1
|
Zhao Z, Hu B, Deng Y, Soeung M, Yao J, Bei L, Zhang Y, Gong P, Huang LA, Jiang Z, Gao J, Peng S, Nguyen TK, Karki M, Lim B, Yee C, Burks JK, Zhang Q, Ma L, Gao J, Tannir NM, Han L, Yu D, Wang L, Curran MA, Gubbiotti MA, Genovese G, Gan B, Li W, Msaouel P, Yang L, Lin C. Sickle cell disease induces chromatin introversion and ferroptosis in CD8 + T cells to suppress anti-tumor immunity. Immunity 2025:S1074-7613(25)00183-9. [PMID: 40359940 DOI: 10.1016/j.immuni.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/22/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Understanding how genetic disorders affect CD8+ T cells in the tumor microenvironment is key to improving cancer immunotherapy. Individuals with sickle cell disease (SCD), the most prevalent inherited blood disorder, have a higher risk of developing certain cancers than the general population, but the mechanisms driving this increased risk remain unclear. Our study revealed that SCD altered CD8+ T cell 3D genome architecture, triggering ferroptosis and weakening anti-tumor immunity, thereby promoting tumor growth. Using murine and humanized SCD models, we found that disrupted chromosomal interactions in CD8+ T cells reduced the expression of anti-ferroptotic genes, including SLC7A11 and hydrogen sulfide (H2S) biogenesis genes, thereby increasing susceptibility to ferroptosis. Therapeutic restoration of H2S concentration in SCD mice rescued SLC7A11 expression, mitigated ferroptosis, and enhanced immune and anti-tumor responses. These findings highlight the impact of inherited disorders on cancer immunity and suggest precision immunotherapy strategies for affected individuals.
Collapse
Affiliation(s)
- Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benxia Hu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda Soeung
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lanxin Bei
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pengju Gong
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Gao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuang Peng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Menuka Karki
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Linghua Wang
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria A Gubbiotti
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Moeller GC, Ungerleider S, Marcou N, Jacob A, Nguyen VQ, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. Mol Cell 2025; 85:1101-1116.e8. [PMID: 40068679 PMCID: PMC11928253 DOI: 10.1016/j.molcel.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Nuclear pore proteins (nucleoporins [Nups]) physically interact with hundreds of chromosomal sites, impacting transcription. In yeast, transcription factors mediate interactions between Nups and enhancers and promoters. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC). This mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 and Nups co-occupy enhancers, and Crm1 inhibition blocks interaction of the nuclear pore protein Nup2 with the genome. In vivo, Crm1 interacts stably with the NPC and in vitro, Crm1 binds directly to both Gcn4 and Nup2. Importantly, the interaction between Crm1 and Gcn4 requires neither Ran-guanosine triphosphate (GTP) nor the nuclear export sequence binding site. Finally, Crm1 and Ran-GTP stimulate DNA binding by Gcn4, suggesting that allosteric coupling between Crm1-Ran-GTP binding and DNA binding facilitates the docking of transcription-factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Caffalette
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Gavin C Moeller
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Alexis Jacob
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Vu Q Nguyen
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
3
|
Lyu H, Chen X, Cheng Y, Zhang T, Wang P, Wong JHY, Wang J, Stasiak L, Sun L, Yang G, Wang L, Yue F. Pioneer factor GATA6 promotes colorectal cancer through 3D genome regulation. SCIENCE ADVANCES 2025; 11:eads4985. [PMID: 39919174 PMCID: PMC11804904 DOI: 10.1126/sciadv.ads4985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent malignancies. While the overexpression of pioneer factor GATA6 in CRC has been linked with metastasis, its role in genome-wide gene expression dysregulation remains unclear. Through studies of primary human CRC tissues and analysis of the TCGA data, we found that GATA6 preferentially binds at CRC-specific active enhancers, with enrichment at enhancer-promoter loop anchors. GATA6 protein also physically interacts with CTCF, suggesting its critical role in 3D genome organization. The ablation of GATA6 through AID and CRISPR systems severely impaired cancer cell clonogenicity and proliferation. Mechanistically, GATA6 knockout induced global loss of CRC-specific open chromatins and extensive alterations of critical enhancer-promoter interactions for CRC oncogenes. Last, we showed that GATA6 knockout greatly reduced tumor growth and improved survival in mice. Together, we revealed a previously unidentified mechanism by which GATA6 contributes to the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Cheng
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Te Zhang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Josiah Hiu-yuen Wong
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lena Stasiak
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leyu Sun
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Guangyu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Mohajan S, Rubio LS, Gross DS. Nuclear basket proteins Mlp1 and Nup2 drive heat shock-induced 3D genome restructuring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631024. [PMID: 39803495 PMCID: PMC11722380 DOI: 10.1101/2025.01.01.631024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of Heat Shock Responsive (HSR) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving HSR genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to HSR gene regulatory and coding regions. HSR gene clustering occurs predominantly within the nucleoplasm and is independent of the essential scaffold-associated proteins Nup1 and Nup145. Notably, double depletion of Mlp1 and Nup2 has little effect on the formation of Heat Shock Factor 1 (Hsf1)-containing transcriptional condensates, Hsf1 and Pol II recruitment to HSR genes, or HSR mRNA abundance. Our results define a 3D genome restructuring role for nuclear basket proteins extrinsic to the NPC and downstream of HSR gene activation.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Linda S. Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - David S. Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
5
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
7
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Ungerleider S, Marcou N, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593355. [PMID: 38798450 PMCID: PMC11118273 DOI: 10.1101/2024.05.09.593355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nuclear pore proteins (Nups) in yeast, flies and mammals physically interact with hundreds or thousands of chromosomal sites, which impacts transcriptional regulation. In budding yeast, transcription factors mediate interaction of Nups with enhancers of highly active genes. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC) without altering its DNA binding or activation domains. SILAC mass spectrometry revealed that this mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 both interacts with the same sites as Nups genome-wide and is required for Nup2 to interact with the yeast genome. In vivo, Crm1 undergoes extensive and stable interactions with the NPC. In vitro, Crm1 binds to Gcn4 and these proteins form a complex with the nuclear pore protein Nup2. Importantly, the interaction between Crm1 and Gcn4 does not require Ran-GTP, suggesting that it is not through the nuclear export sequence binding site. Finally, Crm1 stimulates DNA binding by Gcn4, supporting a model in which allosteric coupling between Crm1 binding and DNA binding permits docking of transcription factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | | | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | | | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
- Current address: Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
8
|
Dupouy G, Dong Y, Herzog E, Chabouté ME, Berr A. Nuclear envelope dynamics in connection to chromatin remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:963-981. [PMID: 37067011 DOI: 10.1111/tpj.16246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.
Collapse
Affiliation(s)
- Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| |
Collapse
|
9
|
Hazawa M, Ikliptikawati DK, Iwashima Y, Lin DC, Jiang Y, Qiu Y, Makiyama K, Matsumoto K, Kobayashi A, Nishide G, Keesiang L, Yoshino H, Minamoto T, Suzuki T, Kobayashi I, Meguro-Horike M, Jiang YY, Nishiuchi T, Konno H, Koeffler HP, Hosomichi K, Tajima A, Horike SI, Wong RW. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem Biol 2024; 31:792-804.e7. [PMID: 37924814 DOI: 10.1016/j.chembiol.2023.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Iwashima
- Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - De-Chen Lin
- Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Yujia Qiu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Makiyama
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Matsumoto
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Lim Keesiang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yan-Yi Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Takumi Nishiuchi
- Division of Integrated Omics research, Bioscience Core Facility Research Center for Experimental Modeling of Human Disease, Kanazawa University 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shin-Ichi Horike
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
10
|
Li S, Wang Y, van der Stoel M, Zhou X, Madhusudan S, Kanerva K, Nguyen VD, Eskici N, Olkkonen VM, Zhou Y, Raivio T, Ikonen E. HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells. Genome Biol 2024; 25:58. [PMID: 38409044 PMCID: PMC10895734 DOI: 10.1186/s13059-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However, generation of human AID cell lines is challenging, especially in human embryonic stem cells (hESCs). Here, we develop HiHo-AID2, a streamlined procedure for rapid, one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines, including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.
Collapse
Affiliation(s)
- Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| | - Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Vesa M Olkkonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
11
|
Qiu Y, Sajidah ES, Kondo S, Narimatsu S, Sandira MI, Higashiguchi Y, Nishide G, Taoka A, Hazawa M, Inaba Y, Inoue H, Matsushima A, Okada Y, Nakada M, Ando T, Lim K, Wong RW. An Efficient Method for Isolating and Purifying Nuclei from Mice Brain for Single-Molecule Imaging Using High-Speed Atomic Force Microscopy. Cells 2024; 13:279. [PMID: 38334671 PMCID: PMC10855070 DOI: 10.3390/cells13030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells. Super-resolution techniques have effectively addressed this constraint by enabling the observation of subcellular components on the nanoscale. Nevertheless, it is crucial to acknowledge that these methods often need the use of fixed samples. This also raises the question of how closely a static image represents the real intracellular dynamic system. High-speed atomic force microscopy (HS-AFM) is a unique technique used in the field of dynamic structural biology, enabling the study of individual molecules in motion close to their native states. Establishing a reliable and repeatable technique for imaging mammalian tissue at the nanoscale using HS-AFM remains challenging due to inadequate sample preparation. This study presents the rapid strainer microfiltration (RSM) protocol for directly preparing high-quality nuclei from the mouse brain. Subsequently, we promptly utilize HS-AFM real-time imaging and cinematography approaches to record the spatiotemporal of nuclear pore nano-dynamics from the mouse brain.
Collapse
Affiliation(s)
- Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Elma Sakinatus Sajidah
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Sota Kondo
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Shinnosuke Narimatsu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Muhammad Isman Sandira
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Yoshiki Higashiguchi
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Goro Nishide
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
| | - Azuma Taoka
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Masaharu Hazawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-8641, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Keesiang Lim
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (Y.Q.); (M.I.S.)
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan (M.H.); (T.A.)
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Capelson M. You are who your friends are-nuclear pore proteins as components of chromatin-binding complexes. FEBS Lett 2023; 597:2769-2781. [PMID: 37652464 PMCID: PMC11081553 DOI: 10.1002/1873-3468.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Nuclear pore complexes are large multicomponent protein complexes that are embedded in the nuclear envelope, where they mediate nucleocytoplasmic transport. In addition to supporting transport, nuclear pore components, termed nucleoporins (Nups), can interact with chromatin and influence genome function. A subset of Nups can also localize to the nuclear interior and bind chromatin intranuclearly, providing an opportunity to investigate chromatin-associated functions of Nups outside of the transport context. This review focuses on the gene regulatory functions of such intranuclear Nups, with a particular emphasis on their identity as components of several chromatin regulatory complexes. Recent proteomic screens have identified Nups as interacting partners of active and repressive epigenetic machinery, architectural proteins, and DNA replication complexes, providing insight into molecular mechanisms via which Nups regulate gene expression programs. This review summarizes these interactions and discusses their potential functions in the broader framework of nuclear genome organization.
Collapse
Affiliation(s)
- Maya Capelson
- Cell and Molecular Biology Program, Department of Biology, San Diego State University, CA, USA
| |
Collapse
|
14
|
Nobari P, Doye V, Boumendil C. Metazoan nuclear pore complexes in gene regulation and genome stability. DNA Repair (Amst) 2023; 130:103565. [PMID: 37696111 DOI: 10.1016/j.dnarep.2023.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The nuclear pore complexes (NPCs), one of the hallmarks of eukaryotic nuclei, allow selective transport of macromolecules between the cytoplasm and the nucleus. Besides this canonical function, an increasing number of additional roles have been attributed to the NPCs and their constituents, the nucleoporins. Here we review recent insights into the mechanisms by which NPCs and nucleoporins affect transcription and DNA repair in metazoans. In the first part, we discuss how gene expression can be affected by the localization of genome-nucleoporin interactions at pores or "off-pores", by the role of nucleoporins in chromatin organization at different scales, or by the physical properties of nucleoporins. In the second part, we review the contribution of NPCs to genome stability, including transport-dependent and -independent functions and the role of positioning at NPCs in the repair of heterochromatic breaks and the regulation of replication stress.
Collapse
Affiliation(s)
- Parisa Nobari
- IGH, Université de Montpellier, CNRS, Montpellier, France
| | - Valérie Doye
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | |
Collapse
|