1
|
Tadepalli S, Clements DR, Raquer-McKay HM, Lüdtke A, Saravanan S, Seong D, Vitek L, Richards CM, Carette JE, Mack M, Gottfried-Blackmore A, Graves EE, Idoyaga J. CD301b+ monocyte-derived dendritic cells mediate resistance to radiotherapy. J Exp Med 2025; 222:e20231717. [PMID: 40146036 PMCID: PMC11949126 DOI: 10.1084/jem.20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Monocytes infiltrating tumors acquire various states that distinctly impact cancer treatment. Here, we show that resistance of tumors to radiotherapy (RT) is controlled by the accumulation of monocyte-derived dendritic cells (moDCs). These moDCs are characterized by the expression of CD301b and have a superior capacity to generate regulatory T cells (Tregs). Accordingly, moDC depletion limits Treg generation and improves the therapeutic outcome of RT. Mechanistically, we demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF) derived from radioresistant tumor cells following RT is necessary for the accumulation of moDCs. Our results unravel the immunosuppressive function of moDCs and identify GM-CSF as an immunotherapeutic target during RT.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayley M. Raquer-McKay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - David Seong
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lorraine Vitek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M. Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Andres Gottfried-Blackmore
- Department of Pharmacology, University of California San Diego School of Medicine, San Diego, CA, USA
- Department of Medicine, Division of Gastroenterology, University of California San Diego School of Medicine, San Diego, CA, USA
- Gastroenterology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pharmacology, University of California San Diego School of Medicine, San Diego, CA, USA
- Department of Molecular Biology, University of California San Diego School of Biological Sciences, San Diego, CA, USA
| |
Collapse
|
2
|
Benmebarek MR, Oguz C, Seifert M, Ruf B, Myojin Y, Bauer KC, Huang P, Ma C, Villamor-Payà M, Rodriguez-Matos F, Soliman M, Trehan R, Monge C, Xie C, Kleiner DE, Wood BJ, Levy EB, Budhu A, Kedei N, Mayer CT, Wang XW, Lack J, Telford W, Korangy F, Greten TF. Anti-vascular endothelial growth factor treatment potentiates immune checkpoint blockade through a BAFF- and IL-12-dependent reprogramming of the TME. Immunity 2025; 58:926-945.e10. [PMID: 40088889 PMCID: PMC11981852 DOI: 10.1016/j.immuni.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Anti-vascular endothelial growth factor (VEGF) treatment has shown clinical activity together with immune checkpoint blockade (ICB), but the exact mechanism is not known. We show that VEGF blockade in combination with anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) + anti-programmed death-ligand 1 (PD-L1) in cholangiocarcinoma (CCA) potentiated a multimodal mechanism dependent on B cell activating factor (BAFF), leading to a proinflammatory B cell response. It led to a BAFF- and interleukin (IL)-12-dependent expansion and rewiring of T regulatory cells (Tregs) toward an anti-tumor T helper-1 (Th-1)-like fragile state. We translated this approach to the clinic and observed immunological changes characterized by Treg cell expansion and rewiring toward fragile and unstable states. We explored the effect of VEGF receptor 2 (VEGFR2) signaling on Treg cell transcriptional programming and established a mouse model ablating VEGFR2 expression on Treg cells. This study reveals the immunological interplay resulting from targeting VEGF together with CTLA-4 and PD-L1 blockade.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthias Seifert
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina Villamor-Payà
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodriguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Monge
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changqing Xie
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anuradha Budhu
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William Telford
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Song H, Chen L, Pan X, Shen Y, Ye M, Wang G, Cui C, Zhou Q, Tseng Y, Gong Z, Zhong B, Cui H, Mo S, Zheng J, Jin B, Zheng W, Luo F, Liu J. Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell 2025; 43:503-518.e10. [PMID: 40068600 DOI: 10.1016/j.ccell.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
STING is an important DNA sensing machinery in initiating immune response, yet therapies targeting STING have shown poor outcomes in clinical trials. Here, we reveal that STING signaling induces PD-L1hi tumor monocytes (Tu.Mons) that dominate the resistance against STING agonist therapy. Cell-intrinsic PD-L1, induced by the STING-IRF3-IFN-I axis, is identified as the driving factor for protumoral PD-L1hi Tu.Mons. Notably, TLR2-activated Tu.Mons resist STING-induced upregulation of cell-intrinsic PD-L1 and the associated protumoral functions. Mechanistically, TLR2 stimulation remodels STING signaling by facilitating STING and TRAF6 interaction, which suppresses the IRF3-IFN-I response and enhances NF-κB activation. Moreover, we demonstrate that combining STING agonists with TLR2 agonist pretreatment significantly improves antitumor efficacy in murine syngeneic and humanized models. Our findings uncover a protumoral aspect of STING activation mediated by cell-intrinsic PD-L1 and propose a promising strategy to boost antitumor immunity by fine-tuning STING signaling outputs.
Collapse
Affiliation(s)
- Huan Song
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Chen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuru Shen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Maolin Ye
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guohong Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Qi Zhou
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheng Gong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Zhong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haoshu Cui
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaocong Mo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiayue Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bryan Jin
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Meyer SP, Bauer R, Brüne B, Schmid T. The role of type I interferon signaling in myeloid anti-tumor immunity. Front Immunol 2025; 16:1547466. [PMID: 40098954 PMCID: PMC11911529 DOI: 10.3389/fimmu.2025.1547466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors often arise in chronically inflamed, and thus immunologically highly active niches. While immune cells are able to recognize and remove transformed cells, tumors eventually escape the control of the immune system by shaping their immediate microenvironment. In this context, macrophages are of major importance, as they initially exert anti-tumor functions before they adopt a tumor-associated phenotype that instead inhibits anti-tumor immune responses and even allows for sustaining a smoldering inflammatory, growth promoting tumor microenvironment (TME). Type I interferons (IFNs) are well established modulators of inflammatory reactions. While they have been shown to directly inhibit tumor growth, there is accumulating evidence that they also play an important role in altering immune cell functions within the TME. In the present review, we focus on the impact of type I IFNs on anti-tumor responses, driven by monocytes and macrophages. Specifically, we will provide an overview of tumor-intrinsic factors, which impinge on IFN-stimulated gene (ISG) expression, like the presence of nucleic acids, metabolites, or hypoxia. We will further summarize the current understanding of the consequences of altered IFN responses on macrophage phenotypes, i.e., differentiation, polarization, and functions. For the latter, we will focus on macrophage-mediated tumor cell killing and phagocytosis, as well as on how macrophages affect their environment by secreting cytokines and directly interacting with immune cells. Finally, we will discuss how type I IFN responses in macrophages might affect and should be considered for current and future tumor therapies.
Collapse
Affiliation(s)
- Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Yang Z, Chen Y, Miao Y, Yan H, Chen K, Xu Y, Su L, Zhang L, Yan Y, Chi H, Fu J, Wang L. Elucidating stearoyl metabolism and NCOA4-mediated ferroptosis in gastric cancer liver metastasis through multi-omics single-cell integrative mendelian analysis: advancing personalized immunotherapy strategies. Discov Oncol 2025; 16:46. [PMID: 39812999 PMCID: PMC11735723 DOI: 10.1007/s12672-025-01769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC. OBJECTIVE Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC). Following this, bulk transcriptome analyses and single-cell multiomics techniques to investigate the roles of stearoyl-GPE metabolism-related genes, particularly NCOA4, in regulating LMGC TME. RESULTS Our analysis highlights the crucial role of stearoyl metabolism in modulating the complex microenvironment of LMGC, particularly impacting monocyte cells. Through single-cell sequencing and spatial transcriptomics, we have identified key metabolic genes specific to stearoyl metabolism within the monocyte cell population, including NCOA4. Regarding the relationship between ferroptosis, stearoyl metabolism, and LMGC findings, it is plausible that stearoyl metabolism and LMGC pathways intersect with mechanisms involved in ferroptosis. Ferroptosis, characterized by iron-dependent lipid peroxidation, represents a regulated form of cell death. The activity of Stearoyl-CoA desaturase (SCD), a critical enzyme in stearoyl metabolism, has been associated with the modulation of lipid composition and susceptibility to ferroptosis. Furthermore, the LMGC is integral to cellular processes related to oxidative stress and lipid metabolism, both of which are significant factors in the context of ferroptosis. CONCLUSION This study enhances the understanding of the relationship between stearoyl metabolism and ferroptosis in promoting liver metastasis of gastric cancer and its role in the regulation of tumor heterogeneity. In addition, this study contributes to a deeper understanding of the dynamics of gastric cancer tumor microenvironment (TME) and provides a basis for the development of better interventions to combat cancer metastasis.
Collapse
Affiliation(s)
- Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, 3004, Australia
| | - Yaping Miao
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haisheng Yan
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Kexin Chen
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yaoqin Xu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Lanqian Su
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lanyue Zhang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yalan Yan
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
| | - Jin Fu
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, 400080, China.
| | - Lexin Wang
- Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
| |
Collapse
|
7
|
Elewaut A, Estivill G, Bayerl F, Castillon L, Novatchkova M, Pottendorfer E, Hoffmann-Haas L, Schönlein M, Nguyen TV, Lauss M, Andreatta F, Vulin M, Krecioch I, Bayerl J, Pedde AM, Fabre N, Holstein F, Cronin SM, Rieser S, Laniti DD, Barras D, Coukos G, Quek C, Bai X, Muñoz I Ordoño M, Wiesner T, Zuber J, Jönsson G, Böttcher JP, Vanharanta S, Obenauf AC. Cancer cells impair monocyte-mediated T cell stimulation to evade immunity. Nature 2025; 637:716-725. [PMID: 39604727 PMCID: PMC7617236 DOI: 10.1038/s41586-024-08257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
The tumour microenvironment is programmed by cancer cells and substantially influences anti-tumour immune responses1,2. Within the tumour microenvironment, CD8+ T cells undergo full effector differentiation and acquire cytotoxic anti-tumour functions in specialized niches3-7. Although interactions with type 1 conventional dendritic cells have been implicated in this process3-5,8-10, the underlying cellular players and molecular mechanisms remain incompletely understood. Here we show that inflammatory monocytes can adopt a pivotal role in intratumoral T cell stimulation. These cells express Cxcl9, Cxcl10 and Il15, but in contrast to type 1 conventional dendritic cells, which cross-present antigens, inflammatory monocytes obtain and present peptide-major histocompatibility complex class I complexes from tumour cells through 'cross-dressing'. Hyperactivation of MAPK signalling in cancer cells hampers this process by coordinately blunting the production of type I interferon (IFN-I) cytokines and inducing the secretion of prostaglandin E2 (PGE2), which impairs the inflammatory monocyte state and intratumoral T cell stimulation. Enhancing IFN-I cytokine production and blocking PGE2 secretion restores this process and re-sensitizes tumours to T cell-mediated immunity. Together, our work uncovers a central role of inflammatory monocytes in intratumoral T cell stimulation, elucidates how oncogenic signalling disrupts T cell responses through counter-regulation of PGE2 and IFN-I, and proposes rational combination therapies to enhance immunotherapies.
Collapse
Affiliation(s)
- Anais Elewaut
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Guillem Estivill
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Felix Bayerl
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Leticia Castillon
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elisabeth Pottendorfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lisa Hoffmann-Haas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Schönlein
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Trung Viet Nguyen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Lauss
- Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden
| | - Francesco Andreatta
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Milica Vulin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Izabela Krecioch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jonas Bayerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Naomi Fabre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Felix Holstein
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shona M Cronin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sarah Rieser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Miquel Muñoz I Ordoño
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Göran Jönsson
- Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Sakari Vanharanta
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna C Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
8
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
9
|
Vogiatzi I, Lama LM, Lehmann A, Rossignoli F, Gettemans J, Shah K. Allogeneic stem cells engineered to release interferon β and scFv-PD1 target glioblastoma and alter the tumor microenvironment. Cytotherapy 2024; 26:1217-1226. [PMID: 38852095 PMCID: PMC11427148 DOI: 10.1016/j.jcyt.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
Highly malignant brain tumors, glioblastomas (GBM), are immunosuppressive, thereby limiting current promising immunotherapeutic approaches. In this study, we created interferon receptor 1 knockout allogeneic mesenchymal stem cells (MSC) to secrete dual-function pro-apoptotic and immunomodulatory interferon (IFN) β (MSCKO-IFNβ) using a single lentiviral vector CRISPR/Cas9 system. We show that MSCKO-IFNβ induces apoptosis in GBM cells and upregulates the cell surface expression of programmed death ligand-1 in tumor cells. Next, we engineered MSCKO to release a secretable single-chain variable fragment (scFv) to block programmed death (PD)-1 and show the ability of MSCKO-scFv-PD1 to enhance T-cell activation and T-cell-mediated tumor cell killing. To simultaneously express both immune modulators, we engineered MSCKO-IFNβ to co-express scFv-PD1 (MSCKO-IFNβ-scFv-PD1) and show the expression of both IFNβ and scFv-PD1 in vitro leads to T-cell activation and lowers the viability of tumor cells. Furthermore, to mimic the clinical scenario of GBM tumor resection and subsequent treatment, we show that synthetic extracellular matrix (sECM) encapsulated MSCKO-IFNβ-scFv-PD1 treatment of resected tumors results in the increase of CD4+ and CD8+ T cells, mature conventional dendritic cells type II and activation of microglia as compared to the control treatment group. Overall, these results reveal the ability of MSCKO-IFNβ-scFv-PD1 to shape the tumor microenvironment and enhance therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Ioulia Vogiatzi
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lucia Moreno Lama
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amelia Lehmann
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
10
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
11
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
12
|
Patel AS, Yanai I. A developmental constraint model of cancer cell states and tumor heterogeneity. Cell 2024; 187:2907-2918. [PMID: 38848676 PMCID: PMC11256907 DOI: 10.1016/j.cell.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.
Collapse
Affiliation(s)
- Ayushi S Patel
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA; Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Itai Yanai
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA; Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
13
|
Benmelech S, Le T, McKay M, Nam J, Subramaniam K, Tellez D, Vlasak G, Mak M. Biophysical and biochemical aspects of immune cell-tumor microenvironment interactions. APL Bioeng 2024; 8:021502. [PMID: 38572312 PMCID: PMC10990568 DOI: 10.1063/5.0195244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
The tumor microenvironment (TME), composed of and influenced by a heterogeneous set of cancer cells and an extracellular matrix, plays a crucial role in cancer progression. The biophysical aspects of the TME (namely, its architecture and mechanics) regulate interactions and spatial distributions of cancer cells and immune cells. In this review, we discuss the factors of the TME-notably, the extracellular matrix, as well as tumor and stromal cells-that contribute to a pro-tumor, immunosuppressive response. We then discuss the ways in which cells of the innate and adaptive immune systems respond to tumors from both biochemical and biophysical perspectives, with increased focus on CD8+ and CD4+ T cells. Building upon this information, we turn to immune-based antitumor interventions-specifically, recent biophysical breakthroughs aimed at improving CAR-T cell therapy.
Collapse
Affiliation(s)
- Shoham Benmelech
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Thien Le
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maggie McKay
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Krupakar Subramaniam
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Daniela Tellez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Grace Vlasak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
14
|
Zhang BC, Laursen MF, Hu L, Hazrati H, Narita R, Jensen LS, Hansen AS, Huang J, Zhang Y, Ding X, Muyesier M, Nilsson E, Banasik A, Zeiler C, Mogensen TH, Etzerodt A, Agger R, Johannsen M, Kofod-Olsen E, Paludan SR, Jakobsen MR. Cholesterol-binding motifs in STING that control endoplasmic reticulum retention mediate anti-tumoral activity of cholesterol-lowering compounds. Nat Commun 2024; 15:2760. [PMID: 38553448 PMCID: PMC10980718 DOI: 10.1038/s41467-024-47046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The cGAS-STING pathway plays a crucial role in anti-tumoral responses by activating inflammation and reprogramming the tumour microenvironment. Upon activation, STING traffics from the endoplasmic reticulum (ER) to Golgi, allowing signalling complex assembly and induction of interferon and inflammatory cytokines. Here we report that cGAMP stimulation leads to a transient decline in ER cholesterol levels, mediated by Sterol O-Acyltransferase 1-dependent cholesterol esterification. This facilitates ER membrane curvature and STING trafficking to Golgi. Notably, we identify two cholesterol-binding motifs in STING and confirm their contribution to ER-retention of STING. Consequently, depletion of intracellular cholesterol levels enhances STING pathway activation upon cGAMP stimulation. In a preclinical tumour model, intratumorally administered cholesterol depletion therapy potentiated STING-dependent anti-tumoral responses, which, in combination with anti-PD-1 antibodies, promoted tumour remission. Collectively, we demonstrate that ER cholesterol sets a threshold for STING signalling through cholesterol-binding motifs in STING and we propose that this could be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark.
| | - Marlene F Laursen
- Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Lili Hu
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Hossein Hazrati
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Forensic Medicine, Aarhus University, DK-8200, Aarhus N, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Lea S Jensen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jinrong Huang
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Yan Zhang
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Xiangning Ding
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | | | - Emil Nilsson
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Agnieszka Banasik
- Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Christina Zeiler
- Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Ralf Agger
- Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, DK-8200, Aarhus N, Denmark
| | - Emil Kofod-Olsen
- Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark.
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
15
|
Maggiorani D, Le O, Lisi V, Landais S, Moquin-Beaudry G, Lavallée VP, Decaluwe H, Beauséjour C. Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat Commun 2024; 15:2435. [PMID: 38499573 PMCID: PMC10948808 DOI: 10.1038/s41467-024-46769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
The potential of immune checkpoint inhibitors (ICI) may be limited in situations where immune cell fitness is impaired. Here, we show that the efficacy of cancer immunotherapies is compromised by the accumulation of senescent cells in mice and in the context of therapy-induced senescence (TIS). Resistance to immunotherapy is associated with a decrease in the accumulation and activation of CD8 T cells within tumors. Elimination of senescent cells restores immune homeostasis within the tumor micro-environment (TME) and increases mice survival in response to immunotherapy. Using single-cell transcriptomic analysis, we observe that the injection of ABT263 (Navitoclax) reverses the exacerbated immunosuppressive profile of myeloid cells in the TME. Elimination of these myeloid cells also restores CD8 T cell proliferation in vitro and abrogates immunotherapy resistance in vivo. Overall, our study suggests that the use of senolytic drugs before ICI may constitute a pharmacological approach to improve the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pharmacologie et physiologie (Université de Montréal, Montréal, QC, Canada
| | - Oanh Le
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Véronique Lisi
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | | | | | - Vincent Philippe Lavallée
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pédiatrie (Université de Montréal, Montréal, QC, Canada
| | - Hélène Decaluwe
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pédiatrie (Université de Montréal, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie (Université de Montréal, Montréal, QC, Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada.
- Département de pharmacologie et physiologie (Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Liu MQ, Bao CJ, Liang XF, Ji XY, Zhao LQ, Yao AN, Guo S, Duan JL, Zhao M, Duan JA. Specific molecular weight of Lycium barbarum polysaccharide for robust breast cancer regression by repolarizing tumor-associated macrophages. Int J Biol Macromol 2024; 261:129674. [PMID: 38280710 DOI: 10.1016/j.ijbiomac.2024.129674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
- Meng-Qiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chun-Jie Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Fei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin-Yue Ji
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Qiang Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An-Ni Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia-Lun Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Yang Y, Bo S, Liang L, Deng K, Bai L, Wang T, Wang Y, Liu K, Lu C. Delivery of Interferon β-Encoding Plasmid via Lipid Nanoparticle Restores Interferon β Expression to Enhance Antitumor Immunity in Colon Cancer. ACS NANO 2024. [PMID: 38319978 DOI: 10.1021/acsnano.3c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Type I interferon (IFN-I) plays a critical role in host cancer immunosurveillance, but its expression is often impaired in the tumor microenvironment. We aimed at testing the hypothesis that cationic lipid nanoparticle delivery of interferon β (IFNβ)-encoding plasmid to tumors is effective in restoring IFNβ expression to suppress tumor immune evasion. We determined that IFN-I function in tumor suppression depends on the host immune cells. IFN-I activates the expression of Cxcl9 and Cxcl10 to enhance T cell tumor infiltration. RNA-Seq detected a low level of IFNα13 and IFNβ in colon tumor tissue. scRNA-Seq revealed that IFNβ is expressed in immune cell subsets in non-neoplastic human tissues and to a lesser degree in human colon tumor tissues. Forced expression of IFNα13 and IFNβ in colon tumor cells up-regulates major histocompatibility complex I (MHC I) expression and suppresses colon tumor growth in vivo. In human cancer patients, IFNβ expression is positively correlated with human leukocyte antigen (HLA) expression, and IFN-I signaling activation correlates with the patient response to PD-1 blockade immunotherapy. To translate this finding to colon cancer immunotherapy, we formulated a 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-cholesterol-encapsulated IFNβ-encoding plasmid (IFNBCOL01). IFNBCOL01 transfects colon tumor cells to express IFNβ to increase the level of MHC I expression. IFNBCOL01 therapy transfects tumor cells and tumor-infiltrating immune cells to produce IFNβ to activate MHC I and granzyme B expression and inhibits colon tumor growth in mice. Our data determine that lipid nanoparticle delivery of IFNβ-encoding plasmid DNA enhances tumor immunogenicity and T cell effector function to suppress colon tumor growth in vivo.
Collapse
Affiliation(s)
- Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shixuan Bo
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Liyan Liang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kaidi Deng
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Liya Bai
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, United States
- Georgia Cancer Center, Augusta, Georgia 30912, United States
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Gao Y, Ouyang Z, Li G, Yu Q, Dai W, Rodrigues J, Pich A, Abdul Hameed MM, Shen M, Shi X. Poly(alkylideneamine) Dendrimer Nanogels Codeliver Drug and Nucleotide To Alleviate Anticancer Drug Resistance through Immunomodulation. ACS MATERIALS LETTERS 2024; 6:517-527. [DOI: 10.1021/acsmaterialslett.3c01426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuyu Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - João Rodrigues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
19
|
Wang Y, Zhao Y, Zhang Z, Zhang J, Xu Q, Zhou X, Mao L. High Expression of CDCA7 in the Prognosis of Glioma and Its Relationship with Ferroptosis and Immunity. Genes (Basel) 2023; 14:1406. [PMID: 37510310 PMCID: PMC10380011 DOI: 10.3390/genes14071406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
CDCA7 is a copy number amplification gene that promotes tumorigenesis. However, the clinical relevance and potential mechanisms of CDCA7 in glioma are unclear. CDCA7 expression level data were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, and the enriched genes and related signaling pathways were explored. Data on genes in CDCA7-related signaling pathways and nine marker genes of ferroptosis were retrieved and a protein-protein interaction (PPI) network analysis was performed. The correlation of CDCA7 to ferroptosis and tumor infiltration of 22 kinds of human immune cells and the association between CDCA7 and immune checkpoint molecules were analyzed. CDCA7 was significantly increased in gliomas in comparison to healthy tissues. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed the impact of CDCA7 expression on multiple biological processes and signaling pathways. CDCA7 may affect ferroptosis by interacting with genes in the cell cycle pathway and P53 pathway. The increase in CDCA7 was positively correlated with multiple ferroptosis suppressor genes and genes involved in tumor-infiltrating immune cells and immune checkpoint molecules in glioma. CDCA7 can be a new prognostic factor for glioma, which is closely related to ferroptosis, tumor immune cell infiltration, and immune checkpoint.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
20
|
Combes AJ, Samad B, Krummel MF. Defining and using immune archetypes to classify and treat cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00578-2. [PMID: 37277485 DOI: 10.1038/s41568-023-00578-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Tadepalli S, Clements DR, Saravanan S, Hornero RA, Lüdtke A, Blackmore B, Paulo JA, Gottfried-Blackmore A, Seong D, Park S, Chan L, Kopecky BJ, Liu Z, Ginhoux F, Lavine KJ, Murphy JP, Mack M, Graves EE, Idoyaga J. Rapid recruitment and IFN-I-mediated activation of monocytes dictate focal radiotherapy efficacy. Sci Immunol 2023; 8:eadd7446. [PMID: 37294749 PMCID: PMC10340791 DOI: 10.1126/sciimmunol.add7446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023]
Abstract
The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rebeca Arroyo Hornero
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Beau Blackmore
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andres Gottfried-Blackmore
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - David Seong
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Soyoon Park
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leslie Chan
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Benjamin J. Kopecky
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif 94800, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Republic of Singapore
| | - Kory J. Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
22
|
Lim J, Kang I, La J, Ku KB, Kang BH, Kim Y, Park WH, Lee HK. Harnessing type I interferon-mediated immunity to target malignant brain tumors. Front Immunol 2023; 14:1203929. [PMID: 37304294 PMCID: PMC10247981 DOI: 10.3389/fimmu.2023.1203929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Type I interferons have long been appreciated as a cytokine family that regulates antiviral immunity. Recently, their role in eliciting antitumor immune responses has gained increasing attention. Within the immunosuppressive tumor microenvironment (TME), interferons stimulate tumor-infiltrating lymphocytes to promote immune clearance and essentially reshape a "cold" TME into an immune-activating "hot" TME. In this review, we focus on gliomas, with an emphasis on malignant glioblastoma, as these brain tumors possess a highly invasive and heterogenous brain TME. We address how type I interferons regulate antitumor immune responses against malignant gliomas and reshape the overall immune landscape of the brain TME. Furthermore, we discuss how these findings can translate into future immunotherapies targeting brain tumors in general.
Collapse
Affiliation(s)
- Juhee Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Byeong Hoon Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|