1
|
Wongnak R, Brindha S, Oba M, Yoshizue T, Islam MD, Islam MM, Takemae H, Mizutani T, Kuroda Y. Non-Glycosylated SARS-CoV-2 Omicron BA.5 Receptor Binding Domain (RBD) with a Native-like Conformation Induces a Robust Immune Response with Potent Neutralization in a Mouse Model. Molecules 2024; 29:2676. [PMID: 38893549 PMCID: PMC11173568 DOI: 10.3390/molecules29112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The Omicron BA.5 variant of SARS-CoV-2 is known for its high transmissibility and its capacity to evade immunity provided by vaccine protection against the (original) Wuhan strain. In our prior research, we successfully produced the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in an E. coli expression system. Extensive biophysical characterization indicated that, even without glycosylation, the RBD maintained native-like conformational and biophysical properties. The current study explores the immunogenicity and neutralization capacity of the E. coli-expressed Omicron BA.5 RBD using a mouse model. Administration of three doses of the RBD without any adjuvant elicited high titer antisera of up to 7.3 × 105 and up to 1.6 × 106 after a booster shot. Immunization with RBD notably enhanced the population of CD44+CD62L+ T cells, indicating the generation of T cell memory. The in vitro assays demonstrated the antisera's protective efficacy through significant inhibition of the interaction between SARS-CoV-2 and its human receptor, ACE2, and through potent neutralization of a pseudovirus. These findings underscore the potential of our E. coli-expressed RBD as a viable vaccine candidate against the Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Rawiwan Wongnak
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
| | - Mami Oba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
| | - Md. Din Islam
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
| | - M. Monirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Hitoshi Takemae
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Tetsuya Mizutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; (R.W.); (S.B.); (T.Y.); (M.D.I.)
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (M.O.); (H.T.); (T.M.)
| |
Collapse
|
2
|
Powell AA, Dowell AC, Moss P, Ladhani SN. Current state of COVID-19 in children: 4 years on. J Infect 2024; 88:106134. [PMID: 38432584 DOI: 10.1016/j.jinf.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Children have been disproportionately affected by the COVID-19 pandemic. Despite evidence of a very low risk of severe disease, children were subjected to extensive lockdown, restriction and mitigation measures, including school closures, to control the rapid spread of SARS-CoV-2 in most parts of the world. In this review we summarise the UK experience of COVID-19 in children four years into the largest and longest pandemic of this century. We address the risks of SARS-CoV-2 infection, immunity, transmission, severity and outcomes in children. We also assess the implementation, uptake, effectiveness and impact of COVID-19 vaccination, as well as the emergence, evolution and near disappearance of PIMS-TS (paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2) and current understanding of long COVID in children. This review consolidates current knowledge on childhood COVID-19 and emphasises the importance of continued research and the need for research-driven public health actions and policy decisions, especially in the context of new variants and future vaccines.
Collapse
Affiliation(s)
- Annabel A Powell
- Public Health Programmes, UK Health Security Agency, London, UK.
| | - Alexander C Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shamez N Ladhani
- Public Health Programmes, UK Health Security Agency, London, UK; Paediatric Infectious Diseases Research Group, St. George's University of London, London, UK
| |
Collapse
|
3
|
Hong W, Lei H, Peng D, Huang Y, He C, Yang J, Zhou Y, Liu J, Pan X, Que H, Alu A, Chen L, Ai J, Qin F, Wang B, Ao D, Zeng Z, Hao Y, Zhang Y, Huang X, Ye C, Fu M, He X, Bi Z, Han X, Luo M, Hu H, Cheng W, Dong H, Lei J, Chen L, Zhou X, Wang W, Lu G, Shen G, Yang L, Yang J, Li J, Wang Z, Song X, Sun Q, Lu S, Wang Y, Cheng P, Wei X. A chimeric adenovirus-vectored vaccine based on Beta spike and Delta RBD confers a broad-spectrum neutralization against Omicron-included SARS-CoV-2 variants. MedComm (Beijing) 2024; 5:e539. [PMID: 38680520 PMCID: PMC11055958 DOI: 10.1002/mco2.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.
Collapse
|
4
|
Röltgen K, Boyd SD. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. ANNUAL REVIEW OF PATHOLOGY 2024; 19:69-97. [PMID: 37738512 DOI: 10.1146/annurev-pathmechdis-031521-042754] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Bernauer H, Schlör A, Maier J, Bannert N, Hanack K, Ivanusic D. tANCHOR fast and cost-effective cell-based immunization approach with focus on the receptor-binding domain of SARS-CoV-2. Biol Methods Protoc 2023; 8:bpad030. [PMID: 38090673 PMCID: PMC10713279 DOI: 10.1093/biomethods/bpad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 06/29/2024] Open
Abstract
Successful induction of antibodies in model organisms like mice depends strongly on antigen design and delivery. New antigen designs for immunization are helpful for developing future therapeutic monoclonal antibodies (mAbs). One of the gold standards to induce antibodies in mice is to express and purify the antigen for vaccination. This is especially time-consuming when mAbs are needed rapidly. We closed this gap and used the display technology tetraspanin anchor to develop a reliable immunization technique without the need to purify the antigen. This technique is able to speed up the immunization step enormously and we have demonstrated that we were able to induce antibodies against different proteins with a focus on the receptor-binding domain of SARS-CoV-2 and the extracellular loop of canine cluster of differentiation 20 displayed on the surface of human cells.
Collapse
Affiliation(s)
| | - Anja Schlör
- new/era/mabs GmbH, Potsdam 14482, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | - Josef Maier
- ATG:biosynthetics GmbH, Merzhausen 79249, Germany
| | | | - Katja Hanack
- new/era/mabs GmbH, Potsdam 14482, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | | |
Collapse
|
6
|
Cao L, Guo J, Li H, Ren H, Xiao K, Zhang Y, Zhu S, Song Y, Zhao W, Wu D, Chen Z, Zhang Y, Xia B, Ji T, Yan D, Wang D, Yang Q, Zhou Y, Li X, Hou Z, Xu W. A Beta Strain-Based Spike Glycoprotein Vaccine Candidate Induces Broad Neutralization and Protection against SARS-CoV-2 Variants of Concern. Microbiol Spectr 2023; 11:e0268722. [PMID: 36847495 PMCID: PMC10100794 DOI: 10.1128/spectrum.02687-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) are circulating worldwide, making it resistant to existing vaccines and antiviral drugs. Therefore, the evaluation of variant-based expanded spectrum vaccines to optimize the immune response and provide broad protectiveness is very important. In this study, we expressed spike trimer protein (S-TM) based on the Beta variant in a GMP-grade workshop using CHO cells. Mice were immunized twice with S-TM protein combined with aluminum hydroxide (Al) and CpG Oligonucleotides (CpG) adjuvant to evaluate its safety and efficacy. BALB/c immunized with S-TM + Al + CpG induced high neutralizing antibody titers against the Wuhan-Hu-1 strain (wild-type, WT), the Beta and Delta variants, and even the Omicron variant. In addition, compared with the S-TM + Al group, the S-TM + Al + CpG group effectively induced a stronger Th1-biased cell immune response in mice. Furthermore, after the second immunization, H11-K18 hACE2 mice were well protected from challenge with the SARS-CoV-2 Beta strain, with a 100% survival rate. The virus load and pathological lesions in the lungs were significantly reduced, and no virus was detected in mouse brain tissue. Our vaccine candidate is practical and effective for current SARS-CoV-2 VOCs, which will support its further clinical development for potential sequential immune and primary immunization. IMPORTANCE Continuous emergence of adaptive mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the use and development of existing vaccines and drugs. The value of variant-based vaccines that are capable of inducing a higher and broader protection immune response against SARS-CoV-2 variants is currently being evaluated. This article shows that a recombinant prefusion spike protein based on a Beta variant was highly immunogenic and could induced a stronger Th1-biased cell immune response in mice and was effectively protective against challenge with the SARS-CoV-2 Beta variant. Importantly, this Beta-based SARS-CoV-2 vaccine could also offer a robust humoral immune response with effectively broad neutralization ability against the wild type and different variants of concern (VOCs): the Beta, Delta, and Omicron BA.1 variants. To date, the vaccine described here has been produced in a pilot scale (200L), and the development, filling process, and toxicological safety evaluation have also been completed, which provides a timely response to the emerging SARS-CoV-2 variants and vaccine development.
Collapse
Affiliation(s)
- Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinyuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hu Ren
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Zhao
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Dan Wu
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Zhihui Chen
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Yanan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyan Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yangzi Zhou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolei Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhanjun Hou
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|