1
|
Yousefpour N, Tansley SN, Locke S, Sharif B, Parisien M, Bourojeni FB, Deamond H, Mathur V, Arana NRK, Austin JS, Bourassa V, Wang C, Cabana VC, Wong C, Lister KC, Rodrigues R, St-Louis M, Paquet ME, Carroll MC, Andrews-Zwilling Y, Seguela P, Kania A, Yednock T, Mogil JS, De Koninck Y, Diatchenko L, Khoutorsky A, Ribeiro-da-Silva A. Targeting C1q prevents microglia-mediated synaptic removal in neuropathic pain. Nat Commun 2025; 16:4590. [PMID: 40382320 PMCID: PMC12085617 DOI: 10.1038/s41467-025-59849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Activation of spinal microglia following peripheral nerve injury is a central component of neuropathic pain pathology. While the contributions of microglia-mediated immune and neurotrophic signalling have been well-characterized, the phagocytic and synaptic pruning roles of microglia in neuropathic pain remain less understood. Here, we show that peripheral nerve injury induces microglial engulfment of dorsal horn synapses, leading to a preferential loss of inhibitory synapses and a shift in the balance between inhibitory and excitatory synapse density. This synapse removal is dependent on the microglial complement-mediated synapse pruning pathway, as mice deficient in complement C3 and C4 do not exhibit synapse elimination. Furthermore, pharmacological inhibition of the complement protein C1q prevents dorsal horn inhibitory synapse loss and attenuates neuropathic pain. Therefore, these results demonstrate that the complement pathway promotes persistent pain hypersensitivity via microglia-mediated engulfment of dorsal horn synapses in the spinal cord, revealing C1q as a therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Noosha Yousefpour
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Annexon Biosciences, Brisbane, CA, USA
| | - Shannon N Tansley
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Samantha Locke
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Behrang Sharif
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Farin B Bourojeni
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Haley Deamond
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | | | | | | | - Valerie Bourassa
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Chengyang Wang
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Valérie C Cabana
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Calvin Wong
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Kevin C Lister
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Rose Rodrigues
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Manon St-Louis
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Marie-Eve Paquet
- Dép. de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
| | - Michael C Carroll
- Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Philippe Seguela
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Artur Kania
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada
| | | | - Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Yves De Koninck
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
- Dép. de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Arkady Khoutorsky
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada.
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Malcangio M, Sideris-Lampretsas G. How microglia contribute to the induction and maintenance of neuropathic pain. Nat Rev Neurosci 2025; 26:263-275. [PMID: 40128335 DOI: 10.1038/s41583-025-00914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/26/2025]
Abstract
Neuropathic pain is a debilitating condition caused by damage to the nervous system that results in changes along the pain pathway that lead to persistence of the pain sensation. Unremitting pain conditions are associated with maladaptive plasticity, disruption of neuronal activity that favours excitation over inhibition, and engagement of immune cells. The substantial progress made over the last two decades in the neuroimmune interaction research area points to a mechanistic role of spinal cord microglia, which are resident immune cells of the CNS. Microglia respond to and modulate neuronal activity during establishment and persistence of neuropathic pain states, and microglia-neuron pathways provide targets that can be exploited to attenuate abnormal neuronal activity and provide pain relief.
Collapse
Affiliation(s)
- Marzia Malcangio
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, UK.
| | | |
Collapse
|
3
|
Lee J, Noh K, Lee S, Kim KH, Chung S, Lim H, Hwang M, Lee JH, Chung WS, Chang S, Lee SJ. Ganglioside GT1b prevents selective spinal synapse removal following peripheral nerve injury. EMBO Rep 2025:10.1038/s44319-025-00452-2. [PMID: 40307621 DOI: 10.1038/s44319-025-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
After peripheral nerve injury, the structure of the spinal cord is actively regulated by glial cells, contributing to the chronicity of neuropathic pain. However, the mechanism by which peripheral nerve injury leads to synaptic imbalance remains elusive. Here, we use a pH-reporter system and find that nerve injury triggers a reorganization of excitatory synapses that is influenced by the accumulation of the ganglioside GT1b at afferent terminals. GT1b acts as a protective signal against nerve injury-induced spinal synapse elimination. Inhibition of GT1b-synthesis increases glial phagocytosis of excitatory pre-synapses and reduces excitatory synapses post-injury. In vitro analyses reveal a positive correlation between GT1b accumulation and the frequency of pre-synaptic calcium activity, with GT1b-mediated suppression of glial phagocytosis occurring through SYK dephosphorylation. Our study highlights GT1b's pivotal role in preventing synapse elimination after nerve injury and offers new insight into the molecular underpinning of activity-dependent synaptic stability and glial phagocytosis.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea
| | - Kyungchul Noh
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang Hwan Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyu Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea.
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
6
|
Nelson N, Miller V, Broadie K. Neuron-to-glia and glia-to-glia signaling directs critical period experience-dependent synapse pruning. Front Cell Dev Biol 2025; 13:1540052. [PMID: 40040788 PMCID: PMC11876149 DOI: 10.3389/fcell.2025.1540052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Experience-dependent glial synapse pruning plays a pivotal role in sculpting brain circuit connectivity during early-life critical periods of development. Recent advances suggest a layered cascade of intercellular communication between neurons and glial phagocytes orchestrates this precise, targeted synapse elimination. We focus here on studies from the powerful Drosophila forward genetic model, with reference to complementary findings from mouse work. We present both neuron-to-glia and glia-to-glia intercellular signaling pathways directing experience-dependent glial synapse pruning. We discuss a putative hierarchy of secreted long-distance cues and cell surface short-distance cues that act to sequentially orchestrate glia activation, infiltration, target recognition, engulfment, and then phagocytosis for synapse pruning. Ligand-receptor partners mediating these stages in different contexts are discussed from recent Drosophila and mouse studies. Signaling cues include phospholipids, small neurotransmitters, insulin-like peptides, and proteins. Conserved receptors for these ligands are discussed, together with mechanisms where the receptor identity remains unknown. Potential mechanisms are proposed for the tight temporal-restriction of heightened experience-dependent glial synapse elimination during early-life critical periods, as well as potential means to re-open such plasticity at maturity.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
| | - Vanessa Miller
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Peng X, Ju J, Li Z, Liu J, Jia X, Wang J, Ren J, Gao F. C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats. CNS Neurosci Ther 2025; 31:e70216. [PMID: 39801259 PMCID: PMC11725764 DOI: 10.1111/cns.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
AIMS Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance. METHODS Sprague-Dawley rats were intrathecally treated with morphine twice daily for 9 days to establish morphine-tolerant rat model. Tail-flick latency test was performed to identify the analgesic effect of morphine. The role of microglia, astrocyte and C3-C3aR axis in morphine tolerance were elucidated by real-time quantitative polymerase chain reaction, Western blot, and immunofluorescence. RESULTS Chronic morphine treatment notably promoted the activation of microglia, upregulated the production of proinflammatory mediators (interleukin-1 alpha (IL-1α), tumor necrosis factor alpha (TNFα), and complement component 1q (C1q)). Simultaneously, it programed astrocytes to a pro-inflammatory phenotype (A1), which mainly expresses complement 3 (C3) and serping1. PLX3397 (a colony-stimulating factor 1 receptor (CSF1R) inhibitor), Compstain (a C3 inhibitor) and SB290157(a C3aR antagonist) could reverse the above pathological process and alleviate morphine tolerance to different extents. CONCLUSION Our findings identify C3-C3aR axis as an amplifier of microglia-astrocyte crosstalk, neuroinflammation and a node for therapeutic intervention in morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihao Ren
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Yang T, Liu X, Cao R, Zhou X, Li W, Wu W, Yu W, Zhang X, Guo Z, Cui S. Establishment of a Magnetically Controlled Scalable Nerve Injury Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405265. [PMID: 39287118 PMCID: PMC11538664 DOI: 10.1002/advs.202405265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Animal models of peripheral nerve injury (PNI) serve as the fundamental basis for the investigations of nerve injury, regeneration, and neuropathic pain. The injury properties of such models, including the intensity and duration, significantly influence the subsequent pathological changes, pain development, and therapeutic efficacy. However, precise control over the intensity and duration of nerve injury remains challenging within existing animal models, thereby impeding accurate and comparative assessments of relevant cases. Here, a new model that provides quantitative and off-body controllable injury properties via a magnetically controlled clamp, is presented. The clamp can be implanted onto the rat sciatic nerve and exert varying degrees of compression under the control of an external magnetic field. It is demonstrated that this model can accurately simulate various degrees of pathology of human patients by adjusting the magnetic control and reveal specific pathological changes resulting from intensity heterogeneity that are challenging to detect previously. The controllability and quantifiability of this model may significantly reduce the uncertainty of central response and inter-experimenter variability, facilitating precise investigations into nerve injury, regeneration, and pain mechanisms.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xilin Liu
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Rangjuan Cao
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xiongyao Zhou
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Weizhen Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering of Jilin University5988 Renmin StreetChangchun130025China
| | - Wei Yu
- Department of Wound Repair, Plastic and Reconstructive MicrosurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Xianyu Zhang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| | - Shusen Cui
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| |
Collapse
|
11
|
Eschenbacher KM. Spinal Cord Microglia in the Development of Touch. J Neurosci 2024; 44:e1200242024. [PMID: 39443118 PMCID: PMC11502225 DOI: 10.1523/jneurosci.1200-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Kayla M Eschenbacher
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
12
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
13
|
Lister KC, Wong C, Uttam S, Parisien M, Stecum P, Brown N, Cai W, Hooshmandi M, Gu N, Amiri M, Beaudry F, Jafarnejad SM, Tavares-Ferreira D, Inturi NN, Mazhar K, Zhao HT, Fitzsimmons B, Gkogkas CG, Sonenberg N, Price TJ, Diatchenko L, Atlasi Y, Mogil JS, Khoutorsky A. Translational control in the spinal cord regulates gene expression and pain hypersensitivity in the chronic phase of neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600539. [PMID: 38979173 PMCID: PMC11230214 DOI: 10.1101/2024.06.24.600539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensitization of spinal nociceptive circuits plays a crucial role in neuropathic pain. This sensitization depends on new gene expression that is primarily regulated via transcriptional and translational control mechanisms. The relative roles of these mechanisms in regulating gene expression in the clinically relevant chronic phase of neuropathic pain are not well understood. Here, we show that changes in gene expression in the spinal cord during the chronic phase of neuropathic pain are substantially regulated at the translational level. Downregulating spinal translation at the chronic phase alleviated pain hypersensitivity. Cell-type-specific profiling revealed that spinal inhibitory neurons exhibited greater changes in translation after peripheral nerve injury compared to excitatory neurons. Notably, increasing translation selectively in all inhibitory neurons or parvalbumin-positive (PV+) interneurons, but not excitatory neurons, promoted mechanical pain hypersensitivity. Furthermore, increasing translation in PV+ neurons decreased their intrinsic excitability and spiking activity, whereas reducing translation in spinal PV+ neurons prevented the nerve injury-induced decrease in excitability. Thus, translational control mechanisms in the spinal cord, particularly in inhibitory neurons, play a role in mediating neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Kevin C. Lister
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Marc Parisien
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Patricia Stecum
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Nicole Brown
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Hooshmandi
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ning Gu
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Nikhil Nageshwar Inturi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | | | | | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Luda Diatchenko
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Jeffrey S. Mogil
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Shan L, Xu K, Ji L, Zeng Q, Liu Y, Wu Y, Chen Y, Li Y, Hu Q, Wu J, Xu Y, Luo Y, Li C, Wu C, Jiang C, Wang Z. Injured sensory neurons-derived galectin-3 contributes to neuropathic pain via programming microglia in the spinal dorsal horn. Brain Behav Immun 2024; 117:80-99. [PMID: 38190982 DOI: 10.1016/j.bbi.2024.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Emerging studies have demonstrated spinal microglia play a critical role in central sensitization and contribute to chronic pain. Although several mediators that contribute to microglia activation have been identified, the mechanism of microglia activation and its functionally diversified mechanisms in pathological pain are still unclear. Here we report that injured sensory neurons-derived Galectin-3 (Gal3) activates and reprograms microglia in the spinal dorsal horn (SDH) and contributes to neuropathic pain. Firstly, Gal3 is predominantly expressed in the isolectin B4 (IB4)-positive non-peptidergic sensory neurons and significantly up-regulated in dorsal root ganglion (DRG) neurons and primary afferent terminals in SDH in the partial sciatic nerve ligation (pSNL)-induced neuropathic pain model. Gal3 knockout (Gal3 KO) mice showed a significant decrease in mechanical allodynia and Gal3 inhibitor TD-139 produced a significant anti-allodynia effect in the pSNL model. Furthermore, pSNL-induced microgliosis was compromised in Gal3 KO mice. Additionally, intrathecal injection of Gal3 produces remarkable mechanical allodynia by direct activation of microglia, which have enhanced inflammatory responses with TNF-α and IL-1β up-regulation. Thirdly, using single-nuclear RNA sequencing (snRNA-seq), we identified that Gal3 targets microglia and induces reprogramming of microglia, which may contribute to neuropathic pain establishment. Finally, Gal3 enhances excitatory synaptic transmission in excitatory neurons in the SDH via microglia activation. Our findings reveal that injured sensory neurons-derived Gal3 programs microglia in the SDH and contribute to neuropathic pain.
Collapse
Affiliation(s)
- Leyan Shan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kangtai Xu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luyao Ji
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qian Zeng
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yaqi Liu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yifei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yiming Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yitong Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiaodan Hu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanfan Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Chaoran Wu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
16
|
Rotterman TM, Haley-Johnson Z, Pottorf TS, Chopra T, Chang E, Zhang S, McCallum WM, Fisher S, Franklin H, Alvarez M, Cope TC, Alvarez FJ. Modulation of central synapse remodeling after remote peripheral injuries by the CCL2-CCR2 axis and microglia. Cell Rep 2024; 43:113776. [PMID: 38367237 PMCID: PMC10947500 DOI: 10.1016/j.celrep.2024.113776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
Microglia-mediated synaptic plasticity after CNS injury varies depending on injury severity, but the mechanisms that adjust synaptic plasticity according to injury differences are largely unknown. This study investigates differential actions of microglia on essential spinal motor synaptic circuits following different kinds of nerve injuries. Following nerve transection, microglia and C-C chemokine receptor type 2 signaling permanently remove Ia axons and synapses from the ventral horn, degrading proprioceptive feedback during motor actions and abolishing stretch reflexes. However, Ia synapses and reflexes recover after milder injuries (nerve crush). These different outcomes are related to the length of microglia activation, being longer after nerve cuts, with slower motor-axon regeneration and extended expression of colony-stimulating factor type 1 in injured motoneurons. Prolonged microglia activation induces CCL2 expression, and Ia synapses recover after ccl2 is deleted from microglia. Thus, microglia Ia synapse removal requires the induction of specific microglia phenotypes modulated by nerve regeneration efficiencies. However, synapse preservation was not sufficient to restore the stretch-reflex function.
Collapse
Affiliation(s)
- Travis M Rotterman
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Zoë Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Tana S Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Tavishi Chopra
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Ethan Chang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Shannon Zhang
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sarah Fisher
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Haley Franklin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; The Alabama College of Osteopathic Medicine, Dothan, AL 36301, USA
| | - Myriam Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
17
|
Asghari Adib E, Shadrach JL, Reilly-Jankowiak L, Dwivedi MK, Rogers AE, Shahzad S, Passino R, Giger RJ, Pierchala BA, Collins CA. DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses. Cell Rep 2024; 43:113801. [PMID: 38363678 PMCID: PMC11088462 DOI: 10.1016/j.celrep.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Shadrach
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Manish K Dwivedi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Abigail E Rogers
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catherine A Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
18
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
19
|
Wu J, Jin M, Tran Q, Kim M, Kim SI, Shin J, Park H, Shin N, Kang H, Shin HJ, Lee SY, Cui SB, Lee CJ, Lee WH, Kim DW. Employing the sustained-release properties of poly(lactic-co-glycolic acid) nanoparticles to reveal a novel mechanism of sodium-hydrogen exchanger 1 in neuropathic pain. Transl Res 2024; 263:53-72. [PMID: 37678757 DOI: 10.1016/j.trsl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. Through bioinformatics analysis of RNA sequencing results, we identified Slc9a1 and validated the reduced expression of sodium-hydrogen exchanger 1 (NHE1), the protein that Slc9a1 encodes, in the spinal nerve ligation (SNL) model. Colocalization analysis revealed that NHE1 is primarily co-localized with vesicular glutamate transporter 2-positive neurons. In vitro experiments confirmed that poly(lactic-co-glycolic acid) nanoparticles loaded with siRNA successfully inhibited NHE1 in SH-SY5Y cells, lowered intracellular pH, and increased intracellular calcium concentrations. In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.
Collapse
Affiliation(s)
- Junhua Wu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Neurology, Yanji Hospital, Yanji, China
| | - Meiling Jin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Quangdon Tran
- Molecular Biology Laboratory, Department of Medical Laboratories, Hai Phong International Hospital, Hai Phong City, Vietnam
| | - Minwoo Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyunji Kang
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sun Yeul Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Won Hyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Warfield R, Robinson JA, Podgorski RM, Miller AD, Burdo TH. Neuroinflammation in the Dorsal Root Ganglia and Dorsal Horn Contributes to Persistence of Nociceptor Sensitization in SIV-Infected Antiretroviral Therapy-Treated Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2017-2030. [PMID: 37734588 PMCID: PMC10699130 DOI: 10.1016/j.ajpath.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Despite the development of antiretroviral therapy (ART), HIV-associated distal sensory polyneuropathy remains prevalent. Using SIV-infected rhesus macaques, this study examined molecular mechanisms of peripheral and central sensitization to infer chronic pain from HIV infection. Previous studies identified atrophy in nociceptive neurons during SIV infection, which was associated with monocyte infiltration into the dorsal root ganglia (DRG). However, the sensory signaling mechanism connecting this pathology to symptoms remains unclear, especially because pain persists after resolution of high viremia and inflammation with ART. We hypothesized that residual DRG and dorsal horn neuroinflammation contributes to nociceptive sensitization. Using three cohorts of macaques [uninfected (SIV-), SIV-infected (SIV+), and SIV infected with ART (SIV+/ART)], this study showed an increase in the cellular and cytokine inflammatory profiles in the DRG of SIV+/ART macaques compared with uninfected animals. It found significant increase in the expression of nociceptive ion channels, TRPV1, and TRPA1 among DRG neurons in SIV+/ART compared with uninfected animals. SIV-infected and SIV+/ART animals showed reduced innervation of the nonpeptidergic nociceptors into the dorsal horn compared with uninfected animals. Finally, there were a significantly higher number of CD68+ cells in the dorsal horn of SIV+/ART macaques compared with uninfected animals. In summary, these data demonstrate that neuroinflammation, characteristics of nociceptor sensitization, and central terminal atrophy persists in SIV+/ART animals.
Collapse
Affiliation(s)
- Rebecca Warfield
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jake A Robinson
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rachel M Podgorski
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Deng W, Zou H, Qian L, de Souza SC, Chen Q, Cao S. Stauntonia chinensis injection relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia. IBRAIN 2023; 10:3-18. [PMID: 38682013 PMCID: PMC11045182 DOI: 10.1002/ibra.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 05/01/2024]
Abstract
Neuroinflammation induced by engulfment of synapses by phagocytic microglia plays a crucial role in neuropathic pain. Stauntonia chinensis is extracted from Stauntonia chinensis DC, which has been used as a traditional Chinese medicine to control trigeminal neuralgia or sciatica. However, the specific anti-neuralgia mechanism of Stauntonia chinensis is unknown. In this study, the analgesic effect of Stauntonia chinensis injection (SCI) in mice with neuropathic pain and the possible mechanisms are explored. We find that a local injection of 0.1 mL Stauntonia chinensis for 14 days can considerably relieve mechanical hyperalgesia and thermal hyperalgesia in mice with sciatic chronic constriction injury (CCI). Immunofluorescence staining shows that SCI reduces neuroinflammation in the spinal cord of CCI mice. RNA sequencing reveals that the expression of postsynaptic density protein 95 (PSD-95), a postsynaptic scaffold protein, is downregulated in the spinal cord of CCI mice, but upregulated after SCI administration. Immunofluorescence experiments also demonstrate that SCI administration reverses microglia proliferation and PSD-95 downregulation in CCI mice. These data suggest that SCI relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Helin Zou
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Li Qian
- Department of Pain MedicineGuizhou Provincial Orthopedics HospitalGuiyangGuizhouChina
| | | | - Qian Chen
- Department of Pain MedicineGuizhou Provincial Orthopedics HospitalGuiyangGuizhouChina
| | - Song Cao
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
22
|
Lançon K, Séguéla P. Dysregulated neuromodulation in the anterior cingulate cortex in chronic pain. Front Pharmacol 2023; 14:1289218. [PMID: 37954846 PMCID: PMC10634228 DOI: 10.3389/fphar.2023.1289218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic pain is a significant global socioeconomic burden with limited long-term treatment options. The intractable nature of chronic pain stems from two primary factors: the multifaceted nature of pain itself and an insufficient understanding of the diverse physiological mechanisms that underlie its initiation and maintenance, in both the peripheral and central nervous systems. The development of novel non-opioidergic analgesic approaches is contingent on our ability to normalize the dysregulated nociceptive pathways involved in pathological pain processing. The anterior cingulate cortex (ACC) stands out due to its involvement in top-down modulation of pain perception, its abnormal activity in chronic pain conditions, and its contribution to cognitive functions frequently impaired in chronic pain states. Here, we review the roles of the monoamines dopamine (DA), norepinephrine (NE), serotonin (5-HT), and other neuromodulators in controlling the activity of the ACC and how chronic pain alters their signaling in ACC circuits to promote pathological hyperexcitability. Additionally, we discuss the potential of targeting these monoaminergic pathways as a therapeutic strategy for treating the cognitive and affective symptoms associated with chronic pain.
Collapse
Affiliation(s)
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Alan Edwards Centre for Research on Pain, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Davis OC, Price TJ. Tiam1 creates a painful link between dendritic spine remodeling and NMDA receptors. Neuron 2023; 111:1993-1995. [PMID: 37413965 DOI: 10.1016/j.neuron.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Dendritic spine remodeling in the dorsal horn is associated with many chronic pain models. Li et al. demonstrate that Tiam1 links Rac1-mediated spine changes to NMDA receptor activity to promote behavioral signs of chronic pain in rodents.
Collapse
Affiliation(s)
- Olivia C Davis
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, Dallas, TX, USA
| | - Theodore J Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, Dallas, TX, USA.
| |
Collapse
|
25
|
Xu Y, Moulding D, Jin W, Beggs S. Microglial phagocytosis mediates long-term restructuring of spinal GABAergic circuits following early life injury. Brain Behav Immun 2023; 111:127-137. [PMID: 37037363 PMCID: PMC11932970 DOI: 10.1016/j.bbi.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Peripheral injury during the early postnatal period alters the somatosensory system, leading to behavioural hyperalgesia upon re-injury in adulthood. Spinal microglia have been implicated as the cellular mediators of this phenomenon, but the mechanism is unclear. We hypothesised that neonatal injury (1) alters microglial phagocytosis of synapses in the dorsal horn leading to long-term structural changes in neurons, and/or (2) trains microglia, leading to a stronger microglial response after re-injury in adulthood. Using hindpaw surgical incision as a model we showed that microglial density and phagocytosis increased in the dorsal horn region innervated by the hindpaw. Dorsal horn microglia increased engulfment of synapses following injury, with a preference for those expressing the vesicular GABA transporter VGAT and primary afferent A-fibre terminals in neonates. This led to a long-term reduction of VGAT density in the dorsal horn and reduced microglial phagocytosis of VGLUT2 terminals. We also saw an increase in apoptosis following neonatal injury, which was not limited to the dorsal horn suggesting that larger circuit wide changes are happening. In adults, hindpaw incision increased microglial engulfment of predominantly VGAT synapses but did not alter the engulfment of A-fibres. This engulfment was not affected by prior neonatal injury, suggesting that microglial phagocytosis was not trained. These results highlight microglial phagocytosis in the dorsal horn as an important physiological response towards peripheral injury with potential long-term consequences and reveals differences in microglial responses between neonates and adults.
Collapse
Affiliation(s)
- Yajing Xu
- University College London, United Kingdom
| | - Dale Moulding
- University College London, United Kingdom; UCL GOS Institute of Child Health, United Kingdom
| | | | - Simon Beggs
- University College London, United Kingdom; UCL GOS Institute of Child Health, United Kingdom.
| |
Collapse
|
26
|
Sideris-Lampretsas G, Oggero S, Zeboudj L, Silva R, Bajpai A, Dharmalingam G, Collier DA, Malcangio M. Galectin-3 activates spinal microglia to induce inflammatory nociception in wild type but not in mice modelling Alzheimer's disease. Nat Commun 2023; 14:3579. [PMID: 37349313 PMCID: PMC10287730 DOI: 10.1038/s41467-023-39077-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Musculoskeletal chronic pain is prevalent in individuals with Alzheimer's disease (AD); however, it remains largely untreated in these patients, raising the possibility that pain mechanisms are perturbed. Here, we utilise the TASTPM transgenic mouse model of AD with the K/BxN serum transfer model of inflammatory arthritis. We show that in male and female WT mice, inflammatory allodynia is associated with a distinct spinal cord microglial response characterised by TLR4-driven transcriptional profile and upregulation of P2Y12. Dorsal horn nociceptive afferent terminals release the TLR4 ligand galectin-3 (Gal-3), and intrathecal injection of a Gal-3 inhibitor attenuates allodynia. In contrast, TASTPM mice show reduced inflammatory allodynia, which is not affected by the Gal-3 inhibitor and correlates with the emergence of a P2Y12- TLR4- microglia subset in the dorsal horn. We suggest that sensory neuron-derived Gal-3 promotes allodynia through the TLR4-regulated release of pro-nociceptive mediators by microglia, a process that is defective in TASTPM due to the absence of TLR4 in a microglia subset.
Collapse
Affiliation(s)
| | - Silvia Oggero
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Lynda Zeboudj
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Rita Silva
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Archana Bajpai
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - Gopuraja Dharmalingam
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - David A Collier
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom.
| |
Collapse
|