1
|
Yamashita SI, Arai R, Hada H, Padman BS, Lazarou M, Chan DC, Kanki T, Waguri S. The mitophagy receptors BNIP3 and NIX mediate tight attachment and expansion of the isolation membrane to mitochondria. J Cell Biol 2025; 224:e202408166. [PMID: 40358358 PMCID: PMC12071194 DOI: 10.1083/jcb.202408166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand. Artificial tethering of LC3B to mitochondria induced mitophagy that was equally efficient in DKO cells and WT cells. BNIP3 and NIX accumulated at the segregated mitochondrial protrusions via binding with LC3 through their LIR motifs but did not require dimer formation. Finally, the average distance between the IM and the mitochondrial surface in receptor-mediated mitophagy was significantly smaller than that in ubiquitin-mediated mitophagy. Collectively, these results indicate that BNIP3 and NIX are required for the tight attachment and expansion of the IM along the mitochondrial surface during mitophagy.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ritsuko Arai
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Hada
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Benjamin Scott Padman
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Australia
- The University of Western Australia, Crawley, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
2
|
Peng K, Zhao G, Zhao H, Noda NN, Zhang H. The autophagy protein ATG-9 regulates lysosome function and integrity. J Cell Biol 2025; 224:e202411092. [PMID: 40202485 PMCID: PMC11980680 DOI: 10.1083/jcb.202411092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The transmembrane autophagy protein ATG9 has multiple functions essential for autophagosome formation. Here, we uncovered a novel function of ATG-9 in regulating lysosome biogenesis and integrity in Caenorhabditis elegans. Through a genetic screen, we identified that mutations attenuating the lipid scrambling activity of ATG-9 suppress the autophagy defect in epg-5 mutants, in which non-degradative autolysosomes accumulate. The scramblase-attenuated ATG-9 mutants promote lysosome biogenesis and delivery of lysosome-localized hydrolases and also facilitate the maintenance of lysosome integrity. Through manipulation of phospholipid levels, we found that a reduction in phosphatidylethanolamine (PE) also suppresses the autophagy defects and lysosome damage associated with impaired lysosomal degradation. Our results reveal that modulation of phospholipid composition and distribution, e.g., by attenuating the scramblase activity of ATG-9 or reducing the PE level, regulates lysosome function and integrity.
Collapse
Affiliation(s)
- Kangfu Peng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guoxiu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Zein L, Dietrich M, Balta D, Bader V, Scheuer C, Zellner S, Weinelt N, Vandrey J, Mari MC, Behrends C, Zunke F, Winklhofer KF, Van Wijk SJL. Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival. Autophagy 2025; 21:1075-1095. [PMID: 39744815 PMCID: PMC12013452 DOI: 10.1080/15548627.2024.2443945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/21/2025] Open
Abstract
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation. Linear (M1) poly-Ub, catalyzed by the linear ubiquitin chain assembly complex (LUBAC) E3 ligase and removed by OTULIN (OTU deubiquitinase with linear linkage specificity) exerts important functions in immune signaling and cell survival, but the role of M1 poly-Ub in lysosomal homeostasis remains unexplored. Here, we demonstrate that L-leucyl-leucine methyl ester (LLOMe)-damaged lysosomes accumulate M1 poly-Ub in an OTULIN- and K63 Ub-dependent manner. LMP-induced M1 poly-Ub at damaged lysosomes contributes to lysosome degradation, recruits the NFKB (nuclear factor kappa B) modulator IKBKG/NEMO and locally activates the inhibitor of NFKB kinase (IKK) complex to trigger NFKB activation. Inhibition of lysosomal degradation enhances LMP- and OTULIN-regulated cell death, indicating pro-survival functions of M1 poly-Ub during LMP and potentially lysophagy. Finally, we demonstrate that M1 poly-Ub also occurs at damaged lysosomes in primary mouse neurons and induced pluripotent stem cell-derived primary human dopaminergic neurons. Our results reveal novel functions of M1 poly-Ub during lysosomal homeostasis, LMP and degradation of damaged lysosomes, with important implications for NFKB signaling, inflammation and cell death.Abbreviation: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRISPR: clustered regularly interspaced short palindromic repeats; CHUK/IKKA: component of inhibitor of nuclear factor kappa B kinase complex; CUL4A-DDB1-WDFY1: cullin 4A-damage specific DNA binding protein 1-WD repeat and FYVE domain containing 1; DGCs: degradative compartments; DIV: days in vitro; DUB: deubiquitinase/deubiquitinating enzyme; ELDR: endo-lysosomal damage response; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; GBM: glioblastoma multiforme; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: inhibitor of NFKB kinase; iPSC: induced pluripotent stem cell; KBTBD7: kelch repeat and BTB domain containing 7; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LCD: lysosomal cell death; LGALS: galectin; LMP: lysosomal membrane permeabilization; LLOMe: L-leucyl-leucine methyl ester; LOP: loperamide; LUBAC: linear ubiquitin chain assembly complex; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IĸBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; OPTN: optineurin; ORAS: OTULIN-related autoinflammatory syndrome; OTULIN: OTU deubiquitinase with linear linkage specificity; RING: really interesting new gene; RBR: RING-in-between-RING; PLAA: phospholipase A2 activating protein; RBCK1/HOIL-1: RANBP2-type and C3HC4-type zinc finger containing 1; RNF31/HOIP: ring finger protein 31; SHARPIN: SHANK associated RH domain interactor; SQSTM1/p62: sequestosome 1; SR-SIM: super-resolution-structured illumination microscopy; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TH: tyrosine hydroxylase; TNF/TNFα: tumor necrosis factor; TNFRSF1A/TNFR1-SC: TNF receptor superfamily member 1A signaling complex; TRIM16: tripartite motif containing 16; Ub: ubiquitin; UBE2QL1: ubiquitin conjugating enzyme E2 QL1; UBXN6/UBXD1: UBX domain protein 6; VCP/p97: valosin containing protein; WIPI2: WD repeat domain, phosphoinositide interacting 2; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Dietrich
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph Scheuer
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Suzanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Nadine Weinelt
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Muriel C. Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Sjoerd J. L. Van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Xun J, Tan JX. Lysosomal Repair in Health and Disease. J Cell Physiol 2025; 240:e70044. [PMID: 40349217 PMCID: PMC12066097 DOI: 10.1002/jcp.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Lysosomes are essential organelles degrading a wide range of substrates, maintaining cellular homeostasis, and regulating cell growth through nutrient and metabolic signaling. A key vulnerability of lysosomes is their membrane permeabilization (LMP), a process tightly linked to diseases including aging, neurodegeneration, lysosomal storage disorders, and cardiovascular disease. Research progress in the past few years has greatly improved our understanding of lysosomal repair mechanisms. Upon LMP, cells activate multiple membrane remodeling processes to restore lysosomal integrity, such as membrane invagination, tubulation, lipid patching, and membrane stabilization. These repair pathways are critical in preserving cellular stress tolerance and preventing deleterious inflammation and cell death triggered by lysosomal damage. This review focuses on the expanding mechanistic insights of lysosomal repair, highlighting its crucial role in maintaining cellular health and the implications for disease pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Jinrui Xun
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Umargamwala R, Nicolson S, Manning J, Carosi JM, Kumar S, Denton D. Identification of new candidates regulating autophagy-dependent midgut degradation in Drosophila melanogaster. Cell Death Discov 2025; 11:181. [PMID: 40240351 PMCID: PMC12003636 DOI: 10.1038/s41420-025-02474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Autophagy-dependent cell death (ADCD) is a context-specific form of programmed cell death that plays an important role in development and homeostasis. During Drosophila metamorphosis, hormonal cues modulate growth and other signalling cascades which results in autophagy-dependent degradation of the obsolete larval midgut. While this process does not require caspase activity or apoptotic machinery, several canonical autophagy-related proteins are also dispensable, suggesting additional regulators may be involved in effectively eliminating the larval midgut. Ubiquitination, a process that attaches one or more ubiquitin moieties to a substrate through sequential reactions involving a cascade of enzymes, plays a critical role in autophagy. As the specific role(s) of ubiquitination in ADCD has not been explored, we previously performed a RNAi-mediated knockdown screen of over 250 ubiquitin machinery genes in GFP-labelled Drosophila larval midguts and identified 18 candidate regulators of midgut degradation. In this work, we screened candidate genes for a role in autophagy-dependent midgut degradation by analysing mosaic clones and genetic interactions with Atg1. Validation and further studies into the ubiquitin conjugating enzyme, Effete (Eff), and two ubiquitin ligases, Cullin-4 (Cul4) and Supernumerary limbs (Slmb), demonstrated interplay between ubiquitination and the autophagy machinery in coordinating autophagy-dependent midgut degradation.
Collapse
Affiliation(s)
- Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Jantina Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Julian M Carosi
- South Australian Health and Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
6
|
Arakawa M, Uriu K, Saito K, Hirose M, Katoh K, Asano K, Nakane A, Saitoh T, Yoshimori T, Morita E. HEATR3 recognizes membrane rupture and facilitates xenophagy in response to Salmonella invasion. Proc Natl Acad Sci U S A 2025; 122:e2420544122. [PMID: 40178893 PMCID: PMC12002282 DOI: 10.1073/pnas.2420544122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial invasion into the cytoplasm of epithelial cells triggers the activation of the cellular autophagic machinery as a defense mechanism, a process known as xenophagy. In this study, we identified HEATR3, an LC3-interacting region (LIR)-containing protein, as a factor involved in this defense mechanism using quantitative mass spectrometry analysis. HEATR3 localizes intracellularly invading Salmonella, and HEATR3 deficiency promotes Salmonella proliferation in the cytoplasm. HEATR3 also localizes to lysosomes damaged by chemical treatment, suggesting that Salmonella recognition is facilitated by damage to the host cell membrane. HEATR3 deficiency impairs LC3 recruitment to damaged membranes and blocks the delivery of the target to the lysosome. These phenotypes were rescued by exogenous expression of wild-type HEATR3 but not by the LIR mutant, indicating the crucial role of the HEATR3-LC3 interaction in the receptor for selective autophagy. HEATR3 is delivered to lysosomes in an autophagy-dependent manner. Although HEATR3 recruitment to the damaged membrane was unaffected by ATG5 or FIP200 deficiency, it was markedly impaired by treatment with a calcium chelator, suggesting involvement upstream of the autophagic pathway. These findings suggest that HEATR3 serves as a receptor for selective autophagy and is able to identify damaged membranes, facilitate the removal of damaged lysosomes, and target invading bacteria within cells.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Keiya Uriu
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Koki Saito
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Mai Hirose
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Diseases for Education and Research, Suita, Osaka565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita565-0871, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| |
Collapse
|
7
|
Gao J, Mang Q, Sun Y, Xu G. Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver. BIOLOGY 2025; 14:381. [PMID: 40282246 PMCID: PMC12024547 DOI: 10.3390/biology14040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
High-fat diets (HFDs) usually trigger disruptions in lipid metabolic processes and immune suppression in fish. As an eco-friendly and potent additive, the inclusion of probiotics in fish diets ameliorates dysregulations in lipid metabolism, mitigates oxidative stress, and reduces inflammatory reactions triggered by HFDs. However, little current research has focused on the improvement of the hazards of HFDs in fish by probiotics. Therefore, we employed 4-dimensional data-independent (4D-DIA) proteomic analysis to investigate the mechanism of the protective impact of probiotics against HFD-induced hepatic injury in Coilia nasus between the HFD group and the probiotic supplementation in HFD (PHFD) group. Additionally, lipid accumulation and antioxidant indicators in the liver were also measured via Oil Red O staining and activity detection. Administration of probiotics markedly attenuated the hepatic concentrations of triglycerides (TG), cholesterol (CHO), and low-density lipoprotein cholesterol (LDL-C) in C. nasus subjected to HFDs. Furthermore, it significantly upregulated the expression of the differentially expressed proteins (DEPs) implicated in cholesterol metabolism and fatty acid oxidation, while concurrently downregulating the DEPs associated with fatty acid synthesis. Additionally, probiotic supplementation significantly reduced the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels induced by HFDs. It also upregulated the activities of catalase (CAT) and superoxide dismutase (SOD). Probiotic supplementation significantly upregulated the DEPs related to antioxidants, while significantly downregulating the DEPs associated with inflammatory responses and autophagy. These findings suggested that probiotics ameliorated HFD-induced hepatic lipid accumulation in C. nasus by enhancing cholesterol metabolism and fatty acid oxidation, concomitantly with the suppression of fatty acid synthesis pathways. Additionally, probiotics protected against HFD-induced hepatic injury by enhancing antioxidant defenses and suppressing inflammation in C. nasus.
Collapse
Affiliation(s)
- Jun Gao
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Y.S.)
| | - Qi Mang
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China;
| | - Yi Sun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Y.S.)
| | - Gangchun Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Y.S.)
| |
Collapse
|
8
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2025; 70:371-391. [PMID: 38740259 PMCID: PMC11976430 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
9
|
Zhen Y, Shao WH. WDFY1-expressing follicular dendritic cells play a critical role in lupus development in cGVHD mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf017. [PMID: 40169152 DOI: 10.1093/jimmun/vkaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025]
Abstract
Follicular dendritic cells (FDCs) retain Ag-containing immune complexes (ICs), facilitate the selection of high-affinity antibodies, and protect B cells in germinal centers (GCs) from apoptosis. In systemic lupus erythematosus patients, apoptotic debris is found on the surface of FDCs. However, the mechanisms by which FDCs engage the protected autoreactive B cells remain unclear. WD repeat and FYVE domain-containing protein 1 (WDFY1) is an adaptor protein involved in endocytic/vacuolar membrane trafficking. We found that FDCs express a high level of WDFY1, which is required for their IC presentation. C57BL/6 mice deficient in WDFY1 generated significantly lesser titers of anti-dsDNA and anti-chromatin autoantibodies (autoAbs) than WDFY1-sufficient mice receiving an equal amount of CD4+ T cells from bm12 mice in the mouse model of inducible lupus. Decreased autoAb production in WDFY1-deficient mice correlates with less GC formation and fewer T and GC B cells in the follicle. Interestingly, T cells from WDFY1-KO mice remain capable of inducing comparable chronic graft-versus-host disease (cGVHD) in host bm12 mice as the T cells from WT mice. B cells from WDFY1-KO mice also remain capable of being fully activated and differentiated in response to independent Ag challenges. Immunofluorescence staining reveals reduced binding of ICs with FDCs in WDFY1-KO mice compared to WT control mice. Mixed leukocyte reaction results show no intrinsic defect in B cells. B-cell reconstitution in Rag1-KO mice also revealed that WDFY1 is critical for FDCs. Collectively, our studies indicate that WDFY1 knockout impairs the normal functioning of FDCs, resulting in reduced autoAb response to cGVHD.
Collapse
Affiliation(s)
- Yuxuan Zhen
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Rheumatology, Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Park NY, Jo DS, Yang JY, Bae JE, Kim JB, Kim YH, Kim SH, Kim P, Lee DS, Yoshimori T, Jo EK, Yeom E, Cho DH. Activation of lysophagy by a TBK1-SCF FBXO3-TMEM192-TAX1BP1 axis in response to lysosomal damage. Nat Commun 2025; 16:1109. [PMID: 39875384 PMCID: PMC11775327 DOI: 10.1038/s41467-025-56294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCFFBXO3(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe). Furthermore, FBXO3 interacts with TMEM192, leading to its ubiquitination in LLOMe-treated cells. We also identify TAX1BP1 as a critical autophagic adaptor that recognizes ubiquitinated TMEM192 during lysophagy and find that TBK1 activation is crucial for lysophagy, as it phosphorylates FBXO3 in response to lysosomal damage. Knockout of FBXO3 significantly impairs lysophagy, and its reconstitution with a loss-of-function mutant (V221I) further confirms its essential role in lysophagy regulation. Collectively, our findings highlight the significance of the TBK1-FBXO3-TMEM192-TAX1BP1 axis in lysophagy and emphasize the critical role of FBXO3 in lysosomal integrity.
Collapse
Affiliation(s)
- Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
- Organelle Institute, Kyungpook National University, Daegu, South Korea
| | | | - Jae-Yoon Yang
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu, South Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | | | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
- Organelle Institute, Kyungpook National University, Daegu, South Korea.
- ORGASIS Corp. 260, Suwon, South Korea.
| |
Collapse
|
11
|
Nakagawa M, Nakagawa T. CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective. Cells 2025; 14:63. [PMID: 39851492 PMCID: PMC11763709 DOI: 10.3390/cells14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1-9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s.
Collapse
Affiliation(s)
- Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan;
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan
| |
Collapse
|
12
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
13
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
14
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
15
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 PMCID: PMC11668303 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
16
|
Liu W, Wang Y, Liu S, Zhang X, Cao X, Jiang M. E3 Ubiquitin Ligase RNF13 Suppresses TLR Lysosomal Degradation by Promoting LAMP-1 Proteasomal Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309560. [PMID: 39031743 PMCID: PMC11348240 DOI: 10.1002/advs.202309560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/27/2024] [Indexed: 07/22/2024]
Abstract
As a highly organized system, endo-lysosomes play a crucial role in maintaining immune homeostasis. However, the mechanisms involved in regulating endo-lysosome progression and subsequent inflammatory responses are not fully understood. By screening 103 E3 ubiquitin ligases in regulating endo-lysosomal acidification, it is discovered that lysosomal RNF13 inhibits lysosome maturation and promotes inflammatory responses mediated by endosomal Toll-like receptors (TLRs) in macrophages. Mechanistically, RNF13 mediates K48-linked polyubiquitination of LAMP-1 at residue K128 for proteasomal degradation. Upon TLRs activation, LAMP-1 promotes lysosomes maturation, which accelerates lysosomal degradation of TLRs and reduces TLR signaling in macrophages. Furthermore, peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis (RA) show increased RNF13 levels and decreased LAMP-1 expression. Accordingly, the immunosuppressive agent hydroxychloroquine (HCQ) can increase the polyubiquitination of RNF13. Taken together, the study establishes a linkage between proteasomal and lysosomal degradation mechanisms for the induction of appropriate innate immune response, and offers a promising approach for the treatment of inflammatory diseases by targeting intracellular TLRs.
Collapse
Affiliation(s)
- Wei Liu
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
- Department of RheumatologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730China
| | - Yuyang Wang
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| | - Shuo Liu
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| | - Xuan Zhang
- Department of RheumatologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730China
| | - Xuetao Cao
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| | - Minghong Jiang
- Department of ImmunologyCenter for ImmunotherapyInstitute of Basic Medical SciencesPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing100005China
| |
Collapse
|
17
|
Deretic V, Duque T, Trosdal E, Paddar M, Javed R, Akepati P. Membrane atg8ylation in Canonical and Noncanonical Autophagy. J Mol Biol 2024; 436:168532. [PMID: 38479594 PMCID: PMC11260254 DOI: 10.1016/j.jmb.2024.168532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Membrane atg8ylation is a homeostatic process responding to membrane remodeling and stress signals. Membranes are atg8ylated by mammalian ATG8 ubiquitin-like proteins through a ubiquitylation-like cascade. A model has recently been put forward which posits that atg8ylation of membranes is conceptually equivalent to ubiquitylation of proteins. Like ubiquitylation, membrane atg8ylation involves E1, E2 and E3 enzymes. The E3 ligases catalyze the final step of atg8ylation of aminophospholipids in membranes. Until recently, the only known E3 ligase for membrane atg8ylation was ATG16L1 in a noncovalent complex with the ATG12-ATG5 conjugate. ATG16L1 was first identified as a factor in canonical autophagy. During canonical autophagy, the ATG16L1-based E3 ligase complex includes WIPI2, which in turn recognizes phosphatidylinositiol 3-phosphate and directs atg8ylation of autophagic phagophores. As an alternative to WIPIs, binding of ATG16L1 to the proton pump V-ATPase guides atg8ylation of endolysosomal and phagosomal membranes in response to lumenal pH changes. Recently, a new E3 complex containing TECPR1 instead of ATG16L1, has been identified that responds to sphingomyelin's presence on the cytofacial side of perturbed endolysosomal membranes. In present review, we cover the principles of membrane atg8ylation, catalog its various presentations, and provide a perspective on the growing repertoire of E3 ligase complexes directing membrane atg8ylation at diverse locations.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| | - Thabata Duque
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar Trosdal
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Masroor Paddar
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Prithvi Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
18
|
Li L, Fu S, Wang J, Lu J, Tao Y, Zhao L, Fu B, Lu L, Xiang C, Sun X, Liu S, Wang D, Wang Z. SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux. Biochem Pharmacol 2024; 222:116111. [PMID: 38458329 DOI: 10.1016/j.bcp.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Bladder cancer (BC) is the most common cancer of the urinary tract, with poor survival, high recurrence rates, and lacking of targeted drugs. In this study, we constructed a library to screen compounds inhibiting bladder cancer cells growth. Among them, SRT1720 was identified to inhibit bladder cancer cell proliferation in vitro and in vivo. SRT1720 treatment also suppressed bladder cancer cells migration, invasion and induced apoptosis. Mechanism studies shown that SRT1720 promoted autophagosomes accumulation by inducing early-stage autophagy but disturbed the late-stage of autophagy by blocking fusion of autophagosomes and lysosomes. SRT1720 appears to induce autophagy related proteins expression and alter autophagy-related proteins acetylation to impede the autophagy flux. LAMP2, an important lysosomal associated membrane protein, may mediate SRT1720-inhibited autophagy flux as SRT1720 treatment significantly deacetylated LAMP2 which may influence its activity. Taken together, our results demonstrated that SRT1720 mediated apoptosis and autophagy flux inhibition may be a novel therapeutic strategy for bladder cancer treatment.
Collapse
Affiliation(s)
- Lanlan Li
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Shengjun Fu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Jianliang Wang
- Department of Pharmacy, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730035, Gansu, China
| | - Jianzhong Lu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Yan Tao
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Liangtao Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Lanpeng Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Caifei Xiang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xince Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shanhui Liu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhiping Wang
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| |
Collapse
|
19
|
Chauhan N, Patro BS. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett 2024; 584:216599. [PMID: 38135207 DOI: 10.1016/j.canlet.2023.216599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
20
|
Johnson LL, Abrahante JE, McLoon LK. Nystagmus in the B6(CG)Tyr(c-2J)/J Albino Mouse: A Functional and RNA-Seq Analysis. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 38206276 PMCID: PMC10787582 DOI: 10.1167/iovs.65.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose Infantile nystagmus syndrome (INS) is a gaze-holding disorder characterized by conjugate, uncontrolled eye oscillations that can result in significant visual acuity loss. INS is often associated with albinism, but the mechanism is unclear. Albino mice have nystagmus; however, a pigmented mouse with a tyr mutation making it phenotypically albino, the B6(CG)-Tyr(c-2J)/J (B6 albino), had not been tested. We tested optokinetic response (OKR) in B6 albino and control mice. RNA-Seq was performed on extraocular muscles (EOM), tibialis anterior (TA) muscle, abducens (CN6), and oculomotor (CN3) neurons to uncover molecular differences that may contribute to nystagmus. Methods OKR was measured using an ISCAN system. RNA was isolated from four tissues to identify differentially expressed genes and validated with qPCR and immunohistochemistry. Ingenuity pathway analyses identified top biological pathways. Results All B6 albino mice tested had nystagmus. Differential RNA expression analysis showed 383 genes differentially expressed in EOM, 70 in CN3, 20 in CN6, and 639 in the TA. Two genes were differentially expressed in all four tissues: wdfy1 and nnt. Differences were validated by qPCR and immunostaining. Conclusions The tyr mutation in B6 albino mice, genotypically pigmented and phenotypically albino, is sufficient to result in spontaneous nystagmus. The two genes with decreased expression in the B6 albino tissues examined, wdfy1 and nnt, have been implicated in mitochondrial dysfunction and stem cell maintenance in other systems. Their function in extraocular muscle is unknown. These studies suggest that this mouse model of nystagmus may allow molecular identification of candidate nystagmus-related genes.
Collapse
Affiliation(s)
- Laura L. Johnson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Graduate Program in Cellular, Molecular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Graduate Program in Cellular, Molecular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
21
|
Shima T, Ogura M, Matsuda R, Nakamura S, Jin N, Yoshimori T, Kuma A. The TMEM192-mKeima probe specifically assays lysophagy and reveals its initial steps. J Cell Biol 2023; 222:e202204048. [PMID: 37801070 PMCID: PMC10558291 DOI: 10.1083/jcb.202204048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Membrane rupture of lysosomes results in leakage of their contents, which is harmful to cells. Recent studies have reported that several systems contribute to the repair or elimination of damaged lysosomes. Lysophagy is a type of selective autophagy that plays a crucial role in the lysosomal damage response. Because multiple pathways are involved in this response, an assay that specifically evaluates lysophagy is needed. Here, we developed the TMEM192-mKeima probe to evaluate lysophagy. By comparing the use of this probe with the conventional galectin-3 assay, we showed that this probe is more specific to lysophagy. Using TMEM192-mKeima, we showed that TFEB and p62 are important for the lysosomal damage response but not for lysophagy, although they have previously been considered to be involved in lysophagy. We further investigated the initial steps in lysophagy and identified UBE2L3, UBE2N, TRIM10, 16, and 27 as factors involved in it. Our results demonstrate that the TMEM192-mKeima probe is a useful tool for investigating lysophagy.
Collapse
Affiliation(s)
- Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ruriko Matsuda
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Natsuko Jin
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Buck TM, Quinn PMJ, Pellissier LP, Mulder AA, Jongejan A, Lu X, Boon N, Koot D, Almushattat H, Arendzen CH, Vos RM, Bradley EJ, Freund C, Mikkers HMM, Boon CJF, Moerland PD, Baas F, Koster AJ, Neefjes J, Berlin I, Jost CR, Wijnholds J. CRB1 is required for recycling by RAB11A+ vesicles in human retinal organoids. Stem Cell Reports 2023; 18:1793-1810. [PMID: 37541258 PMCID: PMC10545476 DOI: 10.1016/j.stemcr.2023.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/06/2023] Open
Abstract
CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.
Collapse
Affiliation(s)
- Thilo M Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Peter M J Quinn
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Lucie P Pellissier
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands
| | - Aat A Mulder
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Daniëlle Koot
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands
| | | | - Rogier M Vos
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands
| | - Edward J Bradley
- Department of Genome Analysis, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands
| | - Christian Freund
- Leiden University Medical Center hiPSC Hotel, Leiden 2333 ZA, the Netherlands
| | - Harald M M Mikkers
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands; Leiden University Medical Center hiPSC Hotel, Leiden 2333 ZA, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam 1000 AE, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands
| | - Frank Baas
- Department of Genome Analysis, Amsterdam University Medical Centers, Amsterdam 1105 AZ, the Netherlands; Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Abraham J Koster
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Jacques Neefjes
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Ilana Berlin
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Carolina R Jost
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden 2300 RC, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
23
|
Yang H, Tan JX. Lysosomal quality control: molecular mechanisms and therapeutic implications. Trends Cell Biol 2023; 33:749-764. [PMID: 36717330 PMCID: PMC10374877 DOI: 10.1016/j.tcb.2023.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Lysosomes are essential catabolic organelles with an acidic lumen and dozens of hydrolytic enzymes. The detrimental consequences of lysosomal leakage have been well known since lysosomes were discovered during the 1950s. However, detailed knowledge of lysosomal quality control mechanisms has only emerged relatively recently. It is now clear that lysosomal leakage triggers multiple lysosomal quality control pathways that replace, remove, or directly repair damaged lysosomes. Here, we review how lysosomal damage is sensed and resolved in mammalian cells, with a focus on the molecular mechanisms underlying different lysosomal quality control pathways. We also discuss the clinical implications and therapeutic potential of these pathways.
Collapse
Affiliation(s)
- Haoxiang Yang
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Tabata K, Saeki M, Yoshimori T, Hamasaki M. How cells recognize and remove the perforated lysosome. Autophagy 2023; 19:1869-1871. [PMID: 36368338 PMCID: PMC10262756 DOI: 10.1080/15548627.2022.2138686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a highly conserved intracellular degradation system to maintain cellular homeostasis by degrading cellular components such as misfolded proteins, nonfunctional organelles, pathogens, and cytosol. Conversely, selective autophagy targets and degrades specific cargo, such as organelles, bacteria, etc. We previously reported that damaged lysosomes are autophagy targets, via a process called lysophagy. However, how cells target damaged lysosomes through autophagy is not known. We performed proteomics analysis followed by siRNA screening to identify genes involved in targeting damaged lysosomes and identified a new E3 ligase complex, involving CUL4A (cullin 4A), as a regulatory complex in lysophagy. We also found that this complex mediates K48-linked poly-ubiquitination on lysosome protein LAMP2 during lysosomal damage; particularly, the lumenal side of LAMP2 is important to recruit the complex to damaged lysosomes. This protein modification is thus critical to initiate the clearance of damaged lysosomes.
Collapse
Affiliation(s)
- Keisuke Tabata
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Marika Saeki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Tabata K, Saeki M, Yoshimori T, Hamasaki M. Monitoring and assessment of lysosomal membrane damage in cultured cells using the high-content imager. STAR Protoc 2023; 4:102236. [PMID: 37074905 PMCID: PMC10148077 DOI: 10.1016/j.xpro.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
Autophagy is an intracellular self-degradation process in which part of the cytoplasm, aggregates, or damaged organelles are degraded in lysosomes. Lysophagy is a specific form of selective autophagy responsible for clearing damaged lysosomes. Here, we present a protocol for inducing lysosomal damage in cultured cells and assessing lysosomal damage using a high-content imager and software program. We describe steps for induction of lysosomal damage, image acquisition with spinning disk confocal microscopy, and image analysis using Pathfinder. We then detail data analysis of the clearance of damaged lysosomes. For complete details on the use and execution of this protocol, please refer to Teranishi et al. (2022).1.
Collapse
Affiliation(s)
- Keisuke Tabata
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Marika Saeki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Maho Hamasaki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
26
|
Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan X, Mao X, Wu J, Xu Y, Xiong Q, Chen Z, Zhang B, Han J. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy. Signal Transduct Target Ther 2022; 7:388. [PMID: 36481655 PMCID: PMC9731993 DOI: 10.1038/s41392-022-01253-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Chemoresistance has long been the bottleneck of ovarian cancer (OC) prognosis. It has been shown that mitochondria play a crucial role in cell response to chemotherapy and that dysregulated mitochondrial dynamics is intricately linked with diseases like OC, but the underlying mechanisms remain equivocal. Here, we demonstrate a new mechanism where CRL4CUL4A/DDB1 manipulates OC cell chemoresistance by regulating mitochondrial dynamics and mitophagy. CRL4CUL4A/DDB1 depletion enhanced mitochondrial fission by upregulating AMPKαThr172 and MFFSer172/Ser146 phosphorylation, which in turn recruited DRP1 to mitochondria. CRL4CUL4A/DDB1 loss stimulated mitophagy through the Parkin-PINK1 pathway to degrade the dysfunctional and fragmented mitochondria. Importantly, CRL4CUL4A/DDB1 loss inhibited OC cell proliferation, whereas inhibiting autophagy partially reversed this disruption. Our findings provide novel insight into the multifaceted function of the CRL4 E3 ubiquitin ligase complex in regulating mitochondrial fission, mitophagy, and OC chemoresistance. Disruption of CRL4CUL4A/DDB1 and mitophagy may be a promising therapeutic strategy to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Yang Meng
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Qiu
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xinyi Zeng
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.26999.3d0000 0001 2151 536XDivision of Cancer Cell Biology, The Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Xiaoyan Hu
- grid.224260.00000 0004 0458 8737Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA USA
| | - Yaguang Zhang
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiaowen Wan
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiaobing Mao
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jian Wu
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yongfeng Xu
- grid.412901.f0000 0004 1770 1022Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Qunli Xiong
- grid.412901.f0000 0004 1770 1022Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Zhixin Chen
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Zhang
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Junhong Han
- grid.13291.380000 0001 0807 1581Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|