1
|
Ana-Sosa-Batiz F, Verma SK, Shafee N, Miller R, Conner C, Hastie KM, Timis J, Maule E, Nguyen MN, Tran L, Varghese K, Madany H, Street AE, Zandonatti M, Moi ML, Jarnagin K, Webb DR, Saphire EO, Kim K, Shresta S. A humanised ACE2, TMPRSS2, and FCGRT mouse model reveals the protective efficacy of anti-receptor binding domain antibodies elicited by SARS-CoV-2 hybrid immunity. EBioMedicine 2025; 113:105619. [PMID: 40020261 PMCID: PMC11910679 DOI: 10.1016/j.ebiom.2025.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite the importance of vaccination- and infection-elicited antibodies (Abs) to SARS-CoV-2 immunity, current mouse models do not fully capture the dynamics of Ab-mediated immunity in vivo, including potential contributions of the neonatal Fc receptor, encoded by FCGRT. METHODS We generated triple knock-in (TKI) mice expressing human ACE2, TMPRSS2, and FCGRT; and evaluated the protective efficacy of anti-SARS-CoV-2 monoclonal Abs (mAbs) and plasma from individuals with immunity elicited by vaccination alone plus SARS-CoV-2 infection-induced (hybrid) immunity. FINDINGS A human anti-SARS-CoV-2 mAb harbouring a half-life-extending mutation, but not the wild-type mAb, exhibited prolonged half-life in TKI mice and protected against lung infection with Omicron BA.2, validating the utility of these mice for evaluating therapeutic Abs. Pooled plasma from individuals with hybrid immunity to Delta, but not from vaccinated-only individuals, cleared infectious Delta from the lungs of TKI mice (P < 0.01), even though the two plasma pools had similar Delta-binding and -neutralising Ab titres in vitro. Similarly, plasma from individuals with hybrid Omicron BA.1/2 immunity, but not hybrid Delta immunity, decreased lung infection (P < 0.05) with BA.5 in TKI mice, despite the plasma pools having comparable BA.5-binding and -neutralising titres in vitro. Depletion of receptor-binding domain-targeting Abs from hybrid immune plasma abrogated their protection against infection. INTERPRETATION These results demonstrate the utility of TKI mice as a tool for the development of anti-SARS-CoV-2 mAb therapeutics, show that in vitro neutralisation assays do not accurately predict in vivo protection, and highlight the importance of hybrid immunity for eliciting protective anti-receptor-binding domain Abs. FUNDING This work was funded by grants from the e-Asia Joint Research Program (N10A650706 and N10A660577 to MLM, in collaboration with SS); the NIH (U19 AI142790-02S1 to EOS and SS and R44 AI157900 to KJ); the GHR Foundation (to SS and EOS); the Overton family (to SS and EOS); the Arvin Gottlieb Foundation (to SS and EOS), the Prebys Foundation (to SS); and the American Association of Immunologists Fellowship Program for Career Reentry (to FASB).
Collapse
Affiliation(s)
| | - Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael N Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Henry Madany
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Michelle Zandonatti
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Ramirez SI, Faraji F, Hills LB, Lopez PG, Goodwin B, Stacey HD, Sutton HJ, Hastie KM, Saphire EO, Kim HJ, Mashoof S, Yan CH, DeConde AS, Levi G, Crotty S. Immunological memory diversity in the human upper airway. Nature 2024; 632:630-636. [PMID: 39085605 PMCID: PMC11895801 DOI: 10.1038/s41586-024-07748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The upper airway is an important site of infection, but immune memory in the human upper airway is poorly understood, with implications for COVID-19 and many other human diseases1-4. Here we demonstrate that nasal and nasopharyngeal swabs can be used to obtain insights into these challenging problems, and define distinct immune cell populations, including antigen-specific memory B cells and T cells, in two adjacent anatomical sites in the upper airway. Upper airway immune cell populations seemed stable over time in healthy adults undergoing monthly swabs for more than 1 year, and prominent tissue resident memory T (TRM) cell and B (BRM) cell populations were defined. Unexpectedly, germinal centre cells were identified consistently in many nasopharyngeal swabs. In subjects with SARS-CoV-2 breakthrough infections, local virus-specific BRM cells, plasma cells and germinal centre B cells were identified, with evidence of local priming and an enrichment of IgA+ memory B cells in upper airway compartments compared with blood. Local plasma cell populations were identified with transcriptional profiles of longevity. Local virus-specific memory CD4+ TRM cells and CD8+ TRM cells were identified, with diverse additional virus-specific T cells. Age-dependent upper airway immunological shifts were observed. These findings provide new understanding of immune memory at a principal mucosal barrier tissue in humans.
Collapse
Affiliation(s)
- Sydney I Ramirez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - L Benjamin Hills
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Paul G Lopez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Hannah D Stacey
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Henry J Sutton
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Hyun Jik Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sara Mashoof
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Carol H Yan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Adam S DeConde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Gina Levi
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chen Y, Zha J, Xu S, Shao J, Liu X, Li D, Zhang X. Structure-Based Optimization of One Neutralizing Antibody against SARS-CoV-2 Variants Bearing the L452R Mutation. Viruses 2024; 16:566. [PMID: 38675908 PMCID: PMC11053997 DOI: 10.3390/v16040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neutralizing antibodies (nAbs) play an important role against SARS-CoV-2 infections. Previously, we have reported one potent receptor binding domain (RBD)-binding nAb Ab08 against the SARS-CoV-2 prototype and a panel of variants, but Ab08 showed much less efficacy against the variants harboring the L452R mutation. To overcome the antibody escape caused by the L452R mutation, we generated several structure-based Ab08 derivatives. One derivative, Ab08-K99E, displayed the mostly enhanced neutralizing potency against the Delta pseudovirus bearing the L452R mutation compared to the Ab08 and other derivatives. Ab08-K99E also showed improved neutralizing effects against the prototype, Omicron BA.1, and Omicron BA.4/5 pseudoviruses. In addition, compared to the original Ab08, Ab08-K99E exhibited high binding properties and affinities to the RBDs of the prototype, Delta, and Omicron BA.4/5 variants. Altogether, our findings report an optimized nAb, Ab08-K99E, against SARS-CoV-2 variants and demonstrate structure-based optimization as an effective way for antibody development against pathogens.
Collapse
Affiliation(s)
- Yamin Chen
- Suzhou Medical College, Soochow University, Suzhou 215123, China; (Y.C.); (X.L.)
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
| | - Jialu Zha
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Shiqi Xu
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
- The CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiang Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
| | - Xiaoshan Liu
- Suzhou Medical College, Soochow University, Suzhou 215123, China; (Y.C.); (X.L.)
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Xiaoming Zhang
- Suzhou Medical College, Soochow University, Suzhou 215123, China; (Y.C.); (X.L.)
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; (S.X.); (J.S.)
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai 200052, China
| |
Collapse
|
4
|
Bricio-Moreno L, Barreto de Albuquerque J, Neary JM, Nguyen T, Kuhn LF, Yeung Y, Hastie KM, Landeras-Bueno S, Olmedillas E, Hariharan C, Nathan A, Getz MA, Gayton AC, Khatri A, Gaiha GD, Ollmann Saphire E, Luster AD, Moon JJ. Identification of mouse CD4 + T cell epitopes in SARS-CoV-2 BA.1 spike and nucleocapsid for use in peptide:MHCII tetramers. Front Immunol 2024; 15:1329846. [PMID: 38529279 PMCID: PMC10961420 DOI: 10.3389/fimmu.2024.1329846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 03/27/2024] Open
Abstract
Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.
Collapse
Affiliation(s)
- Laura Bricio-Moreno
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Juliana Barreto de Albuquerque
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jake M. Neary
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Thao Nguyen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Lucy F. Kuhn
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - YeePui Yeung
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Kathryn M. Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eduardo Olmedillas
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Anusha Nathan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, United States
| | - Matthew A. Getz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Alton C. Gayton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashok Khatri
- Harvard Medical School, Boston, MA, United States
- Endocrine Division, MGH, Boston, MA, United States
| | - Gaurav D. Gaiha
- Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Division of Gastroenterology, MGH, Boston, MA, United States
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - James J. Moon
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, MGH, Boston, MA, United States
| |
Collapse
|
5
|
Olmedillas E, Rajamanickam RR, Avalos RD, Sosa FA, Zandonatti MA, Harkins SS, Shresta S, Hastie KM, Saphire EO. Structure of a SARS-CoV-2 spike S2 subunit in a pre-fusion, open conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571764. [PMID: 38168261 PMCID: PMC10760097 DOI: 10.1101/2023.12.14.571764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The 800 million human infections with SARS-CoV-2 and the likely emergence of new variants and additional coronaviruses necessitate a better understanding of the essential spike glycoprotein and the development of immunogens that foster broader and more durable immunity. The S2 fusion subunit is more conserved in sequence, is essential to function, and would be a desirable immunogen to boost broadly reactive antibodies. It is, however, unstable in structure and in its wild-type form, cannot be expressed alone without irreversible collapse into a six-helix bundle. In addition to the irreversible conformational changes of fusion, biophysical measurements indicate that spike also undergoes a reversible breathing action. However, spike in an open, "breathing" conformation has not yet been visualized at high resolution. Here we describe an S2-only antigen, engineered to remain in its relevant, pre-fusion viral surface conformation in the absence of S1. We also describe a panel of natural human antibodies specific for S2 from vaccinated and convalescent individuals. One of these mAbs, from a convalescent individual, afforded a high-resolution cryo-EM structure of the prefusion S2. The structure reveals a complex captured in an "open" conformation with greater stabilizing intermolecular interactions at the base and a repositioned fusion peptide. Together, this work provides an antigen for advancement of next-generation "booster" immunogens and illuminates the likely breathing adjustments of the coronavirus spike.
Collapse
Affiliation(s)
- Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roshan R. Rajamanickam
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ruben Diaz Avalos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Fernanda A. Sosa
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Michelle A. Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephanie S. Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Moreno LB, de Albuquerque JB, Neary JM, Nguyen T, Hastie KM, Landeras-Bueno S, Hariharan C, Nathan A, Getz MA, Gayton AC, Khatri A, Gaiha GD, Saphire EO, Luster AD, Moon JJ. Identification of mouse CD4 + T cell epitopes in SARS-CoV-2 BA.1 spike and nucleocapsid for use in peptide:MHCII tetramers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.566918. [PMID: 38014059 PMCID: PMC10680761 DOI: 10.1101/2023.11.16.566918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 reliably immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.
Collapse
Affiliation(s)
- Laura Bricio Moreno
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Juliana Barreto de Albuquerque
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jake M. Neary
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Thao Nguyen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Kathryn M. Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Anusha Nathan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, United States
| | - Matthew A. Getz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Alton C. Gayton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashok Khatri
- Harvard Medical School, Boston, MA, United States
- Endocrine Division, Massachusetts General Hospital, Boston, MA, United States
| | - Gaurav D. Gaiha
- Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - James J. Moon
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|