in the lungs of aging Syrian hamsters on a high-fat diet infected with the SARS-CoV-2 virus. Front Immunol 2023; 14:1223086. [PMID: 37520568 PMCID: PMC10375707 DOI: 10.3389/fimmu.2023.1223086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Hypertriglyceridemia, obesity, and aging are among the key risk factors for severe COVID-19 with acute respiratory distress syndrome (ARDS). One of the main prognostic biomarkers of ARDS is the level of cytokines IL-6 and TNF-α in the blood. In our study, we modeled hyperglyceridemia and hypercholesterolemia on 18-month-old Syrian hamsters (Mesocricetus auratus). By 18 months, the animals showed such markers of aging as weight stabilization with a tendency to reduce it, polycystic liver disease, decreased motor activity, and foci of alopecia. The high-fat diet caused an increase in triglycerides and cholesterol, as well as fatty changes in the liver. On the third day after infection with the SARS-CoV-2 virus, animals showed a decrease in weight in the groups with a high-fat diet. In the lungs of males on both diets, there was an increase in the concentration of IFN-α, as well as IL-6 in both males and females, regardless of the type of diet. At the same time, the levels of TNF-α and IFN-γ did not change in infected animals. Morphological studies of the lungs of hamsters with SARS-CoV-2 showed the presence of a pathological process characteristic of ARDS. These included bronchointerstitial pneumonia and diffuse alveolar damages. These observations suggest that in aging hamsters, the immune response to pro-inflammatory cytokines may be delayed to a later period. Hypertriglyceridemia, age, and gender affect the severity of COVID-19. These results will help to understand the pathogenesis of COVID-19 associated with age, gender, and disorders of fat metabolism in humans.
Collapse
Affiliation(s)
- Gleb Fomin
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Kairat Tabynov
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Rinat Islamov
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Nurkeldi Turebekov
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Duman Yessimseit
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Toktasyn Yerubaev
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| |
Collapse
|
12
|
Delval L, Hantute-Ghesquier A, Sencio V, Flaman JM, Robil C, Angulo FS, Lipskaia L, Çobanoğlu O, Lacoste AS, Machelart A, Danneels A, Corbin M, Deruyter L, Heumel S, Idziorek T, Séron K, Sauve F, Bongiovanni A, Prévot V, Wolowczuk I, Belouzard S, Saliou JM, Gosset P, Bernard D, Rouillé Y, Adnot S, Duterque-Coquillaud M, Trottein F. Removal of senescent cells reduces the viral load and attenuates pulmonary and systemic inflammation in SARS-CoV-2-infected, aged hamsters. NATURE AGING 2023; 3:829-845. [PMID: 37414987 PMCID: PMC10353934 DOI: 10.1038/s43587-023-00442-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/24/2023] [Indexed: 07/08/2023]
Abstract
Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection. Relative to young hamsters, aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Early treatment with ABT-263 lowered pulmonary viral load in aged (but not young) animals, an effect associated with lower expression of ACE2, the receptor for SARS-CoV-2. ABT-263 treatment also led to lower pulmonary and systemic levels of senescence-associated secretory phenotype factors and to amelioration of early and late lung disease. These data demonstrate the causative role of age-associated pre-existing senescent cells on COVID-19 severity and have clear clinical relevance.
Collapse
Affiliation(s)
- Lou Delval
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Aline Hantute-Ghesquier
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, Institut Pasteur de Lille-CANTHER, Lille, France
| | - Valentin Sencio
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Jean Michel Flaman
- Université de Lyon, CNRS, INSERM, U1052-UMR 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France
| | - Cyril Robil
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Fabiola Silva Angulo
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Larissa Lipskaia
- Université de Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Ozmen Çobanoğlu
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Anne-Sophie Lacoste
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014, Platforms Lille in Biology & Health, Lille, France
| | - Arnaud Machelart
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Adeline Danneels
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Corbin
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Lucie Deruyter
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Séverine Heumel
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Thierry Idziorek
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, Institut Pasteur de Lille-CANTHER, Lille, France
| | - Karin Séron
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Florent Sauve
- Université de Lille, INSERM, CHU Lille, U1172-UMR 9017, Lille Neuroscience & Cognition Research Center, Lille, France
| | - Antonino Bongiovanni
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014, Platforms Lille in Biology & Health, Lille, France
| | - Vincent Prévot
- Université de Lille, INSERM, CHU Lille, U1172-UMR 9017, Lille Neuroscience & Cognition Research Center, Lille, France
| | - Isabelle Wolowczuk
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Sandrine Belouzard
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Michel Saliou
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014, Platforms Lille in Biology & Health, Lille, France
| | - Philippe Gosset
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - David Bernard
- Université de Lyon, CNRS, INSERM, U1052-UMR 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France
| | - Yves Rouillé
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
| | - Serge Adnot
- Université de Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Martine Duterque-Coquillaud
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, Institut Pasteur de Lille-CANTHER, Lille, France
| | - François Trottein
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France.
| |
Collapse
|
13
|
Carrau L, Frere JJ, Golynker I, Fajardo A, Rivera CF, Horiuchi S, Roonprapunt T, Minkoff JM, Blanco-Melo D, TenOever B. Delayed engagement of host defenses enables SARS-CoV-2 viremia and productive infection of distal organs in the hamster model of COVID-19. Sci Signal 2023; 16:eadg5470. [PMID: 37311033 DOI: 10.1126/scisignal.adg5470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Clinical presentations that develop in response to infection result from interactions between the pathogen and host defenses. SARS-CoV-2, the etiologic agent of COVID-19, directly antagonizes these defenses, leading to delayed immune engagement in the lungs that materializes only as cells succumb to infection and are phagocytosed. Leveraging the golden hamster model of COVID-19, we sought to understand the dynamics between SARS-CoV-2 infection in the airways and the systemic host response that ensues. We found that early SARS-CoV-2 replication was largely confined to the respiratory tract and olfactory system and, to a lesser extent, the heart and gastrointestinal tract but generated a host antiviral response in every organ as a result of circulating type I and III interferons. Moreover, we showed that diminishing the response in the airways by immunosuppression or administration of SARS-CoV-2 intravenously resulted in decreased immune priming, viremia, and increased viral tropism, including productive infection of the liver, kidney, spleen, and brain. Last, we showed that productive infection of the airways was required for mounting an effective and system-wide antiviral response. Together, these data illustrate how COVID-19 can result in diverse clinical presentations in which disease outcomes can be a by-product of the speed and strength of immune engagement. These studies provide additional evidence for the mechanistic basis of the diverse clinical presentations of COVID-19 and highlight the ability of the respiratory tract to generate a systemic immune defense after pathogen recognition.
Collapse
Affiliation(s)
- Lucia Carrau
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Justin J Frere
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Alvaro Fajardo
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Cristobal F Rivera
- Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shu Horiuchi
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Tyler Roonprapunt
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Judith M Minkoff
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | - Benjamin TenOever
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
14
|
Cong Y, Lee JH, Perry DL, Cooper K, Wang H, Dixit S, Liu DX, Feuerstein IM, Solomon J, Bartos C, Seidel J, Hammoud DA, Adams R, Anthony SM, Liang J, Schuko N, Li R, Liu Y, Wang Z, Tarbet EB, Hischak AMW, Hart R, Isic N, Burdette T, Drawbaugh D, Huzella LM, Byrum R, Ragland D, St Claire MC, Wada J, Kurtz JR, Hensley LE, Schmaljohn CS, Holbrook MR, Johnson RF. Longitudinal analyses using 18F-Fluorodeoxyglucose positron emission tomography with computed tomography as a measure of COVID-19 severity in the aged, young, and humanized ACE2 SARS-CoV-2 hamster models. Antiviral Res 2023; 214:105605. [PMID: 37068595 PMCID: PMC10105383 DOI: 10.1016/j.antiviral.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ji Hyun Lee
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, Bethesda, MD, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Hui Wang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Irwin M Feuerstein
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jeffrey Solomon
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christopher Bartos
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jurgen Seidel
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Scott M Anthony
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nicolette Schuko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - E Bart Tarbet
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Amanda M W Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nejra Isic
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Tracey Burdette
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Danny Ragland
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Marisa C St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jonathan R Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Reed F Johnson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; SARS-CoV-2 Virology Core Laboratory, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Wang Y, Cao Y, Li Y, Yuan M, Xu J, Li J. Identification of key signaling pathways and hub genes related to immune infiltration in Kawasaki disease with resistance to intravenous immunoglobulin based on weighted gene co-expression network analysis. Front Mol Biosci 2023; 10:1182512. [PMID: 37325483 PMCID: PMC10267737 DOI: 10.3389/fmolb.2023.1182512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Kawasaki disease (KD) is an acute vasculitis, that is, the leading cause of acquired heart disease in children, with approximately 10%-20% of patients with KD suffering intravenous immunoglobulin (IVIG) resistance. Although the underlying mechanism of this phenomenon remains unclear, recent studies have revealed that immune cell infiltration may associate with its occurrence. Methods: In this study, we downloaded the expression profiles from the GSE48498 and GSE16797 datasets in the Gene Expression Omnibus database, analyzed differentially expressed genes (DEGs), and intersected the DEGs with the immune-related genes downloaded from the ImmPort database to obtain differentially expressed immune-related genes (DEIGs). Then CIBERSORT algorithm was used to calculate the immune cell compositions, followed by the WGCNA analysis to identify the module genes associated with immune cell infiltration. Next, we took the intersection of the selected module genes and DEIGs, then performed GO and KEGG enrichment analysis. Moreover, ROC curve validation, Spearman analysis with immune cells, TF, and miRNA regulation network, and potential drug prediction were implemented for the finally obtained hub genes. Results: The CIBERSORT algorithm showed that neutrophil expression was significantly higher in IVIG-resistant patients compared to IVIG-responsive patients. Next, we got differentially expressed neutrophil-related genes by intersecting DEIGs with neutrophil-related module genes obtained by WGCNA, for further analysis. Enrichment analysis revealed that these genes were associated with immune pathways, such as cytokine-cytokine receptor interaction and neutrophil extracellular trap formation. Then we combined the PPI network in the STRING database with the MCODE plugin in Cytoscape and identified 6 hub genes (TLR8, AQP9, CXCR1, FPR2, HCK, and IL1R2), which had good diagnostic performance in IVIG resistance according to ROC analysis. Furthermore, Spearman's correlation analysis confirmed that these genes were closely related to neutrophils. Finally, TFs, miRNAs, and potential drugs targeting the hub genes were predicted, and TF-, miRNA-, and drug-gene networks were constructed. Conclusion: This study found that the 6 hub genes (TLR8, AQP9, CXCR1, FPR2, HCK, and IL1R2) were significantly associated with neutrophil cell infiltration, which played an important role in IVIG resistance. In a word, this work rendered potential diagnostic biomarkers and prospective therapeutic targets for IVIG-resistant patients.
Collapse
Affiliation(s)
- Yue Wang
- Clinical Laboratory Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yinyin Cao
- Cardiovascular Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yang Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Meifen Yuan
- Clinical Laboratory Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jin Xu
- Clinical Laboratory Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jian Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
16
|
Bermejo-Martin JF, García-Mateo N, Motos A, Resino S, Tamayo L, Ryan Murua P, Bustamante-Munguira E, Gallego Curto E, Úbeda-Iglesias A, de la Torre MDC, Estella Á, Campos-Fernández S, Martínez Varela I, Pérez-García F, Socias L, López Messa J, Vidal-Cortés P, Sagredo Meneses V, González-Rivera M, Carbonell N, de Gonzalo-Calvo D, Martín Delgado MC, Valdivia LJ, Martín-López C, Jorge García RN, Maseda E, Loza-Vázquez A, Kelvin DJ, Barbé F, Torres A. Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study. THE LANCET. MICROBE 2023:S2666-5247(23)00041-1. [PMID: 37116517 PMCID: PMC10129133 DOI: 10.1016/s2666-5247(23)00041-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. METHODS We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero (<1 N1 copies per mL), VIR-N1-Low (1-2747 N1 copies per mL), and VIR-N1-Storm (>2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. FINDINGS 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16-0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26-0·57; p<0·0001, compared with the VIR-N1-Storm group). INTERPRETATION The presence of a so-called viral storm is associated with increased all-cause death in patients admitted to the intensive care unit with severe COVID-19. Preventing this viral storm could help to reduce poor outcomes. Viral storm could be an enrichment marker for treatment with antivirals or purification devices to remove viral components from the blood. FUNDING Instituto de Salud Carlos III, Canadian Institutes of Health Research, Li Ka-Shing Foundation, Research Nova Scotia, and European Society of Clinical Microbiology and Infectious Diseases. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jesús F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Gerencia Regional de Salud de Castilla y León, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain.
| | - Nadia García-Mateo
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - Anna Motos
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Salvador Resino
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Luis Tamayo
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Medicine Service, Hospital Universitario Rio Hortega, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pablo Ryan Murua
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Internal Medicine Service, Hospital Infanta Leonor, Madrid, Spain
| | - Elena Bustamante-Munguira
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Medicine Service, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Elena Gallego Curto
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Medicine Service, Hospital San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Ángel Estella
- Intensive Care Unit, Hospital Universitario de Jerez, Departamento de Medicina Universidad de Cádiz, INiBICA, Cádiz, Spain
| | - Sandra Campos-Fernández
- Critical Care Medicine Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | - Felipe Pérez-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Clinical Microbiology Service, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain; Biomedicine and Biotechnology Department, Faculty of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - Juan López Messa
- Critical Care Medicine Service, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - Pablo Vidal-Cortés
- Intensive Care Unit, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | | | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - David de Gonzalo-Calvo
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | | | | | | | | | - Emilio Maseda
- Anesthesiology and Reanimation Service, Hospital Universitario de la Paz, Madrid, Spain
| | - Ana Loza-Vázquez
- Critical Care Medicine Service, Hospital Universitario Nuestra Señora de Valme, Sevilla, Spain
| | - David J Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Ferrán Barbé
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | - Antoni Torres
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pulmonology, Hospital Clinic de Barcelona, Institut D Investigacions August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Anderson G, Almulla AF, Reiter RJ, Maes M. Redefining Autoimmune Disorders' Pathoetiology: Implications for Mood and Psychotic Disorders' Association with Neurodegenerative and Classical Autoimmune Disorders. Cells 2023; 12:cells12091237. [PMID: 37174637 PMCID: PMC10177037 DOI: 10.3390/cells12091237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Although previously restricted to a limited number of medical conditions, there is a growing appreciation that 'autoimmune' (or immune-mediated) processes are important aspects of a wide array of diverse medical conditions, including cancers, neurodegenerative diseases and psychiatric disorders. All of these classes of medical conditions are associated with alterations in mitochondrial function across an array of diverse cell types. Accumulating data indicate the presence of the mitochondrial melatonergic pathway in possibly all body cells, with important consequences for pathways crucial in driving CD8+ T cell and B-cell 'autoimmune'-linked processes. Melatonin suppression coupled with the upregulation of oxidative stress suppress PTEN-induced kinase 1 (PINK1)/parkin-driven mitophagy, raising the levels of the major histocompatibility complex (MHC)-1, which underpins the chemoattraction of CD8+ T cells and the activation of antibody-producing B-cells. Many factors and processes closely associated with autoimmunity, including gut microbiome/permeability, circadian rhythms, aging, the aryl hydrocarbon receptor, brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) all interact with the mitochondrial melatonergic pathway. A number of future research directions and novel treatment implications are indicated for this wide collection of poorly conceptualized and treated medical presentations. It is proposed that the etiology of many 'autoimmune'/'immune-mediated' disorders should be conceptualized as significantly determined by mitochondrial dysregulation, with alterations in the mitochondrial melatonergic pathway being an important aspect of these pathoetiologies.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX 78229, USA
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Scaramuzzo G, Nucera F, Asmundo A, Messina R, Mari M, Montanaro F, Johansen MD, Monaco F, Fadda G, Tuccari G, Hansbro NG, Hansbro PM, Hansel TT, Adcock IM, David A, Kirkham P, Caramori G, Volta CA, Spadaro S. Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance. J Inflamm (Lond) 2023; 20:11. [PMID: 36941580 PMCID: PMC10027286 DOI: 10.1186/s12950-023-00333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Alessio Asmundo
- Medicina Legale, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Roberto Messina
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Matilde Mari
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Federica Montanaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Matt D. Johansen
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Guido Fadda
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Trevor T. Hansel
- Medical Research Council and Asthma, UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Antonio David
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Paul Kirkham
- Department of Biomedical Sciences, Faculty of Sciences and Engineering, University of Wolverhampton, West Midlands, Wolverhampton, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| |
Collapse
|
19
|
Seibert B, Cáceres CJ, Carnaccini S, Cardenas-Garcia S, Gay LC, Ortiz L, Geiger G, Rajao DS, Ottesen E, Perez DR. Pathobiology and dysbiosis of the respiratory and intestinal microbiota in 14 months old Golden Syrian hamsters infected with SARS-CoV-2. PLoS Pathog 2022; 18:e1010734. [PMID: 36279276 PMCID: PMC9632924 DOI: 10.1371/journal.ppat.1010734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking. To address this gap, we inoculated 14 months old GSH with a prototypic ancestral strain of SARS2 and studied the effects on virus pathogenesis, virus shedding, and respiratory and gastrointestinal microbiome changes. SARS2 infection led to high vRNA loads in the nasal turbinates (NT), lungs, and trachea as well as higher pulmonary lesions scores later in infection. Dysbiosis throughout SARS2 disease progression was observed in the pulmonary microbial dynamics with the enrichment of opportunistic pathogens (Haemophilus, Fusobacterium, Streptococcus, Campylobacter, and Johnsonella) and microbes associated with inflammation (Prevotella). Changes in the gut microbial community also reflected an increase in multiple genera previously associated with intestinal inflammation and disease (Helicobacter, Mucispirillum, Streptococcus, unclassified Erysipelotrichaceae, and Spirochaetaceae). Influenza A virus (FLUAV) pre-exposure resulted in slightly more pronounced pathology in the NT and lungs early on (3 dpc), and more notable changes in lungs compared to the gut microbiome dynamics. Similarities among aged GSH and the microbiome in critically ill COVID-19 patients, particularly in the lower respiratory tract, suggest that GSHs are a representative model to investigate microbial changes during SARS2 infection. The relationship between the residential microbiome and other confounding factors, such as SARS2 infection, in a widely used animal model, contributes to a better understanding of the complexities associated with the host responses during viral infections.
Collapse
Affiliation(s)
- Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Lucia Ortiz
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth Ottesen
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|