1
|
Wellendorph P, Gauger SJ, Andersen JV, Kornum BR, Solbak SMO, Frølund B. International Union of Basic and Clinical Pharmacology. CXX. γ-Hydroxybutyrate protein targets in the mammalian brain-beyond classic receptors. Pharmacol Rev 2025; 77:100064. [PMID: 40449125 DOI: 10.1016/j.pharmr.2025.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
γ-Hydroxybutyrate (GHB) is a multifaceted compound with an intriguing, yet undeciphered, pharmacology in the mammalian brain. As a metabolite of GABA it is tightly regulated in terms of synthesis and degradation, and is found in micromolar concentrations in the brain. When GHB is taken in high pharmacological doses, it causes euphoria, relaxation, hypothermia, and sedation, and regulates sleep. Through careful pharmacological and genetic studies, this profile has been convincingly matched to the metabotropic GABAB receptor where GHB is a weak agonist. These effects explain the illicit substance use of GHB, but also its clinically useful effects as a drug in alcoholism and narcolepsy. Additionally, GHB binds with high affinity to a discrete binding site with high expression in the forebrain, and with very well defined anatomical, biochemical, and pharmacological characteristics. Despite this clear profile, the molecular identity of this binding protein or alleged "GHB receptor" has remained uncertain. However, recently, prompted by the development of GHB analogs with low nanomolar affinity and selectivity for the high-affinity site, the target was revealed to be the Ca2+/calmodulin (CaM)-dependent protein kinase II alpha subunit-a highly important brain kinase, mediating both physiological processes in synaptic plasticity, and detrimental Ca2+ signaling and cell death in cases of brain ischemia. The discovery of calmodulin-dependent protein kinase II alpha subunit as the high-affinity brain target for GHB represents a major leap forward in our understanding of GHB neurobiology, and dictates new times for GHB research, suggesting a potential role for GHB and GHB analogs as integrators of inhibitory and excitatory brain signaling. SIGNIFICANCE STATEMENT: γ-Hydroxybutyrate is a molecule with a multitude of actions in the mammalian brain, and with a rather complex molecular pharmacology. A low affinity at GABAB receptors, located mainly at inhibitory synapses, and a high affinity at the Ca2+/CaM-dependent protein kinase II alpha subunit, located at excitatory synapses, makes GHB pharmacology especially intriguing.
Collapse
Affiliation(s)
- Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Juul Gauger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara M O Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Prömer JJ, Wolske S, Castets P, van Woerden GM, Barresi C, O'Connor KC, Herbst R. MuSK is a substrate for CaMK2β but this interaction is dispensable for MuSK activation in vivo. Sci Rep 2025; 15:14865. [PMID: 40295530 PMCID: PMC12037915 DOI: 10.1038/s41598-025-95053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
The neuromuscular junction (NMJ) is the unique interface between lower motor neurons and skeletal muscle fibers and is indispensable for muscle function. Tight control of its localized formation at the center of every muscle fiber, and maintenance throughout lifetime are sustained by muscle-specific kinase (MuSK). MuSK acts as central regulator of acetylcholine receptor clustering at the postsynapse. Localized and temporally controlled signaling of MuSK is primarily achieved by tyrosine autophosphorylation and inhibition thereof. Previous investigations suggested serine phosphorylation of the activation domain as an additional modulator of MuSK activation. Here we identified calcium/calmodulin dependent protein kinase II (CaMK2) and in particular CaMK2β as novel catalyst of MuSK activation and confirmed its capability to phosphorylate MuSK in heterologous cells. However, whereas CaMK2β absence in muscle cells reduced AChR clustering, MuSK phosphorylation was unchanged. Accordingly, we ruled out MuSK phosphorylation as the cause of synapse fragmentation in a mouse model for myotonic dystrophy type 1, in which the muscle-specific splice-variant of CaMK2β is missing, or as the cause of ataxia or delayed muscle development in CaMK2β knockout animals. Histological characterization of muscles of CaMK2β knockout mice indicated specific roles of CaMK2β in fast glycolytic versus slow oxidative muscle. Taken together, our data shows that MuSK can be phosphorylated by CaMK2β, but loss of CaMK2β is likely compensated by other CaMK2 paralogs at the NMJ.
Collapse
Affiliation(s)
- Jakob J Prömer
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Sara Wolske
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Geeske M van Woerden
- Departments of Clinical Genetics, ENCORE center of expertise, Erasmus, Rotterdam, 3015 GD, MC, The Netherlands
- Neuroscience, ENCORE center of expertise, Erasmus, Rotterdam, 3015 GD, MC, The Netherlands
| | - Cinzia Barresi
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Kevin C O'Connor
- Departments of Neurology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - Ruth Herbst
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Pandey V, Hosokawa T, Hayashi Y, Urakubo H. Multiphasic protein condensation governed by shape and valency. Cell Rep 2025; 44:115504. [PMID: 40199325 DOI: 10.1016/j.celrep.2025.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/05/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) of biological macromolecules leads to the formation of various membraneless organelles. The multilayered and multiphasic form of LLPS can mediate complex cellular functions; however, the determinants of its topological features are not fully understood. Herein, we focus on synaptic proteins consisting of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its interacting partners and present a computational model that reproduces forms of LLPS, including a form of two-phase condensates, phase-in-phase (PIP) organization. The model analyses reveal that the PIP formation requires competitive binding between the proteins. The PIP forms only when CaMKII has high valency and a short linker length. Such CaMKII exhibits low surface tension, a modular structure, and slow diffusion, enabling it to stay in small biochemical domains for a long time, which is necessary for synaptic plasticity. Thus, the computational modeling reveals new structure-function relationships for CaMKII as a synaptic memory unit.
Collapse
Affiliation(s)
- Vikas Pandey
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hidetoshi Urakubo
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
4
|
Yang X, Ma X, Zhao T, Croucher DR, Nguyen EV, Clark KC, Hu C, Latham SL, Bayly-Jones C, Nguyen BV, Budnar S, Shin SY, Nguyen LK, Cotton TR, Chüeh AC, Lim Kam Sian TCC, Stratton MM, Ellisdon AM, Daly RJ. Activation of CAMK2 by pseudokinase PEAK1 represents a targetable pathway in triple negative breast cancer. Nat Commun 2025; 16:1871. [PMID: 39984440 PMCID: PMC11845518 DOI: 10.1038/s41467-025-57046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The PEAK family of pseudokinases, comprising PEAK1-3, play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screen for PEAK1 effectors and identify calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promotes CAMK2 activation in TNBC cells via PLCγ1/Ca2+ signalling and direct binding to CAMK2. In turn, CAMK2 phosphorylates PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurpose RA306, a second generation CAMK2 inhibitor. RA306 inhibits PEAK1-enhanced migration and invasion of TNBC cells in vitro and significantly attenuates TNBC xenograft growth and metastasis in a manner mirrored by PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus that integrates Ca2+ and tyrosine kinase signals and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.
Collapse
Affiliation(s)
- Xue Yang
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Xiuquan Ma
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Tianyue Zhao
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - David R Croucher
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Kimberley C Clark
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Changyuan Hu
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sharissa L Latham
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Charles Bayly-Jones
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bao V Nguyen
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Srikanth Budnar
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Thomas R Cotton
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Anderly C Chüeh
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Terry C C Lim Kam Sian
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Andrew M Ellisdon
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Ma Y, He C, Lin W, Wang J, Xu C, Pan D, Wang Z, Yao W, Dong R, Jia D, Li K. CAMK2G Promotes Neuronal Differentiation and Inhibits Migration in Neuroblastoma. J Pediatr Surg 2025; 60:161679. [PMID: 39266386 DOI: 10.1016/j.jpedsurg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Neuroblastoma (NB) originates from differentiation arrest of sympathoadrenal progenitors in the neural crest. It is necessary to reveal the differentiation mechanism of NB. Previously, we reported that Purkinje cell protein 4 (PCP4) is a well-differentiated marker of NB tissues. Herein, we explored the underlying mechanism of PCP4 induced differentiation in order to find better treatment options for patients. METHODS We screened the interacting proteins of PCP4 by co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometry (LC-MS/MS). Then we investigated the relevance between expression of calmodulin-dependent protein kinase II gamma (CAMK2G) and clinical features using R2 platform. We also explored the function of CAMK2G in NB cells by knockdown and RNA sequencing. RESULTS Here, we verified the binding of PCP4 and calmodulin (CaM) by Co-IP and identified a target kinase of CaM, CAMK2G, by LC-MS/MS. PCP4 overexpression activates the autophosphorylation of CAMK2G. Patients with high CAMK2G expression had better survival while low CAMK2G was associated with unfavorable clinical features including MYCN-amplification, unfavorable histology, progression and high INSS stage. CAMK2G knockdown inhibited neurite outgrowth and down-regulated neuronal differentiation markers (NF-H, MAP2), yet promoted migration, invasion and proliferation. Gene Ontology (GO) analysis showed that knockdown of CAMK2G downregulated the expression of neuronal differentiation-related genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that knockdown of CAMK2G upregulated the expression of migration-related genes. CONCLUSION These findings indicate that CAMK2G activated by PCP4/CaM complex promotes differentiation and inhibits migration in NB cells. LEVEL OF EVIDENCE Not applicable.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 201321, China
| | - Weihong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Chaoliang Xu
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Deshen Pan
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Deshui Jia
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
6
|
Hama S, Watanabe-Takahashi M, Nishimura H, Omi J, Tamada M, Saitoh T, Maenaka K, Okuda Y, Ikegami A, Kitagawa A, Furuta K, Izumi K, Shimizu E, Nishizono T, Fujiwara M, Miyasaka T, Takamori S, Takayanagi H, Nishikawa K, Kobayashi T, Toyama-Sorimachi N, Yamashita M, Senda T, Hirokawa T, Bito H, Nishikawa K. CaMKII-dependent non-canonical RIG-I pathway promotes influenza virus propagation in the acute-phase of infection. mBio 2025; 16:e0008724. [PMID: 39601535 PMCID: PMC11708044 DOI: 10.1128/mbio.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is one of hundreds of host-cell factors involved in the propagation of type A influenza virus (IAV), although its mechanism of action is unknown. Here, we identified CaMKII inhibitory peptide M3 by targeting its kinase domain using affinity-based screening of a tailored random peptide library. M3 inhibited IAV cytopathicity and propagation in cells by specifically inhibiting the acute-phase activation of retinoic acid-inducible gene I (RIG-I), which is uniquely regulated by CaMKII. Downstream of the RIG-I pathway activated TBK1 and then IRF3, which induced small but sufficient amounts of transcripts of the genes for IFN α/β to provide the capped 5'-ends that were used preferentially as primers to synthesize viral mRNAs by the cap-snatching mechanism. Importantly, knockout of RIG-I in cells almost completely inhibited the expression of IFN mRNAs and subsequent viral NP mRNA early in infection (up to 6 h after infection), which then protected cells from cytopathicity 24 h after infection. Thus, CaMKII-dependent acute-phase activation of RIG-I promoted IAV propagation, whereas the canonical RIG-I pathway stimulated antiviral activity by inducing large amounts of mRNA for IFNs and then for antiviral proteins later in infection. Co-administration of M3 with IAV infection rescued mice from the lethality and greatly reduced proinflammatory cytokine mRNA expression in the lung, indicating that M3 is highly effective against IAV in vivo. Thus, regulation of the CaMKII-dependent non-canonical RIG-I pathway may provide a novel host-factor-directed antiviral therapy.IMPORTANCEThe recent emergence of IAV strains resistant to commonly used therapeutic agents that target viral proteins has exacerbated the need for innovative strategies. Here, we originally identified CaMKII-inhibitory peptide M3, which efficiently inhibits IAV-lethality in vitro and in vivo. M3 specifically inhibited the acute-phase activation of RIG-I, which is a novel pathway to promote IAV propagation. Thus, this pathway acts in an opposite manner compared with the canonical RIG-I pathway, which plays essential roles in antiviral innate immune response later in infection. The CaMKII-dependent non-canonical RIG-I pathway can be a promising and novel drug target for the treatment of infections.
Collapse
Affiliation(s)
- Shinichiro Hama
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hiroki Nishimura
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masakazu Tamada
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takashi Saitoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuta Okuda
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Aoi Ikegami
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Asami Kitagawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Koudai Furuta
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kana Izumi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takashi Nishizono
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makoto Fujiwara
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tomohiro Miyasaka
- Department of Physiology and Anatomy, Faculty of Pharmacy, Nihon University, Funabashi, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Nishikawa
- Department of Cell Biology and Metabolic Biochemistry, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Toshihiko Kobayashi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
7
|
Bayer KU, Giese KP. A revised view of the role of CaMKII in learning and memory. Nat Neurosci 2025; 28:24-34. [PMID: 39558039 DOI: 10.1038/s41593-024-01809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a fundamental role in learning and possibly also in memory. However, current mechanistic models require fundamental revision. CaMKII autophosphorylation at Thr286 (pThr286) does not provide the molecular basis for long-term memory, as long believed. Instead, pThr286 mediates the signal processing required for induction of several distinct forms of synaptic plasticity, including Hebbian long-term potentiation and depression and non-Hebbian behavioral timescale synaptic plasticity. We discuss (i) the molecular computations by which CaMKII supports these diverse plasticity mechanisms, (ii) alternative CaMKII mechanisms that may contribute to the maintenance phase of LTP and (iii) the relationship of these mechanisms to behavioral learning and memory.
Collapse
Affiliation(s)
- Karl Ulrich Bayer
- Department of Pharmacology and Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK.
| |
Collapse
|
8
|
Zhang M, Zhang Y, Dong K, Lin J, Cui X, Zhang Y. Identification of Critical Phosphorylation Sites Enhancing Kinase Activity With a Bimodal Fusion Framework. Mol Cell Proteomics 2025; 24:100889. [PMID: 39617062 PMCID: PMC11774822 DOI: 10.1016/j.mcpro.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Phosphorylation is an indispensable regulatory mechanism in cells, with specific sites on kinases that can significantly enhance their activity. Although several such critical phosphorylation sites (phos-sites) have been experimentally identified, many more remain to be explored. To date, no computational method exists to systematically identify these critical phos-sites on kinases. In this study, we introduce PhoSiteformer, a transformer-inspired foundational model designed to generate embeddings of phos-sites using phosphorylation mass spectrometry data. Recognizing the complementary insights offered by protein sequence data and phosphorylation mass spectrometry data, we developed a classification model, CSPred, which employs a bimodal fusion strategy. CSPred combines embeddings from PhoSiteformer with those from the protein language model ProtT5. Our approach successfully identified 77 critical phos-sites on 58 human kinases. Two of these sites, T517 on PKG1 and T735 on PRKD3, have been experimentally verified. This study presents the first systematic and computational approach to identify critical phos-sites that enhance kinase activity.
Collapse
Affiliation(s)
- Menghuan Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizhi Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Keqin Dong
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jin Lin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xingang Cui
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Yong Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Guo Q, Huo Y, Liu Q, Zhou S, Xiao Y. Ruxolitinib as a CaMKII inhibitor for treatment of cardiac arrhythmias: Applications and prospects. Heart Rhythm 2025; 22:231-239. [PMID: 39111609 DOI: 10.1016/j.hrthm.2024.07.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Recent studies have highlighted the critical role of calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation in the pathogenesis of various cardiac arrhythmias. Ruxolitinib, a Janus kinase inhibitor widely used for the treatment of myelofibrosis and acute graft-vs-host disease, has expanded its research horizons to include its potential as a CaMKII inhibitor in the treatment of cardiac arrhythmias. This article reviews the basic pharmacologic properties of ruxolitinib and delves into the role of CaMKII in cardiac arrhythmias, including its structural fundamentals, activation mechanisms, and association with arrhythmic conditions. Furthermore, the current state of CaMKII inhibitor research is discussed, with a special focus on the advances and clinical potential of ruxolitinib in this field. Studies indicate that ruxolitinib effectively inhibits CaMKII activity and has therapeutic potential against cardiac arrhythmias in animal models and at the cellular level. In addition, we address the critical issues that need to be resolved before the clinical application of ruxolitinib in arrhythmia treatment, including dosage concerns, long-term inhibitory effects, potential impacts on the nervous system, and efficacy across different types of arrhythmias. Future research directions involve further exploration of the clinical application potential of ruxolitinib, particularly in diseases such as heart failure, hypertrophic cardiomyopathy, dilated cardiomyopathy, and ischemic arrhythmias. In summary, the efficacy, low toxicity, and safety profile of ruxolitinib as a CaMKII inhibitor in the treatment of cardiac arrhythmias suggest a promising future for its development as a therapeutic drug in this domain.
Collapse
Affiliation(s)
- Qingbo Guo
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Yiran Huo
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
Yang X, Ma X, Zhao T, Croucher DR, Nguyen EV, Clark KC, Hu C, Latham SL, Bayly-Jones C, Nguyen VCB, Budnar S, Shin S, Nguyen LK, Cotton TR, Chueh AC, Sian TCLK, Stratton MM, Ellisdon AM, Daly RJ. Feed-forward stimulation of CAMK2 by the oncogenic pseudokinase PEAK1 generates a therapeutically "actionable" signalling axis in triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580406. [PMID: 38405732 PMCID: PMC10888886 DOI: 10.1101/2024.02.14.580406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promoted CAMK2D/G activation in TNBC cells via a novel feed-forward mechanism involving PEAK1/PLCg1/Ca2+ signalling and direct binding via a consensus CAMK2 interaction motif in the PEAK1 N-terminus. In turn, CAMK2 phosphorylated PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurposed RA306, a second generation CAMK2 inhibitor under pre-clinical development for treatment of cardiovascular disease. RA306 demonstrated on-target activity against CAMK2 in TNBC cells and inhibited PEAK1-enhanced migration and invasion in vitro. Moreover, RA306 significantly attenuated TNBC xenograft growth and blocked metastasis in a manner mirrored by CRISPR-mediated PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus, identify a novel mechanism for regulation of Ca2+ signalling and its integration with tyrosine kinase signals, and identify CAMK2 as a therapeutically "actionable" target downstream of PEAK1.
Collapse
|
11
|
Rumian NL, Barker CM, Larsen ME, Tullis JE, Freund RK, Taslimi A, Coultrap SJ, Tucker CL, Dell'Acqua ML, Bayer KU. LTP expression mediated by autonomous activity of GluN2B-bound CaMKII. Cell Rep 2024; 43:114866. [PMID: 39395168 PMCID: PMC11563194 DOI: 10.1016/j.celrep.2024.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Learning and memory are thought to require the induction and maintenance of long-term potentiation (LTP) of synaptic strength. LTP induction requires the Ca2+/calmodulin-dependent protein kinase II (CaMKII) but for structural rather than enzymatic functions. We show that the relevant structural function is regulated by CaMKII binding to the NMDA-type glutamate receptor subunit GluN2B. This binding directly generates Ca2+-independent autonomous CaMKII activity, and we show that this enzymatic activity is dispensable for LTP induction (within 5 min) but required for a subsequent LTP phase (within 15 min). This requirement for CaMKII activity provides an objective temporal definition for the intermediary phase of LTP expression. Later LTP maintenance may still require structural functions of GluN2B-bound CaMKII but not the resulting enzymatic CaMKII activity or their co-condensation. Thus, autonomous CaMKII activity mediates post-induction LTP but (1) via GluN2B binding, not T286 autophosphorylation, and (2) during the intermediary expression phase rather than for long-term maintenance.
Collapse
Affiliation(s)
- Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - C Madison Barker
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew E Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amir Taslimi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Willim J, Woike D, Greene D, Das S, Pfeifer K, Yuan W, Lindsey A, Itani O, Böhme AL, Tibbe D, Hönck HH, Hassani Nia F, Zech M, Brunet T, Faivre L, Sorlin A, Vitobello A, Smol T, Colson C, Baranano K, Schatz K, Bayat A, Schoch K, Spillmann R, Davis EE, Conboy E, Vetrini F, Platzer K, Neuser S, Gburek-Augustat J, Grace AN, Mitchell B, Stegmann A, Sinnema M, Meeks N, Saunders C, Cadieux-Dion M, Hoyer J, Van-Gils J, de Sainte-Agathe JM, Thompson ML, Bebin EM, Weisz-Hubshman M, Tabet AC, Verloes A, Levy J, Latypova X, Harder S, Silverman GA, Pak SC, Schedl T, Freson K, Mumford A, Turro E, Schlein C, Shashi V, Kreienkamp HJ. Variants in LRRC7 lead to intellectual disability, autism, aggression and abnormal eating behaviors. Nat Commun 2024; 15:7909. [PMID: 39256359 PMCID: PMC11387733 DOI: 10.1038/s41467-024-52095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Members of the leucine rich repeat (LRR) and PDZ domain (LAP) protein family are essential for animal development and histogenesis. Densin-180, encoded by LRRC7, is the only LAP protein selectively expressed in neurons. Densin-180 is a postsynaptic scaffold at glutamatergic synapses, linking cytoskeletal elements with signalling proteins such as the α-subunit of Ca2+/calmodulin-dependent protein kinase II. We have previously observed an association between high impact variants in LRRC7 and Intellectual Disability; also three individual cases with variants in LRRC7 had been described. We identify here 33 individuals (one of them previously described) with a dominant neurodevelopmental disorder due to heterozygous missense or loss-of-function variants in LRRC7. The clinical spectrum involves intellectual disability, autism, ADHD, aggression and, in several cases, hyperphagia-associated obesity. A PDZ domain variant interferes with synaptic targeting of Densin-180 in primary cultured neurons. Using in vitro systems (two hybrid, BioID, coimmunoprecipitation of tagged proteins from 293T cells) we identified new candidate interaction partners for the LRR domain, including protein phosphatase 1 (PP1), and observed that variants in the LRR reduced binding to these proteins. We conclude that LRRC7 encodes a major determinant of intellectual development and behaviour.
Collapse
Affiliation(s)
- Jana Willim
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Greene
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Pfeifer
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weimin Yuan
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Anika Lindsey
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Omar Itani
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Amber L Böhme
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon-Bourgogne, Dijon, France
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
| | - Arthur Sorlin
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
- Laboratoire de Génomique médicale, Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM-Université de Bourgogne-UMR1231 GAD, Dijon, France
- Laboratoire de Génomique médicale, Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Thomas Smol
- Univ. Lille, CHU Lille, ULR7364 - RADEME, Lille, France
| | - Cindy Colson
- Univ. Lille, CHU Lille, ULR7364 - RADEME, Lille, France
| | - Kristin Baranano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista Schatz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department for Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erin Conboy
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University of Leipzig Medical Center, Leipzig, Germany
| | - Alexandra Noel Grace
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
| | - Bailey Mitchell
- Baylor College of Medicine in San Antonio, San Antonio, TX, USA
| | - Alexander Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Naomi Meeks
- Children's Hospital Colorado, Division of Clinical Genetics & Metabolism, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julien Van-Gils
- Genetics Lab, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | | | | | | - Monika Weisz-Hubshman
- Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, Tx, USA
| | - Anne-Claude Tabet
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Xenia Latypova
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Sönke Harder
- Mass spectrometry and Proteome Analytics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ernest Turro
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
14
|
Chen X, Cai Q, Zhou J, Pleasure SJ, Schulman H, Zhang M, Nicoll RA. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory. Proc Natl Acad Sci U S A 2024; 121:e2402783121. [PMID: 38889145 PMCID: PMC11214084 DOI: 10.1073/pnas.2402783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.
Collapse
Affiliation(s)
- Xiumin Chen
- Department of Neurology and Institute of Neuroscience of Soochow University, Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| | - Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Laboratory Medicine, State Key Laboratory of Vaccines for Infectious Diseases,School of Public Heath, Xiamen University, Xiamen, Fujian361102, China
| | - Jing Zhou
- Department of Neurology, University of California, San Francisco, CA94158
| | - Samuel J. Pleasure
- Department of Neurology, University of California, San Francisco, CA94158
| | - Howard Schulman
- Department of Pharmacology, Stanford University School of Medicine, Stanford, CA
- Department of Pharmacology, Panorama Research Institute, Sunnyvale, CA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Laboratory Medicine, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| |
Collapse
|
15
|
Brown CN, Bayer KU. Studying CaMKII: Tools and standards. Cell Rep 2024; 43:113982. [PMID: 38517893 PMCID: PMC11088445 DOI: 10.1016/j.celrep.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca2+ signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration. Perhaps most importantly, there are now three mechanistically distinct classes of specific CaMKII inhibitors, and their combined use enables the interrogation of CaMKII functions in a manner that is powerful and sophisticated yet also accessible. This review aims to provide guidelines for the interpretation of the results obtained with these tools, with careful consideration of their direct and indirect effects.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Khan S, Molloy JE, Puhl H, Schulman H, Vogel SS. Real-time single-molecule imaging of CaMKII-calmodulin interactions. Biophys J 2024; 123:824-838. [PMID: 38414237 PMCID: PMC11630639 DOI: 10.1016/j.bpj.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIβ isoform using single-molecule total internal reflection fluorescence microscopy. Rhodamine-CAM associations/dissociations to surface-immobilized Venus-CaMKIIβ were resolved with 0.5 s resolution from video records, batch-processed with a custom algorithm. CAM occupancy was determined simultaneously with spot-photobleaching measurement of CaMKII holoenzyme stoichiometry. We show the ATP-dependent increase of the CAM association requires dimer formation for both the α and β isoforms. The study of mutant β holoenzymes revealed that the ATP-dependent increase in CAM affinity results in two distinct states. The phosphorylation-defective (T287.306-307A) holoenzyme resides only in the low-affinity state. CAM association is further reduced in the T287A holoenzyme relative to T287.306-307A. In the absence of ATP, the affinity of CAM for the T287.306-307A mutant and the wild-type monomer are comparable. The affinity of the ATP-binding impaired (K43R) mutant is even weaker. In ATP, the K43R holoenzyme resides in the low-affinity state. The phosphomimetic mutant (T287D) resides only in a 1000-fold higher-affinity state, with mean CAM occupancy of more than half of the 14-mer holoenzyme stoichiometry in picomolar CAM. ATP promotes T287D holoenzyme disassembly but does not elevate CAM occupancy. Single Poisson distributions characterized the ATP-dependent CAM occupancy of mutant holoenzymes. In contrast, the CAM occupancy of the wild-type population had a two-state distribution with both low- and high-affinity states represented. The low-affinity state was the dominant state, a result different from published in vitro assays. Differences in assay conditions can alter the balance between activating and inhibitory autophosphorylation. Bound ATP could be sufficient for CaMKII structural function, while antagonistic autophosphorylations may tune CaMKII kinase-regulated action-potential frequency decoding in vivo.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium at Lawrence Berkeley National Laboratory, Berkeley, California.
| | | | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Howard Schulman
- Panorama Research Institute, Sunnyvale, California; Stanford University School of Medicine, Stanford, California
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
17
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
18
|
Bolton SC, Thompson DH, Kinzer-Ursem TL. Methods optimization for the expression and purification of human calcium calmodulin-dependent protein kinase II alpha. PLoS One 2024; 19:e0285651. [PMID: 38180986 PMCID: PMC10769071 DOI: 10.1371/journal.pone.0285651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 01/07/2024] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a complex multifunctional kinase that is highly expressed in central nervous tissues and plays a key regulatory role in the calcium signaling pathway. Despite over 30 years of recombinant expression and characterization studies, CaMKII continues to be investigated for its impact on signaling cooperativity and its ability to bind multiple substrates through its multimeric hub domain. Here we compare and optimize protocols for the generation of full-length wild-type human calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα). Side-by-side comparison of expression and purification in both insect and bacterial systems shows that the insect expression method provides superior yields of the desired autoinhibited CaMKIIα holoenzymes. Utilizing baculovirus insect expression system tools, our results demonstrate a high yield method to produce homogenous, monodisperse CaMKII in its autoinhibited state suitable for biophysical analysis. Advantages and disadvantages of these two expression systems (baculovirus insect cell versus Escherichia coli expression) are discussed, as well as purification optimizations to maximize the enrichment of full-length CaMKII.
Collapse
Affiliation(s)
- Scott C. Bolton
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - David H. Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
19
|
Abd Alla J, Langer A, Wolf S, Fu X, Rageh MA, Quitterer U. BBLN triggers CAMK2D pathology in mice under cardiac pressure overload and potentially in unrepaired hearts with tetralogy of Fallot. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1044-1059. [PMID: 38666071 PMCID: PMC11041739 DOI: 10.1038/s44161-023-00351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Tetralogy of Fallot (TOF) is one of the most prevalent congenital heart defects, with adverse cardiac remodeling and long-term cardiac complications. Here, searching for pathomechanisms, we find upregulated bublin coiled-coil protein (BBLN) in heart specimens of TOF patients with cyanosis, which positively correlates with cardiac remodeling pathways. Human BBLN, a protein with largely unknown function, promoted heart failure features, with increased mortality when overexpressed in mice, in a protein dosage-dependent manner. BBLN enhanced cardiac inflammation, fibrosis and necroptosis by calcium/calmodulin-dependent protein kinase II delta (CAMK2D) activation, whereas a BBLN mutant with impaired CAMK2D binding was inert. Downregulation of CAMK2D by an interfering RNA retarded BBLN-induced symptoms of heart failure. Endogenous BBLN was induced by hypoxia as a major TOF feature in human patients and by chronic pressure overload in mice, and its downregulation decreased CAMK2D hyperactivity, necroptosis and cardiovascular dysfunction. Thus, BBLN promotes CAMK2D-induced pathways to pathological cardiac remodeling, which are triggered by hypoxia in TOF.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Langer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Stefan Wolf
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Xuebin Fu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Cardiovascular–Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Mohamed Abdelfattah Rageh
- Ain Shams University Hospitals, Cairo, Egypt
- Present Address: Dalhousie University of Canada, Halifax, Nova Scotia Canada
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
21
|
Tullis JE, Larsen ME, Rumian NL, Freund RK, Boxer EE, Brown CN, Coultrap SJ, Schulman H, Aoto J, Dell'Acqua ML, Bayer KU. LTP induction by structural rather than enzymatic functions of CaMKII. Nature 2023; 621:146-153. [PMID: 37648853 PMCID: PMC10482691 DOI: 10.1038/s41586-023-06465-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.
Collapse
Affiliation(s)
- Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew E Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emma E Boxer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Chen X, Cai Q, Zhou J, Pleasure SJ, Schulman H, Zhang M, Nicoll RA. CaMKII autophosphorylation but not downstream kinase activity is required for synaptic memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554912. [PMID: 37662326 PMCID: PMC10473743 DOI: 10.1101/2023.08.25.554912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
CaMKII plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of kinase activity. Thus, autophosphorylation, together with binding to the GluN2B subunit, are the only two requirements for CaMKII in synaptic memory.
Collapse
|
23
|
ERDOĞAN G, ÖZEŞ ON, KÜPESİZ A, YOLDAŞ ŞB. Investigating the physiological role of S199A and S199D mutants of PHF6 protein in T-cell acute lymphoblastic leukemia. Turk J Med Sci 2023; 53:1234-1243. [PMID: 38812997 PMCID: PMC10763810 DOI: 10.55730/1300-0144.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/26/2023] [Accepted: 08/11/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim T-cell acute lymphoblastic leukemia (T-ALL) is a form of leukemia characterized by the proliferation of immature T lymphocytes. NOTCH1 is one of the most frequently mutated genes in T-ALL. NOTCH1 expression in T-cell development depends on plant homeodomain finger protein 6 (PHF6), which plays a tumor suppressor role in T-ALL. Several studies have shown that PHF6 expression is essential for NOTCH1 expression. Therefore, whether posttranslational modification of PHF6 plays a role in the regulation of NOTCH1 expression and T-ALL cell line proliferation was investigated herein. Materials and methods The amino acid sequence of PHF6 was analyzed and it was found that a putative protein kinase A (PKA) phosphorylation motif RDRS199 was conserved in several vertebrate species and the S199 site was expected to be phosphorylated according to the PhosphoSite database. Therefore, an eukaryotic expression vector of human PHF6 was constructed, and the codon 199 was changed to the codon encoding the nonphosphorylatable alanine and the phosphorylation-mimicking aspartic acid via site-directed mutagenesis. After confirming the ectopic expressions of the PHF6 vectors by western blot analysis, the effects of these proteins were identified on the NOTCH1 expression using western blot analysis, leukemic cell proliferation using MTT assay, and expressions of the cell surface markers of T-cells using flow cytometry. Results The ectopic expression of wild-type PHF6 stimulated the formation of CD4 + T-cells. While the expression of the wild-type PHF6 suppressed the growth of the leukemic cell line, this effect was diminished in both the alanine and aspartic acid mutants of PHF6. In addition, both mutants also seemed to negatively affect the NOTCH1 expression, although the effect of the alanine mutant was more severe. Conclusion Taken together, the different biological activities exerted by the conserved S199 phosphorylation-site mutants shown in this study implicate that signaling pathway(s) leading to differential phosphorylation of this residue may have a substantial effect on the activity of PHF6, and thus may constitute a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Gökçe ERDOĞAN
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| | - Osman Nidai ÖZEŞ
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| | - Alphan KÜPESİZ
- Department of Pediatrics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| | - Şükran Burçak YOLDAŞ
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| |
Collapse
|
24
|
Curtis AJ, Zhu J, Penny CJ, Gold MG. Molecular basis of interactions between CaMKII and α-actinin-2 that underlie dendritic spine enlargement. eLife 2023; 12:e85008. [PMID: 37489746 PMCID: PMC10484527 DOI: 10.7554/elife.85008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.
Collapse
Affiliation(s)
- Ashton J Curtis
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jian Zhu
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Christopher J Penny
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
25
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
26
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 2022; 23:666-682. [PMID: 36056211 DOI: 10.1038/s41583-022-00624-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/30/2022]
Abstract
Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|