1
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Cabezón-Gutiérrez L, Palka-Kotlowska M, Custodio-Cabello S, Chacón-Ovejero B, Pacheco-Barcia V. Metabolic mechanisms of immunotherapy resistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002297. [PMID: 40092297 PMCID: PMC11907103 DOI: 10.37349/etat.2025.1002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yet its efficacy is frequently compromised by metabolic mechanisms that drive resistance. Understanding how tumor metabolism shapes the immune microenvironment is essential for developing effective therapeutic strategies. This review examines key metabolic pathways influencing immunotherapy resistance, including glucose, lipid, and amino acid metabolism. We discuss their impact on immune cell function and tumor progression, highlighting emerging therapeutic strategies to counteract these effects. Tumor cells undergo metabolic reprogramming to sustain proliferation, altering the availability of essential nutrients and generating toxic byproducts that impair cytotoxic T lymphocytes (CTLs) and natural killer (NK) cell activity. The accumulation of lactate, deregulated lipid metabolism, and amino acid depletion contribute to an immunosuppressive tumor microenvironment (TME). Targeting metabolic pathways, such as inhibiting glycolysis, modulating lipid metabolism, and restoring amino acid balance, has shown promise in enhancing immunotherapy response. Addressing metabolic barriers is crucial to overcoming immunotherapy resistance. Integrating metabolic-targeted therapies with immune checkpoint inhibitors may improve clinical outcomes. Future research should focus on personalized strategies to optimize metabolic interventions and enhance antitumor immunity.
Collapse
Affiliation(s)
- Luis Cabezón-Gutiérrez
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Magda Palka-Kotlowska
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Custodio-Cabello
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Beatriz Chacón-Ovejero
- Department of Pharmacy and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Vilma Pacheco-Barcia
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
3
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
4
|
Zheng Z, Xiao P, Kuang J, Wang Z, Wang X, Huang D, Guo Y, Zhou L, Yang Y, Ding S, Zheng C, Wang Y, Fu S, Deng X. Unlocking the Hidden Potential of Cancer Therapy Targeting Lysine Succinylation. J Cancer 2025; 16:821-834. [PMID: 39781339 PMCID: PMC11705062 DOI: 10.7150/jca.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Lysine succinylation is an emerging post-translational modification of proteins. It involves the addition of the succinyl group to lysine residues of target proteins through both enzymatic and non-enzymatic pathways. This modification can alter the structure of the target protein, which, in turn, impacts protein activity and function and is involved in a wide range of diseases. In the field of cancer biology, lysine succinylation has been shown to exert a substantial influence on metabolic reprogramming of tumor cells, regulation of gene expression, and activation of oncogenic signaling pathways. Furthermore, lysine succinylation modulates the activity of immune cells, thereby affecting the immune evasion of tumor cells. Notably, researchers are currently developing inhibitors and activators of lysine succinylation which can inhibit tumor cell proliferation, migration, and metastasis, with potential usefulness in future clinical practice. This article provides an overview of the biological functions of lysine succinylation in cancer and its potential applications in cancer treatment, offering a novel perspective for future cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan 410013, China
| |
Collapse
|
5
|
Atallah R, Gindlhuber J, Platzer W, Rajesh R, Heinemann A. Succinate Regulates Endothelial Mitochondrial Function and Barrier Integrity. Antioxidants (Basel) 2024; 13:1579. [PMID: 39765906 PMCID: PMC11673088 DOI: 10.3390/antiox13121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Endothelial dysfunction is a hallmark of several pathological conditions, including cancer, cardiovascular disease and inflammatory disorders. In these conditions, perturbed TCA cycle and subsequent succinate accumulation have been reported. The role of succinate as a regulator of immunological responses and inflammation is increasingly being recognized. Nevertheless, how endothelial cell function and phenotype are altered by elevated intracellular succinate has not been addressed yet. Thus, we employed numerous in vitro functional assays using primary HUVECs and diethyl succinate (DES), a cell membrane-permeable succinate analogue. An MTS assay 1 h post stimulation with DES suggested reduced metabolic activity in HUVECs. Concurrently, elevated production of ROS, including mitochondrial superoxide, and a reduction in mitochondrial membrane potential were observed. These findings were corroborated by Seahorse mito-stress testing, which revealed that DES acutely lowered the OCR, maximal respiration and ATP production. Given the link between mitochondrial stress and apoptosis, we examined important survival signalling pathways. DES transiently reduced ERK1/2 phosphorylation, a response that was followed by a skewed pro-apoptotic shift in the BAX to BCL2L1 gene expression ratio, which coincided with upregulating VEGF gene expression. This indicated an induction of mixed pro-apoptotic and pro-survival signals in the cell. However, the BAX/BCL-XL protein ratio was unchanged, suggesting that the cells did not commit themselves to apoptosis. An MTS assay, caspase 3/7 activity assay and annexin V/propidium iodide staining confirmed this finding. By contrast, stimulation with DES induced acute endothelial barrier permeability, forming intercellular gaps, altering cell size and associated actin filaments without affecting cell count. Notably, during overnight DES exposure gradual recovery of the endothelial barrier and cell sprouting was observed, alongside mitochondrial membrane potential restoration, albeit with sustained ROS production. COX-2 inhibition and EP4 receptor blockade hindered barrier restoration, implicating a role of COX-2/PGE2/EP4 signalling in this process. Interestingly, ascorbic acid pre-treatment prevented DES-induced acute barrier disruption independently from ROS modulation. In conclusion, succinate acts as a significant regulator of endothelial mitochondrial function and barrier integrity, a response that is counterbalanced by upregulated VEGF and prostaglandin production by the endothelial cells.
Collapse
Affiliation(s)
- Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Juergen Gindlhuber
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Physiology & Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Rishi Rajesh
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Yang H, Kim C, Zou W. Metabolism and macrophages in the tumor microenvironment. Curr Opin Immunol 2024; 91:102491. [PMID: 39368171 DOI: 10.1016/j.coi.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the primary subset of immune cells within the tumor microenvironment (TME). Exhibiting both phenotypic and functional heterogeneity, TAMs play distinct roles in tumor initiation, progression, and responses to therapy in patients with cancer. In response to various immune and metabolic cues within the TME, TAMs dynamically alter their metabolic profiles to adapt. Changes in glucose, amino acid, and lipid metabolism in TAMs, as well as their interaction with oncometabolites, not only sustain their energy demands but also influence their impact on tumor immune responses. Understanding the molecular mechanisms underlying the metabolic reprogramming of TAMs and their orchestration of metabolic processes can offer insights for the development of novel cancer immunotherapies targeting TAMs. Here, we discuss how metabolism reprograms macrophages in the TME and review clinical trials aiming to normalize metabolic alterations in TAMs and alleviate TAM-mediated immune suppression and protumor activity.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chan Kim
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Programs in Cancer Biology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Copland A, Mackie GM, Scarfe L, Jinks E, Lecky DAJ, Gudgeon N, McQuade R, Ono M, Barthel M, Hardt WD, Ohno H, Hoevenaar WHM, Dimeloe S, Bending D, Maslowski KM. Salmonella cancer therapy metabolically disrupts tumours at the collateral cost of T cell immunity. EMBO Mol Med 2024; 16:3057-3088. [PMID: 39558103 PMCID: PMC11628626 DOI: 10.1038/s44321-024-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Bacterial cancer therapy (BCT) is a promising therapeutic for solid tumours. Salmonella enterica Typhimurium (STm) is well-studied amongst bacterial vectors due to advantages in genetic modification and metabolic adaptation. A longstanding paradox is the redundancy of T cells for treatment efficacy; instead, STm BCT depends on innate phagocytes for tumour control. Here, we used distal T cell receptor (TCR) and IFNγ reporter mice (Nr4a3-Tocky-Ifnγ-YFP) and a colorectal cancer (CRC) model to interrogate T cell activity during BCT with attenuated STm. We found that colonic tumour infiltrating lymphocytes (TILs) exhibited a variety of activation defects, including IFN-γ production decoupled from TCR signalling, decreased polyfunctionality and reduced central memory (TCM) formation. Modelling of T-cell-tumour interactions with a tumour organoid platform revealed an intact TCR signalosome, but paralysed metabolic reprogramming due to inhibition of the master metabolic controller, c-Myc. Restoration of c-Myc by deletion of the bacterial asparaginase ansB reinvigorated T cell activation, but at the cost of decreased metabolic control of the tumour by STm. This work shows for the first time that T cells are metabolically defective during BCT, but also that this same phenomenon is inexorably tied to intrinsic tumour suppression by the bacterial vector.
Collapse
Affiliation(s)
- Alastair Copland
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Gillian M Mackie
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisa Scarfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - David A J Lecky
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Riahne McQuade
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Wilma H M Hoevenaar
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK.
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
9
|
Wang Z, Cui L, Lin Y, Huo B, Zhang H, Xie C, Zhang H, Liu Y, Jin H, Guo H, Li M, Wang X, Zhou P, Huang P, Liu J, Xia X. Cancer cell-intrinsic biosynthesis of itaconate promotes tumor immunogenicity. EMBO J 2024; 43:5530-5547. [PMID: 39349845 PMCID: PMC11574104 DOI: 10.1038/s44318-024-00217-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 11/20/2024] Open
Abstract
The Krebs cycle byproduct itaconate has recently emerged as an important metabolite regulating macrophage immune functions, but its role in tumor cells remains unknown. Here, we show that increased tumor-intrinsic cis-aconitate decarboxylase (ACOD1 or CAD, encoded by immune-responsive gene 1, Irg1) expression and itaconate production promote tumor immunogenicity and anti-tumor immune responses. Furthermore, we identify thimerosal, a vaccine preservative, as a specific inducer of IRG1 expression in tumor cells but not in macrophages, thereby enhancing tumor immunogenicity. Mechanistically, thimerosal induces itaconate production through a ROS-RIPK3-IRF1 signaling axis in tumor cells. Further, increased IRG1/itaconate upregulates antigen presentation-related gene expression via promoting TFEB nuclear translocation. Intratumoral injection of thimerosal induced itaconate production, activated the tumor immune microenvironment, and inhibited tumor growth in a T cell-dependent manner. Importantly, IRG1 deficiency markedly impaired tumor response to thimerosal treatment. Furthermore, itaconate induction by thimerosal potentiates the anti-tumor efficacy of adoptive T-cell therapy and anti-PD1 therapy in a mouse lymphoma model. Hence, our findings identify a new role for tumor intrinsic IRG1/itaconate in promoting tumor immunogenicity and provide a translational means to increase immunotherapy efficacy.
Collapse
Affiliation(s)
- Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxun Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bitao Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| |
Collapse
|
10
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
11
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
13
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
14
|
Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. EBioMedicine 2024; 107:105301. [PMID: 39178747 PMCID: PMC11388279 DOI: 10.1016/j.ebiom.2024.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Increasing evidence indicates that immunotherapy is hindered by a hostile tumor microenvironment (TME) featured with deprivation of critical nutrients and pooling of immunosuppressive metabolites. Tumor cells and immunosuppressive cells outcompete immune effector cells for essential nutrients. Meanwhile, a wide range of tumor cell-derived toxic metabolites exerts negative impacts on anti-tumor immune response, diminishing the efficacy of immunotherapy. Nanomedicine with excellent targetability offers a novel approach to improving cancer immunotherapy via metabolically reprogramming the immunosuppressive TME. Herein, we review recent strategies of enhancing immunotherapeutic effects through rewiring tumor metabolism via nanomedicine. Attention is drawn on immunometabolic tactics for immune cells and stromal cells in the TME via nanomedicine. Additionally, we discuss future directions of developing metabolism-regulating nanomedicine for precise and efficacious cancer immunotherapy.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinan Bai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
15
|
张 博, 王 圣, 胡 怡, 骆 春, 李 世, 楼 梓, 王 菁, 陈 正, 殷 善. [Endothelial cells and fibroblasts mediate the microenvironmental regulatory network of carotid body paraganglioma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:788-796. [PMID: 39193734 PMCID: PMC11839575 DOI: 10.13201/j.issn.2096-7993.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 08/29/2024]
Abstract
Objective:To explore the gene expression characteristics of endothelial cells and fibroblasts in the microenvironment of SDHD-mutated carotid body tumors(SDHD-CBT), to fine the functional enrichment of each subcluster, and to further explore the network of cell-cell interactions in the microenvironment of SDHD-CBT. Methods:The bioinformatics analysis was used to download and reanalyze the single-nuclear RNA sequencing data of SDHD-CBT, SDHB mutated thoracic and abdominal paraganglioma(SDHB-ATPGL), SDHB-CBT, and normal adrenal medulla(NAM), to clarify the information of cell populations of the samples. We focused on exploring the gene expression profiles of endothelial cells and fibroblasts subclusters, and performed functional enrichment analysis based on Gene Ontology(GO) resources. CellChat was used to compare the cell-cell interactions networks of different clinical samples and predict significant signaling pathways in SDHD-CBT. Results:A total of 7 cell populations were profiled. The main subtypes of endothelial cells in SDHD-CBT are arterial and venous endothelial cells, and the main subtypes of fibroblasts are myofibroblasts and pericytes. Compared to NAM, SDHB-CBT and SDHB-ATPGL, cell communication involving endothelial cells and fibroblasts in SDHD-CBT is more abundant, with significant enrichment in pathways such as FGF, PTN, WNT, PROS, PERIOSTIN, and TGFb. Conclusion:Endothelial cells and fibroblasts in SDHD-CBT are heterogeneous and involved in important cellular interactionprocesses, in which the discovery of FGF,PTN,WNT,PROS,PERIOSTIN and TGFb signals may play an important role in the regulation of microenvironment of SDHD-CBT.
Collapse
Affiliation(s)
- 博雅 张
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 圣明 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 怡冰 胡
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 春雨 骆
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 世媛 李
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 梓涵 楼
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 菁菁 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 正侬 陈
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 善开 殷
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
16
|
张 博, 楼 梓, 王 菁, 胡 怡, 陈 正. [Advance in HIF expression and immune microenvironment in pseudohypoxic HNPGL]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:823-829. [PMID: 39193740 PMCID: PMC11839587 DOI: 10.13201/j.issn.2096-7993.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 08/29/2024]
Abstract
This article systematically reviewed the pathological features, molecular mechanisms, and tumor microenvironment of head and neck paraganglioma(HNPGL), with a focus on pseudohypoxic HNPGL. It was demonstrated that pseudohypoxic HNPGL mainly involves multiple gene mutations, such as SDHx and VHL/EPAS1, which affect the stability and activity of HIF protein and exacerbate the development of the tumor. Meanwhile, the paper also analyzed the expression patterns of HIF-1α and HIF-2α in HNPGL, and found that differences in HIF activation may have an impact on the therapeutic response of specific subtypes. In addition, the paper explored the tumor microenvironment of HNPGL and found that immune cells such as macrophages, CD4⁺T cells, and CD8⁺T cells play an important role in the tumor, and the heterogeneity of the immune microenvironment also affects the choice of therapeutic approaches and responsiveness. Through comprehensive analysis, these findings not only contribute to a deeper understanding of the pathogenesis and developmental process of HNPGL, but also provide clues for future personalized treatments for specific subtypes.
Collapse
Affiliation(s)
- 博雅 张
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 梓涵 楼
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 菁菁 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 怡冰 胡
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 正侬 陈
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
17
|
Yang S, Zhan Q, Su D, Cui X, Zhao J, Wang Q, Hong B, Ju J, Cheng C, Yang E, Kang C. HIF1α/ATF3 partake in PGK1 K191/K192 succinylation by modulating P4HA1/succinate signaling in glioblastoma. Neuro Oncol 2024; 26:1405-1420. [PMID: 38441561 PMCID: PMC11300026 DOI: 10.1093/neuonc/noae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Hypoxia is a pathological hallmark in most cancers, including glioblastoma (GBM). Hypoxic signaling activation and post-translational modification (PTM) of oncogenic proteins are well-studied in cancers. Accumulating studies indicate glycolytic enzyme PGK1 plays a crucial role in tumorigenesis, yet the underlying mechanisms remain unknown. METHODS We first used ChIP assays to uncover the crosstalk between HIF1α and ATF3 and their roles in P4HA1 regulation. Protein degradation analysis, LC-MS/MS, and in vitro succinate production assays were performed to examine the effect of protein succinylation on GBM pathology. Seahorse assay measured the effects of PGK1 succinylation at K191/K192 or its mutants on glucose metabolism. We utilized an in vivo intracranial mouse model for biochemical studies to elucidate the impact of ATF3 and P4HA1 on aerobic glycolysis and the tumor immune microenvironment. RESULTS We demonstrated that HIF1α and ATF3 positively and negatively regulate the transcription of P4HA1, respectively, leading to an increased succinate production and increased activation of HIF1α signaling. P4HA1 expression elevated the succinate concentration, resulting in the enhanced succinylation of PGK1 at the K191 and K192 sites. Inhibition of proteasomal degradation of PGK1 by succinylation significantly increased aerobic glycolysis to generate lactate. Furthermore, ATF3 overexpression and P4HA1 knockdown reduced succinate and lactate levels in GBM cells, inhibiting immune responses and tumor growth. CONCLUSIONS Together, our study demonstrates that HIF1α/ATF3 participated in P4HA1/succinate signaling, which is the major regulator of succinate biosynthesis and PGK1 succinylation at K191 and K192 sites in GBM. The P4HA1/succinate pathway might be a novel and promising target for aerobic glycolysis in GBM.
Collapse
Affiliation(s)
- Shixue Yang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qi Zhan
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Dongyuan Su
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jixing Zhao
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Biao Hong
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jiasheng Ju
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chunchao Cheng
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Eryan Yang
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
18
|
Bidgood CL, Philp LK, Rockstroh A, Lehman M, Nelson CC, Sadowski MC, Gunter JH. Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer. Cell Death Dis 2024; 15:513. [PMID: 39025852 PMCID: PMC11258138 DOI: 10.1038/s41419-024-06893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Metabolic reprogramming and energetic rewiring are hallmarks of cancer that fuel disease progression and facilitate therapy evasion. The remodelling of oxidative phosphorylation and enhanced lipogenesis have previously been characterised as key metabolic features of prostate cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-grade prostate tumours, as well as upregulation of the enzymes associated with branched-chain amino acid (BCAA) catabolism. In this study, we hypothesised that the degradation of the BCAAs, particularly valine, may play a critical role in anapleurotic refuelling of the mitochondrial succinate pool, as well as the maintenance of intracellular lipid metabolism. Through the suppression of BCAA availability, we report significantly reduced lipid content, strongly indicating that BCAAs are important lipogenic fuels in PCa. This work also uncovered a novel compensatory mechanism, whereby fatty acid uptake is increased in response to extracellular valine deprivation. Inhibition of valine degradation via suppression of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) resulted in a selective reduction of malignant prostate cell proliferation, decreased intracellular succinate and impaired cellular respiration. In combination with a comprehensive multi-omic investigation that incorporates next-generation sequencing, metabolomics, and high-content quantitative single-cell imaging, our work highlights a novel therapeutic target for selective inhibition of metabolic reprogramming in PCa.
Collapse
Affiliation(s)
- Charles L Bidgood
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia.
| | - Lisa K Philp
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Anja Rockstroh
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Melanie Lehman
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
- University of British Columbia, Vancouver Prostate Centre, Department of Urologic Sciences, Vancouver, BC, Canada
| | - Colleen C Nelson
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Martin C Sadowski
- University of Bern, Institute for Tissue Medicine and Pathology, Bern, Switzerland
| | - Jennifer H Gunter
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
20
|
Xiong D, Wang Q, Wang WM, Sun ZJ. Tuning cellular metabolism for cancer virotherapy. Cancer Lett 2024; 592:216924. [PMID: 38718886 DOI: 10.1016/j.canlet.2024.216924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Oncolytic viruses (OVs) represent an emerging immunotherapeutic strategy owing to their capacity for direct tumor lysis and induction of antitumor immunity. However, hurdles like transient persistence and moderate efficacy necessitate innovative approaches. Metabolic remodeling has recently gained prominence as a strategic intervention, wherein OVs or combination regimens could reprogram tumor and immune cell metabolism to enhance viral replication and oncolysis. In this review, we summarize recent advances in strategic reprogramming of tumor and immune cell metabolism to enhance OV-based immunotherapies. Specific tactics include engineering viruses to target glycolytic, glutaminolytic, and nucleotide synthesis pathways in cancer cells, boosting viral replication and tumor cell death. Additionally, rewiring T cell and NK cell metabolism of lipids, amino acids, and carbohydrates shows promise to enhance antitumor effects. Further insights are discussed to pave the way for the clinical implementation of metabolically enhanced oncolytic platforms, including balancing metabolic modulation to limit antiviral responses while promoting viral persistence and tumor clearance.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China
| | - Qing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Institute of Oral Precancerous Lesions, Xiangya Hospital, Research Center of Oral and Maxillofacial Tumor, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
21
|
Wu J, Liu N, Chen J, Tao Q, Li Q, Li J, Chen X, Peng C. The Tricarboxylic Acid Cycle Metabolites for Cancer: Friend or Enemy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0351. [PMID: 38867720 PMCID: PMC11168306 DOI: 10.34133/research.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2024] [Indexed: 06/14/2024]
Abstract
The tricarboxylic acid (TCA) cycle is capable of providing sufficient energy for the physiological activities under aerobic conditions. Although tumor metabolic reprogramming places aerobic glycolysis in a dominant position, the TCA cycle remains indispensable for tumor cells as a hub for the metabolic linkage and interconversion of glucose, lipids, and certain amino acids. TCA intermediates such as citrate, α-ketoglutarate, succinate, and fumarate are altered in tumors, and they regulate the tumor metabolism, signal transduction, and immune environment to affect tumorigenesis and tumor progression. This article provides a comprehensive review of the modifications occurring in tumor cells in relation to the intermediates of the TCA cycle, which affects tumor pathogenesis and current therapeutic strategy for therapy through targeting TCA cycle in cancer cells.
Collapse
Affiliation(s)
- Jie Wu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jing Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qiuqiu Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, Li L, Cai X. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol 2024; 15:1404441. [PMID: 38933270 PMCID: PMC11200920 DOI: 10.3389/fimmu.2024.1404441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianye Yan
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Abstract
Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.
Collapse
Affiliation(s)
- Hannah N Bell
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
| | - Weiping Zou
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Pan X, Wang J, Zhang L, Li G, Huang B. Metabolic plasticity of T cell fate decision. Chin Med J (Engl) 2024; 137:762-775. [PMID: 38086394 PMCID: PMC10997312 DOI: 10.1097/cm9.0000000000002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT The efficacy of adaptive immune responses in cancer treatment relies heavily on the state of the T cells. Upon antigen exposure, T cells undergo metabolic reprogramming, leading to the development of functional effectors or memory populations. However, within the tumor microenvironment (TME), metabolic stress impairs CD8 + T cell anti-tumor immunity, resulting in exhausted differentiation. Recent studies suggested that targeting T cell metabolism could offer promising therapeutic opportunities to enhance T cell immunotherapy. In this review, we provide a comprehensive summary of the intrinsic and extrinsic factors necessary for metabolic reprogramming during the development of effector and memory T cells in response to acute and chronic inflammatory conditions. Furthermore, we delved into the different metabolic switches that occur during T cell exhaustion, exploring how prolonged metabolic stress within the TME triggers alterations in cellular metabolism and the epigenetic landscape that contribute to T cell exhaustion, ultimately leading to a persistently exhausted state. Understanding the intricate relationship between T cell metabolism and cancer immunotherapy can lead to the development of novel approaches to improve the efficacy of T cell-based treatments against cancer.
Collapse
Affiliation(s)
- Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Jiajia Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
25
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
26
|
Gu X, Wei H, Suo C, Shen S, Zhu C, Chen L, Yan K, Li Z, Bian Z, Zhang P, Yuan M, Yu Y, Du J, Zhang H, Sun L, Gao P. Itaconate promotes hepatocellular carcinoma progression by epigenetic induction of CD8 + T-cell exhaustion. Nat Commun 2023; 14:8154. [PMID: 38071226 PMCID: PMC10710408 DOI: 10.1038/s41467-023-43988-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Itaconate is a well-known immunomodulatory metabolite; however, its role in hepatocellular carcinoma (HCC) remains unclear. Here, we find that macrophage-derived itaconate promotes HCC by epigenetic induction of Eomesodermin (EOMES)-mediated CD8+ T-cell exhaustion. Our results show that the knockout of immune-responsive gene 1 (IRG1), responsible for itaconate production, suppresses HCC progression. Irg1 knockout leads to a decreased proportion of PD-1+ and TIM-3+ CD8+ T cells. Deletion or adoptive transfer of CD8+ T cells shows that IRG1-promoted tumorigenesis depends on CD8+ T-cell exhaustion. Mechanistically, itaconate upregulates PD-1 and TIM-3 expression levels by promoting succinate-dependent H3K4me3 of the Eomes promoter. Finally, ibuprofen is found to inhibit HCC progression by targeting IRG1/itaconate-dependent tumor immunoevasion, and high IRG1 expression in macrophages predicts poor prognosis in HCC patients. Taken together, our results uncover an epigenetic link between itaconate and HCC and suggest that targeting IRG1 or itaconate might be a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhikun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenhua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Pinggen Zhang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengqiu Yuan
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingxuan Yu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinzhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huafeng Zhang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Montironi C, Jacobs CF, Cretenet G, Peters FS, Schomakers BV, van Weeghel M, Kater AP, Simon-Molas H, Eldering E. T-cell dysfunction by pseudohypoxia and autocrine purinergic signaling in chronic lymphocytic leukemia. Blood Adv 2023; 7:6540-6552. [PMID: 37552122 PMCID: PMC10632609 DOI: 10.1182/bloodadvances.2023010305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Acquired T-cell dysfunction is common in chronic B-cell malignancies. Given the strong connection between T-cell metabolism and function, we investigated metabolic alterations as the basis of T-cell dysfunction induced by malignant cells. Using B-cell malignant cell lines and human peripheral blood mononuclear cells, we first established a model that recapitulates major aspects of cancer-induced T-cell dysfunction. Cell lines derived from chronic lymphocytic leukemia (CLL) (PGA-1, CII, and Mec-1), but not from other B-cell malignancies, altered the T-cell metabolome by generating a pseudohypoxic state. T cells were retained in aerobic glycolysis and were not able to switch to oxidative phosphorylation (OXPHOS). Moreover, T cells produced immunosuppressive adenosine that negatively affected function by dampening the activation, which could be restored by the blocking of adenosine receptors. Subsequently, we uncovered a similar hypoxic-like signature in autologous T cells from primary CLL samples. Pseudohypoxia was reversible upon depletion of CLL cells ex vivo and, importantly, after the in vivo reduction of the leukemic burden with combination therapy (venetoclax and obinutuzumab), restoring T-cell function. In conclusion, we uncovered a pseudohypoxic program connected with T-cell dysfunction in CLL. Modulation of hypoxia and the purinergic pathway might contribute to therapeutic restoration of T-cell function.
Collapse
Affiliation(s)
- Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Chaja F. Jacobs
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Gaspard Cretenet
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Fleur S. Peters
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P. Kater
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Luo Z, Eichinger KM, Zhang A, Li S. Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy. Cancer Lett 2023; 575:216396. [PMID: 37739209 PMCID: PMC10591810 DOI: 10.1016/j.canlet.2023.216396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Recent discoveries in cancer metabolism have revealed promising metabolic targets to modulate cancer progression, drug response, and anti-cancer immunity. Combination therapy, consisting of metabolic inhibitors and chemotherapeutic or immunotherapeutic agents, offers new opportunities for improved cancer therapy. However, it also presents challenges due to the complexity of cancer metabolic pathways and the metabolic interactions between tumor cells and immune cells. Many studies have been published demonstrating potential synergy between novel inhibitors of metabolism and chemo/immunotherapy, yet our understanding of the underlying mechanisms remains limited. Here, we review the current strategies of altering the metabolic pathways of cancer to improve the anti-cancer effects of chemo/immunotherapy. We also note the need to differentiate the effect of metabolic inhibition on cancer cells and immune cells and highlight nanotechnology as an emerging solution. Improving our understanding of the complexity of the metabolic pathways in different cell populations and the anti-cancer effects of chemo/immunotherapy will aid in the discovery of novel strategies that effectively restrict cancer growth and augment the anti-cancer effects of chemo/immunotherapy.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Anju Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Kirchmair A, Nemati N, Lamberti G, Trefny M, Krogsdam A, Siller A, Hörtnagl P, Schumacher P, Sopper S, Sandbichler A, Zippelius A, Ghesquière B, Trajanoski Z. 13C tracer analysis reveals the landscape of metabolic checkpoints in human CD8 + T cell differentiation and exhaustion. Front Immunol 2023; 14:1267816. [PMID: 37928527 PMCID: PMC10620935 DOI: 10.3389/fimmu.2023.1267816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Naïve T cells remain in an actively maintained state of quiescence until activation by antigenic signals, upon which they start to proliferate and generate effector cells to initiate a functional immune response. Metabolic reprogramming is essential to meet the biosynthetic demands of the differentiation process, and failure to do so can promote the development of hypofunctional exhausted T cells. Methods Here we used 13C metabolomics and transcriptomics to study the metabolism of CD8+ T cells in their complete course of differentiation from naïve over stem-like memory to effector cells and in exhaustion-inducing conditions. Results The quiescence of naïve T cells was evident in a profound suppression of glucose oxidation and a decreased expression of ENO1, downstream of which no glycolytic flux was detectable. Moreover, TCA cycle activity was low in naïve T cells and associated with a downregulation of SDH subunits. Upon stimulation and exit from quiescence, the initiation of cell growth and proliferation was accompanied by differential expression of metabolic enzymes and metabolic reprogramming towards aerobic glycolysis with high rates of nutrient uptake, respiration and lactate production. High flux in anabolic pathways imposed a strain on NADH homeostasis, which coincided with engagement of the proline cycle for mitochondrial redox shuttling. With acquisition of effector functions, cells increasingly relied on glycolysis as opposed to oxidative phosphorylation, which was, however, not linked to changes in mitochondrial abundance. In exhaustion, decreased effector function concurred with a reduction in mitochondrial metabolism, glycolysis and amino acid import, and an upregulation of quiescence-associated genes, TXNIP and KLF2, and the T cell suppressive metabolites succinate and itaconate. Discussion Overall, these results identify multiple metabolic features that regulate quiescence, proliferation and effector function, but also exhaustion of CD8+ T cells during differentiation. Thus, targeting these metabolic checkpoints may be a promising therapeutic strategy for both prevention of exhaustion and promotion of stemness of anti-tumor T cells.
Collapse
Affiliation(s)
- Alexander Kirchmair
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Niloofar Nemati
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giorgia Lamberti
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcel Trefny
- Department of Biomedicine, Cancer Immunology, University and University Hospital of Basel, Basel, Switzerland
| | - Anne Krogsdam
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- NGS Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Petra Schumacher
- Core Facility FACS Sorting, University Clinic for Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Core Facility FACS Sorting, University Clinic for Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alfred Zippelius
- Department of Biomedicine, Cancer Immunology, University and University Hospital of Basel, Basel, Switzerland
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Yanqui-Rivera F, Opitz CA. Glutarate tunes T cell fate. Nat Metab 2023; 5:1649-1651. [PMID: 37605056 DOI: 10.1038/s42255-023-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Affiliation(s)
- Francisco Yanqui-Rivera
- DKTK Metabolic Crosstalk in Cancer, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Metabolic Crosstalk in Cancer, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg, Germany.
| |
Collapse
|
31
|
Miallot R, Millet V, Galland F, Naquet P. The vitamin B5/coenzyme A axis: A target for immunomodulation? Eur J Immunol 2023; 53:e2350435. [PMID: 37482959 DOI: 10.1002/eji.202350435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Coenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions. Targeting CoA metabolism presents a promising avenue for therapeutic intervention, as it can potentially restore metabolic balance, mitigate chronic inflammation, and enhance immune cell function. This might ultimately improve the management and outcomes for these diseases. This review will more specifically focus on the contribution of pathways regulating the availability of the CoA precursor Vitamin B5/pantothenate in vivo and modulating the development of Th17-mediated inflammation, CD8-dependent anti-tumor immunity but also tissue repair processes in chronic inflammatory or degenerative diseases.
Collapse
|
32
|
Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab 2023; 35:1101-1113. [PMID: 37390822 PMCID: PMC10527949 DOI: 10.1016/j.cmet.2023.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
33
|
Mortazavi Farsani SS, Verma V. Lactate mediated metabolic crosstalk between cancer and immune cells and its therapeutic implications. Front Oncol 2023; 13:1175532. [PMID: 37234972 PMCID: PMC10206240 DOI: 10.3389/fonc.2023.1175532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolism is central to energy generation and cell signaling in all life forms. Cancer cells rely heavily on glucose metabolism wherein glucose is primarily converted to lactate even in adequate oxygen conditions, a process famously known as "the Warburg effect." In addition to cancer cells, Warburg effect was found to be operational in other cell types, including actively proliferating immune cells. According to current dogma, pyruvate is the end product of glycolysis that is converted into lactate in normal cells, particularly under hypoxic conditions. However, several recent observations suggest that the final product of glycolysis may be lactate, which is produced irrespective of oxygen concentrations. Traditionally, glucose-derived lactate can have three fates: it can be used as a fuel in the TCA cycle or lipid synthesis; it can be converted back into pyruvate in the cytosol that feeds into the mitochondrial TCA; or, at very high concentrations, accumulated lactate in the cytosol may be released from cells that act as an oncometabolite. In immune cells as well, glucose-derived lactate seems to play a major role in metabolism and cell signaling. However, immune cells are much more sensitive to lactate concentrations, as higher lactate levels have been found to inhibit immune cell function. Thus, tumor cell-derived lactate may serve as a major player in deciding the response and resistance to immune cell-directed therapies. In the current review, we will provide a comprehensive overview of the glycolytic process in eukaryotic cells with a special focus on the fate of pyruvate and lactate in tumor and immune cells. We will also review the evidence supporting the idea that lactate, not pyruvate, is the end product of glycolysis. In addition, we will discuss the impact of glucose-lactate-mediated cross-talk between tumor and immune cells on the therapeutic outcomes after immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Sahar Mortazavi Farsani
- Section of Cancer Immunotherapy and Immune Metabolism, The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Vivek Verma
- Section of Cancer Immunotherapy and Immune Metabolism, The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
34
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
35
|
Ortiz AM, Baker PJ, Langner CA, Simpson J, Stacy A, Flynn JK, Starke CE, Vinton CL, Fennessey CM, Belkaid Y, Keele BF, Brenchley JM. Experimental bacterial dysbiosis with consequent immune alterations increase intrarectal SIV acquisition susceptibility. Cell Rep 2023; 42:112020. [PMID: 36848230 PMCID: PMC9989505 DOI: 10.1016/j.celrep.2023.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Variations in the composition of the intestinal bacterial microbiome correlate with acquisition of some sexually transmitted pathogens. To experimentally assess the contribution of intestinal dysbiosis to rectal lentiviral acquisition, we induce dysbiosis in rhesus macaques (RMs) with the antibiotic vancomycin prior to repeated low-dose intrarectal challenge with simian immunodeficiency virus (SIV) SIVmac239X. Vancomycin administration reduces T helper 17 (TH17) and TH22 frequencies, increases expression of host bacterial sensors and antibacterial peptides, and increases numbers of transmitted-founder (T/F) variants detected upon SIV acquisition. We observe that SIV acquisition does not correlate with measures of dysbiosis but rather associates with perturbations in the host antimicrobial program. These findings establish a functional association between the intestinal microbiome and susceptibility to lentiviral acquisition across the rectal epithelial barrier.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip J Baker
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charlotte A Langner
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Abstract
Succinate is a circulating metabolite, and the relationship between abnormal changes in the physiological concentration of succinate and inflammatory diseases caused by the overreaction of certain immune cells has become a research focus. Recent investigations have shown that succinate produced by the gut microbiota has the potential to regulate host homeostasis and treat diseases such as inflammation. Gut microbes are important for maintaining intestinal homeostasis. Microbial metabolites serve as nutrients in energy metabolism, and act as signal molecules that stimulate host cell and organ function and affect the structural balance between symbiotic gut microorganisms. This review focuses on succinate as a metabolite of both host cells and gut microbes and its involvement in regulating the gut - immune tissue axis by activating intestinal mucosal cells, including macrophages, dendritic cells, and intestinal epithelial cells. We also examined its role as the mediator of microbiota - host crosstalk and its potential function in regulating intestinal microbiota homeostasis. This review explores feasible ways to moderate succinate levels and provides new insights into succinate as a potential target for microbial therapeutics for humans.
Collapse
Affiliation(s)
- Yi-Han Wei
- College of Animal Science, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiang-Chao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| |
Collapse
|
37
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|