1
|
Pei Y, Wu S, Feng Z. Advances and challenges in lipid droplet isolation from animal tissues and cells. Prostaglandins Other Lipid Mediat 2025; 178:106996. [PMID: 40345429 DOI: 10.1016/j.prostaglandins.2025.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Lipid droplets (LDs) are essential intracellular organelles involved in lipid storage and metabolism, playing critical roles in various cellular processes and diseases. Researchers require efficiently isolate and analyze LDs to understand lipid metabolism and related pathologies. This review summarizes recent advances in LD isolation methods, including traditional techniques such as centrifugation and density gradient centrifugation, as well as emerging technologies like automated and high-throughput approaches. We explore the applications of these methods in lipid metabolism research and discuss the challenges faced by current isolation techniques. Future directions, including automation, single-cell analysis, and integration with advanced analytical tools, are also highlighted to provide insights for the next generation of LD research.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528231, China.
| | - Siyu Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528231, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528231, China
| |
Collapse
|
2
|
Miller CJ, Golovina E, Gokuladhas S, Wicker JS, Jacobsen JC, O'Sullivan JM. Unraveling ADHD: genes, co-occurring traits, and developmental dynamics. Life Sci Alliance 2025; 8:e202403029. [PMID: 40000109 PMCID: PMC11861640 DOI: 10.26508/lsa.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental condition with a high prevalence of co-occurring conditions, contributing to increased difficulty in long-term management. Genome-wide association studies have identified variants shared between ADHD and co-occurring psychiatric disorders; however, the genetic mechanisms are not fully understood. We integrated gene expression and spatial organization data into a two-sample Mendelian randomization study for putatively causal ADHD genes in fetal and adult cortical tissues. We identified four genes putatively causal for ADHD in cortical tissues (fetal: ST3GAL3, PTPRF, PIDD1; adult: ST3GAL3, TIE1). Protein-protein interaction databases seeded with the causal ADHD genes identified biological pathways linking these genes with conditions (e.g., rheumatoid arthritis) and biomarkers (e.g., lymphocyte counts) known to be associated with ADHD, but without previously shown genetic relationships. The analysis was repeated on adult liver tissue, where putatively causal ADHD gene ST3GAL3 was linked to cholesterol traits. This analysis provides insight into the tissue-dependent temporal relationships between ADHD, co-occurring traits, and biomarkers. Importantly, it delivers evidence for the genetic interplay between co-occurring conditions, both previously studied and unstudied, with ADHD.
Collapse
Affiliation(s)
- Catriona J Miller
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Evgeniia Golovina
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Sreemol Gokuladhas
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Joerg S Wicker
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Garvan Institute of Medical Research, Sydney, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Bucarey JL, Trujillo-González I, Paules EM, Espinosa A. Myokines and Their Potential Protective Role Against Oxidative Stress in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1363. [PMID: 39594505 PMCID: PMC11591161 DOI: 10.3390/antiox13111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Myokines, bioactive peptides released by skeletal muscle, have emerged as crucial regulators of metabolic and protective pathways in peripheral tissues, particularly in combating oxidative stress and inflammation. Their plasma concentration significantly increases following exercise, offering valuable insights into the role of physical activity in preventing sarcopenia and mitigating metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). This review focuses on discussing the roles of specific myokines in activating intracellular signaling pathways within the liver, which confer protection against steatosis and lipid peroxidation. We detail the mechanism underlying lipid peroxidation and highlight the liver's antioxidant defenses, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), which are pivotal in reducing ferroptosis. Furthermore, we provide an in-depth analysis of key myokines, including myostatin, brain-derived neurotrophic factor (BDNF), and irisin, among others, and their potential impact on liver function. Finally, we discuss the molecular mechanisms through which these myokines influence oxidate stress and lipid metabolism, emphasizing their capacity to modulate antioxidant responses in the liver. Finally, we underscore the therapeutic potential of exercise as a non-pharmacological intervention to enhance myokine release, thereby preventing the progression of MASD through improved hepatic antioxidant defenses. This review represents a comprehensive perspective on the intersection of exercise, myokine biology, and liver health.
Collapse
Affiliation(s)
- José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - Isis Trujillo-González
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Evan M. Paules
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Alejandra Espinosa
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| |
Collapse
|
4
|
Wang Y, Lv Z, Chen Y, Cen X, Zhang H, Chen D. A high-fat plus high-sucrose diet induces age-related macular degeneration in an experimental rabbit model. Dis Model Mech 2024; 17:dmm052015. [PMID: 39463155 PMCID: PMC11625886 DOI: 10.1242/dmm.052015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness. Metabolic disorders and diets are risk factors. We compared lipid profiles and retinal phenotypes with long-term feeding of four diets in male Chinchilla rabbits. Animals were fed a normal diet (ND), high-fat diet (HFD), high-sucrose diet (HSD) or a high-fat plus high-sucrose diet (HFSD) for 6 months. Eyes were examined using multimodal imaging modalities and electroretinograms. Retinal sections were analyzed using H&E staining, Toluidine Blue staining, immunostaining and transmission electron microscopy. Lipids and complement C3 protein (C3) in serum or aqueous humor were measured. RNA sequencing was performed to evaluate the retinal transcriptomes. HFD and HSD had minor effects on lipid profiles but, when fed concomitantly, synergistically induced severe dyslipidemia. None of the four diets caused obesity. HFSD induced retinal lesions, such as reticular pseudodrusen (RPDs) and other pigmentary abnormalities. RPD-like lesions were mainly lipid droplets around cells of the retinal pigment epithelium. HFSD also induced elevated levels of ocular C3 and reduced the density of retinal vessels. In conclusion, HFD and HSD can - when combined - induce normal-weight dyslipidemia and RPD-like retinal lesions. HFSD-fed male Chinchilla rabbits are a good model of early AMD.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Zhongping Lv
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjiang Chen
- Waterloo eye institute, School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Hui Zhang
- National Chengdu Center for Safety Evaluation of Drugs, West China-Frontier Pharma Tech Co., Ltd., Chengdu 610041, China
| | - Danian Chen
- Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
6
|
Ma X, Wu W, Hara M, Zhou J, Panzarin C, Schafer CM, Griffin CT, Cai J, Ma JX, Takahashi Y. Deficient RPE mitochondrial energetics leads to subretinal fibrosis in age-related neovascular macular degeneration. Commun Biol 2024; 7:1075. [PMID: 39223298 PMCID: PMC11369096 DOI: 10.1038/s42003-024-06773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Subretinal fibrosis permanently impairs the vision of patients with neovascular age-related macular degeneration. Despite emerging evidence revealing the association between disturbed metabolism in retinal pigment epithelium (RPE) and subretinal fibrosis, the underlying mechanism remains unclear. In the present study, single-cell RNA sequencing revealed, prior to subretinal fibrosis, genes in mitochondrial fatty acid oxidation are downregulated in the RPE lacking very low-density lipoprotein receptor (VLDLR), especially the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). We found that overexpression of CPT1A in the RPE of Vldlr-/- mice suppresses epithelial-to-mesenchymal transition and fibrosis. Mechanistically, TGFβ2 induces fibrosis by activating a Warburg-like effect, i.e. increased glycolysis and decreased mitochondrial respiration through ERK-dependent CPT1A degradation. Moreover, VLDLR blocks the formation of the TGFβ receptor I/II complex by interacting with unglycosylated TGFβ receptor II. In conclusion, VLDLR suppresses fibrosis by attenuating TGFβ2-induced metabolic reprogramming, and CPT1A is a potential target for treating subretinal fibrosis.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wenjing Wu
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Miwa Hara
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Junwen Zhou
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carolina Panzarin
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas-UNICAMP, Limeira, Brazil
| | - Christopher M Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jiyang Cai
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Rozanowska M, Edge R, Land EJ, Navaratnam S, Sarna T, Truscott TG. Scavenging of Cation Radicals of the Visual Cycle Retinoids by Lutein, Zeaxanthin, Taurine, and Melanin. Int J Mol Sci 2023; 25:506. [PMID: 38203675 PMCID: PMC10779001 DOI: 10.3390/ijms25010506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
In the retina, retinoids involved in vision are under constant threat of oxidation, and their oxidation products exhibit deleterious properties. Using pulse radiolysis, this study determined that the bimolecular rate constants of scavenging cation radicals of retinoids by taurine are smaller than 2 × 107 M-1s-1 whereas lutein scavenges cation radicals of all three retinoids with the bimolecular rate constants approach the diffusion-controlled limits, while zeaxanthin is only 1.4-1.6-fold less effective. Despite that lutein exhibits greater scavenging rate constants of retinoid cation radicals than other antioxidants, the greater concentrations of ascorbate in the retina suggest that ascorbate may be the main protectant of all visual cycle retinoids from oxidative degradation, while α-tocopherol may play a substantial role in the protection of retinaldehyde but is relatively inefficient in the protection of retinol or retinyl palmitate. While the protection of retinoids by lutein and zeaxanthin appears inefficient in the retinal periphery, it can be quite substantial in the macula. Although the determined rate constants of scavenging the cation radicals of retinol and retinaldehyde by dopa-melanin are relatively small, the high concentration of melanin in the RPE melanosomes suggests they can be scavenged if they are in proximity to melanin-containing pigment granules.
Collapse
Affiliation(s)
- Malgorzata Rozanowska
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3AX, UK
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Ruth Edge
- Dalton Cumbrian Facility, The University of Manchester, Westlakes Science Park, Moor Row, Cumbria CA24 3HA, UK;
| | - Edward J. Land
- The Paterson Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK;
| | - Suppiah Navaratnam
- Biomedical Sciences Research Institute, University of Salford, Manchester M5 4WT, UK;
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - T. George Truscott
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
8
|
Kondkar AA, Azad TA, Sultan T, Khatlani T, Alshehri AA, Lobo GP, Kalantan H, Al-Obeidan SA, Al-Muammar AM. Association between Polymorphism rs61876744 in PNPLA2 Gene and Keratoconus in a Saudi Cohort. Genes (Basel) 2023; 14:2108. [PMID: 38136930 PMCID: PMC10742661 DOI: 10.3390/genes14122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The genetic etiology of Keratoconus (KC) in Middle Eastern Arabs of Saudi origin is still unclear. A recent genome-wide study identified two significant loci in the region of PNPLA2 (rs61876744) and CSNK1E (rs138380) for KC that may be associated with KC in the Saudi population. In addition, polymorphisms in the apolipoprotein E (APOE) gene, namely, rs429358 and rs7412, responsible for APOE allelic variants ε2, ε3, and ε4, may influence KC via oxidative stress mechanism(s). Thus, we investigated the possible association of polymorphisms rs61876744, rs138380, rs429358, rs7412, and APOE genotypes in KC patients of the Saudi population. This study included 98 KC cases and 167 controls. Polymorphisms rs6187644 and rs138380 were genotyped using TaqMan assays, and rs429358 and rs7412 were genotyped via Sanger sequencing. Although the allele frequency of rs61876744(T) in PNPLA2 was a protective effect against KC (odds ratio (OR) = 0.64, 95% confidence interval (CI) = 0.44-0.93), the p-value (p = 0.020) was not significant for multiple testing correction (p = 0.05/4 = 0.015). However, rs6187644 genotype showed a modestly significant protective effect in the dominant model (OR = 0.53, 95% CI = 0.32-0.88, p = 0.013). Polymorphisms rs138380, rs429358, and rs7412 showed no significant allelic or genotype association with KC. However, the ε2-carriers (ε2/ε2 and ε2/ε3 genotypes) exhibited a greater than 5-fold increased risk of KC, albeit non-significantly (p = 0.055). Regression analysis showed no significant effect of age, gender, and the four polymorphisms on KC. Our results suggest that polymorphism rs6187644 in PNPLA2 might be associated with KC in the Middle Eastern Arabs of Saudi origin but warrant a large-scale association analysis at this locus.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
| | - Tanvir Khatlani
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Abdulaziz A. Alshehri
- Department of Ophthalmology, Imam Abdulrahman Alfaisal Hospital, Riyadh 14723, Saudi Arabia;
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA;
| | - Hatem Kalantan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Abdulrahman M. Al-Muammar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
9
|
Delmas D, Cotte AK, Connat JL, Hermetet F, Bouyer F, Aires V. Emergence of Lipid Droplets in the Mechanisms of Carcinogenesis and Therapeutic Responses. Cancers (Basel) 2023; 15:4100. [PMID: 37627128 PMCID: PMC10452604 DOI: 10.3390/cancers15164100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer shares common risk factors with cardiovascular diseases such as dyslipidemia, obesity and inflammation. In both cases, dysregulations of lipid metabolism occur, and lipid vesicles emerge as important factors that can influence carcinogenesis. In this review, the role of different lipids known to be involved in cancer and its response to treatments is detailed. In particular, lipid droplets (LDs), initially described for their role in lipid storage, exert multiple functions, from the physiological prevention of LD coalescence and regulation of endoplasmic reticulum homeostasis to pathological involvement in tumor progression and aggressiveness. Analysis of LDs highlights the importance of phosphatidylcholine metabolism and the diversity of lipid synthesis enzymes. In many cancers, the phosphatidylcholine pathways are disrupted, modifying the expression of genes coding for metabolic enzymes. Tumor microenvironment conditions, such as hypoxia, different types of stress or inflammatory conditions, are also important determinants of LD behavior in cancer cells. Therefore, LDs represent therapeutic targets in cancer, and many lipid mediators have emerged as potential biomarkers for cancer onset, progression, and/or resistance.
Collapse
Affiliation(s)
- Dominique Delmas
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc, 21000 Dijon, France
| | - Alexia K. Cotte
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - Jean-Louis Connat
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - François Hermetet
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - Florence Bouyer
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - Virginie Aires
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| |
Collapse
|
10
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|