1
|
Jia H, Bian C, Chang Y. Exploring the molecular interactions between ferroptosis and the Wnt/β-catenin signaling pathway: Implications for cancer and disease therapy. Crit Rev Oncol Hematol 2025; 210:104674. [PMID: 40010619 DOI: 10.1016/j.critrevonc.2025.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Ferroptosis, a regulated form of cell death dependent on iron and marked by lipid peroxidation, is increasingly recognized for its role in a wide array of diseases, including cancers, neurodegenerative disorders, and tissue damage. This review examines the dynamic interaction between ferroptosis and the Wnt/β-catenin signaling pathway, focusing on how Wnt surface receptors, ligands, antagonists, and associated components influence the regulation of ferroptosis. Key elements such as Frizzled receptors, Wnt ligands, and antagonists like DKK1 are shown to affect ferroptosis by altering oxidative stress, lipid dynamics, and iron metabolism. A central aspect of this interaction is the role of the destruction complex, particularly GSK-3β, which regulates ferroptosis through its upstream modulation by the AKT pathway and downstream control over NRF2, GPX4, and SLC7A11. Furthermore, the involvement of β-catenin/TCF transcription factors in the regulation of ferroptosis emphasizes the significance of this pathway in promoting cell survival and resisting ferroptosis, particularly in various cancers. Multiple cancers, including colorectal, breast, ovarian, and lung cancers, are affected by disruptions in the Wnt/ferroptosis axis, where enhanced Wnt signaling helps cancer cells evade ferroptosis and develop resistance to treatments. Beyond cancer, this axis also plays a crucial role in neurodegenerative diseases and conditions like myocardial infarction. Additionally, natural compounds have shown potential in modulating the Wnt/ferroptosis pathway, offering promising therapeutic approaches for a variety of diseases. This review highlights the molecular mechanisms of the Wnt/ferroptosis axis, paving the way for innovative treatment options in cancer and other diseases.
Collapse
Affiliation(s)
- Hui Jia
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| | - Yi Chang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
2
|
Jiang Y, Song C, Yan J, Luo L, Gao S, Jiang F, Wei Z, Chen J, Liu Z, Ge J. Based on single-cell and transcriptome data, ferroptosis and the immunological landscape in osteosarcoma were discovered. Discov Oncol 2025; 16:636. [PMID: 40299087 PMCID: PMC12040805 DOI: 10.1007/s12672-025-02427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Ferroptosis has been demonstrated to have a significant role in osteosarcoma (OS), a highly aggressive and invasive malignant bone tumor. Nevertheless, the precise molecular mechanism underlying OS remains unknown. Understanding the makeup of the immune microenvironment in OS is crucial for its therapy, as the disease grows in the highly specialized, complex, and dynamic bone microenvironment. Resveratrol (Res) possesses anti-inflammatory, immunomodulatory, chemopreventive, antioxidant, and anticancer properties, it is unknown if it can modify ferroptosis to prevent OS. This time, using single-cell analysis and other bioinformatic studies, we will clarify the targets and composition of the immunological microenvironment of the ferroptosis process in OS, as well as the role of certain transcription factors in it. Ultimately, network pharmacology and vitro experiment have led to the initial identification of the molecular processes governing ferroptosis in OS, which are regulated by Res. The findings suggested the potential use of ALB, EGFR, GPX4, IL6, STAT3, and PTEN as OS prognostic and diagnostic biomarkers. Chondroblastic, myeloid cells, osteoblastic OS, CD4 + T, NK, CD8 + T, B cells, M1 macrophages, Chondro_Proli, etc. made up the majority of the immunological microenvironment of OS. The entire cellular trajectory demonstrates that immune cells infiltrating during the early stages of OS are mostly CD4 + T, NK, CD8 + T, B_cell, and M1 macrophages. This affects the development of myeloid cells and chondroblastic cells, which ultimately leads to the progression of highly malignant chondro cells to OS. Numerous pathways allow transcription factors including BCLAF1, MAF, SP1, TCF12, KLF11, and KMT2D to contribute to the development of tumors. Finally, by interacting with the aforementioned targets, cells, Res is thought to impede the evolution of OS. In conclusion, ferroptosis and alterations in the immunological milieu are significant factors in the development of OS, and Res may one day be employed as a therapeutic drug to treat OS.
Collapse
Affiliation(s)
- Yingcun Jiang
- Department of Orthopedics, The Affiliated Hospital (Zhongshan), Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiyuan Yan
- Department of Orthopedics, The Affiliated Hospital (Health Center), Southwest Medical University, Luzhou, Sichuan, China
| | - Liang Luo
- Department of Orthopedics, The First People's Hospital of Mianyang, Mianyang, Sichuan, China
| | - Silong Gao
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Jiang
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangchao Wei
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China.
| | - Jianhua Ge
- Department of Orthopedics, The Affiliated Hospital (Zhongshan), Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Li H, Yao W, Yang C, Zhang W, Wang Y, Lin Y, Du Z, Zhang C, Huang L, Zhang M, Fan H, Zhu J, Xiang H. SIRT5 Regulates Lipid Deposition in Goat Preadipocytes via PI3K-Akt and MAPK Signaling Pathways. Animals (Basel) 2025; 15:1072. [PMID: 40218465 PMCID: PMC11988186 DOI: 10.3390/ani15071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Silent Information Regulator 5 (SIRT5) has been established as a crucial regulator of cellular alanylation modification. Furthermore, accumulating evidence suggests that SIRT5 plays a significant regulatory role in key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid oxidation, all of which are closely associated with cellular lipid metabolism. Despite these advancements, the specific role of SIRT5 in regulating intramuscular fat (IMF) deposition in goats, as well as the underlying molecular mechanisms, remains largely unexplored. In this study, we cloned the complete coding sequence of the goat SIRT5 gene and, through amino acid sequence alignment, demonstrated its closest phylogenetic relationship with sheep. Additionally, we characterized the higher expression of SIRT5 during the differentiation of goat intramuscular precursor adipocytes. The silencing of SIRT5 by siRNA-mediated knockdown significantly upregulated the expression of lipogenesis-related genes and enhanced lipid deposition in goat intramuscular preadipocytes. Concurrently, SIRT5 deficiency led to the inhibition of cell proliferation and a marked reduction in apoptosis. Interestingly, although overexpression of SIRT5 promoted cell proliferation, it did not significantly alter lipid deposition in goat intramuscular precursor adipocytes. RNA sequencing (RNA-seq) analysis identified a total of 106 differentially expressed genes (DEGs) following SIRT5 silencing in goat preadipocytes, predominantly involved in the Focal adhesion, HIF-1, PI3K-Akt, and MAPK signaling pathways by KEGG pathway enrichment analysis. Notably, we successfully reversed the phenotypic effects observed in SIRT5 knockdown goat precursor adipocytes by inhibiting the PI3K-Akt and MAPK signaling pathways using the AKT inhibitor LY294002 and the p38 MAPK pathway inhibitor PD169316, respectively. In conclusion, our findings demonstrated that SIRT5 may modulate intramuscular fat deposition in goats through PI3k-Akt and MAPK signaling pathways. These results expand the gene regulatory network associated with IMF formation and provide a theoretical foundation for improving meat quality by targeting IMF deposition.
Collapse
Affiliation(s)
- Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenli Yao
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Ming Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Huaigong Fan
- Sichuan Guonong Tianfu Agricultural Development Co., Ltd., Chengdu 611441, China;
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| |
Collapse
|
4
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
5
|
Gollowitzer A, Pein H, Rao Z, Waltl L, Bereuter L, Loeser K, Meyer T, Jafari V, Witt F, Winkler R, Su F, Große S, Thürmer M, Grander J, Hotze M, Harder S, Espada L, Magnutzki A, Gstir R, Weinigel C, Rummler S, Bonn G, Pachmayr J, Ermolaeva M, Harayama T, Schlüter H, Kosan C, Heller R, Thedieck K, Schmitt M, Shimizu T, Popp J, Shindou H, Kwiatkowski M, Koeberle A. Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nat Commun 2025; 16:1774. [PMID: 40000627 PMCID: PMC11861335 DOI: 10.1038/s41467-025-56711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cell death programs such as apoptosis and ferroptosis are associated with aberrant redox homeostasis linked to lipid metabolism and membrane function. Evidence for cross-talk between these programs is emerging. Here, we show that cytotoxic stress channels polyunsaturated fatty acids via lysophospholipid acyltransferase 12 into phospholipids that become susceptible to peroxidation under additional redox stress. This reprogramming is associated with altered acyl-CoA synthetase isoenzyme expression and caused by a decrease in growth factor receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase signaling, resulting in suppressed fatty acid biosynthesis, for specific stressors via impaired Akt-SREBP1 activation. The reduced availability of de novo synthesized fatty acids favors the channeling of polyunsaturated fatty acids into phospholipids. Growth factor withdrawal by serum starvation mimics this phenotype, whereas RTK ligands counteract it. We conclude that attenuated RTK signaling during cell death initiation increases cells' susceptibility to oxidative membrane damage at the interface of apoptosis and alternative cell death programs.
Collapse
Affiliation(s)
- André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Konstantin Loeser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Vajiheh Jafari
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916, Badalona, Spain
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Silke Große
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Günther Bonn
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 06560, Valbonne, France
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Alliance Ruhr & University Hospital Essen, University Duisburg-Essen, 45141, Essen, Germany
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- German Cancer Consortium (DKTK), partner site Essen/Duesseldorf, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147, Essen, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
6
|
Ma C, Han L, Zhao W, Chen F, Huang R, Pang CH, Zhu Z, Pan G. Targeting AhR suppresses hepatocyte ferroptosis in MASH by regulating the Pten/Akt/β catenin axis. Biochem Pharmacol 2025; 232:116711. [PMID: 39672276 DOI: 10.1016/j.bcp.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Aryl hydrocarbon Receptor (AhR), an essential host regulator, has been observed to be significantly upregulated in patients with Metabolic dysfunction-associated steatohepatitis (MASH). However, the underlying mechanism remains unclear. The specific AhR antagonist CH223191 and siRNAs were employed to investigated the role of AhR and its potential as a therapeutic target for MASH in mice and hepatocytes model. Significant upregulation of hepatic AhR was found in our MASH model and across three public datasets. CH223191 (5 mg/kg) treatment effectively ameliorated lipid deposition, serum ALT/AST level, inflammatory cytokines and hepatocyte senescence. Moreover, inhibiting AhR reduced aberrant iron overload, MDA and ROS levels, and suppressed iron transporter DMT1 and iron storage protein ferritin. Furthermore, CH223191 treatment resulted in the restoration of β-catenin and Pten while reducing the phosphorylation of Akt. Suppression of Pten or β-catenin by specific antagonists significantly abolished the hepatoprotective effects of CH223191, leading to increased DMT1 and ferritin and subsequent hepatic ferroptosis in mice. In conclusions, these findings suggested a novel regulatory role of AhR plays in ferroptosis and iron overload through the Pten/Akt/βcatenin pathway, which makes AhR a promising therapeutic target for the treatment of MASH.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxuan Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feihong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
7
|
Yilmaz S, Cizmecioglu O. PI3K Signaling at the Crossroads of Lipid Metabolism and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:139-164. [PMID: 39616584 DOI: 10.1007/5584_2024_832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The proto-oncogenic PI3K pathway is crucial for the integration of growth factor signaling and metabolic pathways to facilitate the coordination for cell growth. Since transformed cells have the ability to upregulate their anabolic pathways and selectively modulate a subset of metabolites functioning as anti- or pro-tumorigenic signal mediators, the question of how the levels of these metabolites are regulated has also become the center of attention for cancer researchers. Apart from its well-defined roles in glucose metabolism and peptide anabolism, the PI3K pathway appears to be a significant regulator of lipid metabolism and a potentiator of proto-oncogenic bioactive lipid metabolite signaling. In this review, we aim to describe the crosstalk between the PI3K pathway and bioactive lipid species of the three main lipid classes.
Collapse
Affiliation(s)
- Sevval Yilmaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Chen Z, Wang W, Hou J, Gao C, Song M, Zhao Z, Guan R, Chen J, Wu H, Abdul Razak SR, Han T, Zhang J, Wang L, Ahmad NH, Li X. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination. Cell Death Discov 2024; 10:473. [PMID: 39557844 PMCID: PMC11574128 DOI: 10.1038/s41420-024-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The oncogene xCT plays an indispensable role in tumor growth by protecting cancer cells from oxidative stress and ferroptosis. Emerging evidence indicated xCT function is tightly controlled by posttranslational modifications, especially ubiquitination. However, it still remains unclear what specific regulatory mechanism of xCT by ubiquitin ligases in human cancers. Here, we reported that NEDD4L, an E3 ubiquitin ligases, inhibited esophageal squamous cell carcinoma (ESCC) tumor growth and facilitated ferroptosis by ubiquitination of xCT. NEDD4L expression was declined in ESCC and was associated with tumor invasion, lymph node metastasis and distant metastasis. Silencing NEDD4L triggered ESCC tumor growth. Meanwhile, knock down of NEDD4L prevented the accumulation of ROS, elevated the level of GSH, reduced the content of MDA in ESCC cells, thereby inhibiting ferroptosis. Mechanistically, NEDD4L directly bound to the ∆CT domain of xCT through its WW and HECT domain. More importantly, NEDD4L promoted xCT degradation by facilitating its polyubiquitination in ESCC cells. Collectively, these findings suggest that NEDD4L is crucial in governing the stability of xCT and mediating ferroptosis in ESCC.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Meili Song
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zijun Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Ruirui Guan
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jingsheng Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Huicheng Wu
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
| | - Tao Han
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Junbo Zhang
- Department of Surgery, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia.
| | - Xiumin Li
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
9
|
Sang X, Han J, Wang Z, Cai W, Liao X, Kong Z, Yu Z, Cheng H, Liu P. SGK1 suppresses ferroptosis in ovarian cancer via NRF2-dependent and -independent pathways. Oncogene 2024; 43:3335-3347. [PMID: 39306614 DOI: 10.1038/s41388-024-03173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is a highly aggressive disease often developing resistance to current therapies, necessitating new treatment strategies. Our study identifies SGK1, a key effector in the PI3K pathway, as a promising therapeutic target to exploit ferroptosis, a distinct form of cell death induced by iron overload and lipid peroxidation. Importantly, SGK1 activation, whether through high expression or the constitutively active SGK1-S422D mutation, confers resistance to ferroptosis in HGSOC. Conversely, SGK1 inhibition significantly enhances sensitivity to ferroptosis, as shown by increased PTGS2 expression (a ferroptosis marker), lipid peroxidation, and toxic-free iron levels. Remarkably, this enhanced cytotoxicity is reversed by ferrostatin-1 and the iron chelator deferoxamine, highlighting the pivotal roles of lipid peroxidation and iron dysregulation in the process. Mechanistically, SGK1 protects HGSOC cells from ferroptosis via NRF2-dependent pathways, promoting glutathione synthesis and iron homeostasis, and NRF2-independent pathways via mTOR/SREBP1/SCD1-mediated lipogenesis. Notably, pharmacological SGK1 inhibition sensitizes HGSOC xenograft models to ferroptosis induction, highlighting its therapeutic potential. These findings establish SGK1 as a critical regulator of ferroptosis and suggest targeting SGK1 alongside ferroptosis pathways as a potential therapeutic strategy for HGSOC patients.
Collapse
Affiliation(s)
- Xiaolin Sang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaxin Han
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhaojing Wang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Weiji Cai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingming Liao
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhuolin Kong
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhijie Yu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hailing Cheng
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Pixu Liu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
10
|
Tang D, Kang R. NFE2L2 and ferroptosis resistance in cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:41. [PMID: 39534872 PMCID: PMC11555182 DOI: 10.20517/cdr.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
NFE2-like basic leucine zipper transcription factor 2 (NFE2L2, also known as NRF2), is a key transcription factor in the cellular defense against oxidative stress, playing a crucial role in cancer cell survival and resistance to therapies. This review outlines the current knowledge on the link between NFE2L2 and ferroptosis - a form of regulated cell death characterized by iron-dependent lipid peroxidation - within cancer cells. While NFE2L2 activation can protect normal cells from oxidative damage, its overexpression in cancer cells contributes to drug resistance by upregulating antioxidant defenses and inhibiting ferroptosis. We delve into the molecular pathways of ferroptosis, highlighting the involvement of NFE2L2 and its target genes, such as NQO1, HMOX1, FTH1, FTL, HERC2, SLC40A1, ABCB6, FECH, PIR, MT1G, SLC7A11, GCL, GSS, GSR, GPX4, AIFM2, MGST1, ALDH1A1, ALDH3A1, and G6PD, in ferroptosis resistance. Understanding the delicate balance between NFE2L2's protective and deleterious roles could pave the way for novel therapeutic strategies targeting NFE2L2 to enhance the efficacy of ferroptosis inducers in cancer therapy.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| |
Collapse
|
11
|
Hecht F, Zocchi M, Tuttle ET, Ward NP, Smith B, Kang YP, Cazarin J, Soares ZG, Ozgurses ME, Zhao H, Sheehan C, Alimohammadi F, Munger LD, Trivedi D, Asantewaa G, Blick-Nitko SK, Zoeller JJ, Chen Y, Vasiliou V, Turner BM, Muir A, Coloff JL, Munger J, DeNicola GM, Harris IS. Catabolism of extracellular glutathione supplies amino acids to support tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617667. [PMID: 39416022 PMCID: PMC11482906 DOI: 10.1101/2024.10.10.617667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Restricting amino acids from tumors is an emerging therapeutic strategy with significant promise. While typically considered an intracellular antioxidant with tumor-promoting capabilities, glutathione (GSH) is a tripeptide of cysteine, glutamate, and glycine that can be catabolized, yielding amino acids. The extent to which GSH-derived amino acids are essential to cancers is unclear. Here, we find that GSH catabolism promotes tumor growth. We show that depletion of intracellular GSH does not perturb tumor growth, and extracellular GSH is highly abundant in the tumor microenvironment, highlighting the potential importance of GSH outside of tumors. We find supplementation with GSH can rescue cancer cell survival and growth in cystine-deficient conditions, and this rescue is dependent on the catabolic activity of γ-glutamyltransferases (GGTs). Finally, pharmacologic targeting of GGTs' activity prevents the breakdown of circulating GSH, lowers tumor cysteine levels, and slows tumor growth. Our findings indicate a non-canonical role for GSH in supporting tumors by acting as a reservoir of amino acids. Depriving tumors of extracellular GSH or inhibiting its breakdown is potentially a therapeutically tractable approach for patients with cancer. Further, these findings change our view of GSH and how amino acids, including cysteine, are supplied to cells.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- These authors contributed equally
| | - Emily T. Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Nathan P. Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Zamira G. Soares
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Fatemeh Alimohammadi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Lila D. Munger
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Dhvani Trivedi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Gloria Asantewaa
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Sara K. Blick-Nitko
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Jason J. Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06510
| | - Bradley M. Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA, 14620
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Isaac S. Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14620
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14620
| |
Collapse
|
12
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
13
|
Wen L, Li M, Yin J. PTEN Deficiency Induced by Extracellular Vesicle miRNAs from Clonorchis sinensis Potentiates Cholangiocarcinoma Development by Inhibiting Ferroptosis. Int J Mol Sci 2024; 25:10350. [PMID: 39408679 PMCID: PMC11477024 DOI: 10.3390/ijms251910350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The human phosphatase and tensin homolog (PTEN) is a tumor suppressor. A slight deficiency in PTEN might cause cancer susceptibility and progression. Infection by the liver fluke Clonorchis sinensis could lead to persistent loss of PTEN in cholangiocarcinoma. However, the mechanism of PTEN loss and its malignant effect on cholangiocarcinoma have not yet been elucidated. Extracellular vesicles secreted by Clonorchis sinensis (CS-EVs) are rich in microRNAs (miRNAs) and can mediate communication between hosts and parasites. Herein, we delved into the miRNAs present in CS-EVs, specifically those that potentially target PTEN and modulate the progression of cholangiocarcinoma via ferroptosis mechanisms. CS-EVs were extracted by differential ultra-centrifugation for high-throughput sequencing of miRNA. Lentiviral vectors were used to construct stably transfected cell lines. Erastin was used to construct ferroptosis induction models. Finally, 36 miRNAs were identified from CS-EVs. Among them, csi-miR-96-5p inhibited PTEN expression according to the predictions and dual luciferase assay. The CCK-8 assay, xenograft tumor assays and transwell assay showed that csi-miR-96-5p overexpression and PTEN knockout significantly increased the proliferation and migration of cholangiocarcinoma cells and co-transfection of PTEN significantly reversed the effect. In the presence of erastin, the cell proliferation and migration ability of the negative transfection control group were significantly impaired, although they did not significantly change with transfection of csi-miR-96-5p and PTEN knockout, indicating that they obtained ferroptosis resistance. Mechanistically, csi-miR-96-5p and PTEN knockout significantly inhibited ferroptosis through a decrease in ferrous ion (Fe2+) and malondialdehyde (MDA), and an increase in glutathione reductase (GSH), Solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4). In conclusion, loss of PTEN promoted the progression of cholangiocarcinoma via the ferroptosis pathway and csi-miR-96-5p delivered by CS-EVs may mediate this process.
Collapse
Affiliation(s)
| | | | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (L.W.); (M.L.)
| |
Collapse
|
14
|
Chen S, Li Z, Xiao Y, Zhou Z, Zhan Q, Yu L. Rutin targets AKT to inhibit ferroptosis in ventilator-induced lung injury. Phytother Res 2024; 38:3401-3416. [PMID: 38666397 DOI: 10.1002/ptr.8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 07/12/2024]
Abstract
Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhaobin Zhou
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Yu
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Tao Y, Zhao Q, Lu C, Yong W, Xu M, Wang Z, Leng X. Melatonin suppresses atherosclerosis by ferroptosis inhibition via activating NRF2 pathway. FASEB J 2024; 38:e23678. [PMID: 38780199 DOI: 10.1096/fj.202400427rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.
Collapse
Affiliation(s)
- Yangyang Tao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinglong Zhao
- Department of Interventional Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengbo Lu
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, jiamusi, China
| | - Weilin Yong
- Department of Medical Services, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyuan Xu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuo Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoping Leng
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Miao ZF, Sun JX, Huang XZ, Bai S, Pang MJ, Li JY, Chen HY, Tong QY, Ye SY, Wang XY, Hu XH, Li JY, Zou JW, Xu W, Yang JH, Lu X, Mills JC, Wang ZN. Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway. Dev Cell 2024; 59:1175-1191.e7. [PMID: 38521055 DOI: 10.1016/j.devcel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/07/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China.
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Shi Bai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jia-Yi Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Han-Yu Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Shi-Yu Ye
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jing-Ying Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jin-Wei Zou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Wen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jun-Hao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xi Lu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jason C Mills
- Section of Gastroenterology & Hepatology, Department of Medicine, Departments of Pathology & Immunology, Molecular and Cellular Biology, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
18
|
Su H, Peng C, Liu Y. Regulation of ferroptosis by PI3K/Akt signaling pathway: a promising therapeutic axis in cancer. Front Cell Dev Biol 2024; 12:1372330. [PMID: 38562143 PMCID: PMC10982379 DOI: 10.3389/fcell.2024.1372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The global challenge posed by cancer, marked by rising incidence and mortality rates, underscores the urgency for innovative therapeutic approaches. The PI3K/Akt signaling pathway, frequently amplified in various cancers, is central in regulating essential cellular processes. Its dysregulation, often stemming from genetic mutations, significantly contributes to cancer initiation, progression, and resistance to therapy. Concurrently, ferroptosis, a recently discovered form of regulated cell death characterized by iron-dependent processes and lipid reactive oxygen species buildup, holds implications for diseases, including cancer. Exploring the interplay between the dysregulated PI3K/Akt pathway and ferroptosis unveils potential insights into the molecular mechanisms driving or inhibiting ferroptotic processes in cancer cells. Evidence suggests that inhibiting the PI3K/Akt pathway may sensitize cancer cells to ferroptosis induction, offering a promising strategy to overcome drug resistance. This review aims to provide a comprehensive exploration of this interplay, shedding light on the potential for disrupting the PI3K/Akt pathway to enhance ferroptosis as an alternative route for inducing cell death and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xinyi, China
| | - Chao Peng
- Xingyi People’s Hospital, Xinyi, China
| | - Yang Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Bae T, Hallis SP, Kwak MK. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med 2024; 56:501-514. [PMID: 38424190 PMCID: PMC10985007 DOI: 10.1038/s12276-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Oxygen is crucial for life and acts as the final electron acceptor in mitochondrial energy production. Cells adapt to varying oxygen levels through intricate response systems. Hypoxia-inducible factors (HIFs), including HIF-1α and HIF-2α, orchestrate the cellular hypoxic response, activating genes to increase the oxygen supply and reduce expenditure. Under conditions of excess oxygen and resulting oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2) activates hundreds of genes for oxidant removal and adaptive cell survival. Hypoxia and oxidative stress are core hallmarks of solid tumors and activated HIFs and NRF2 play pivotal roles in tumor growth and progression. The complex interplay between hypoxia and oxidative stress within the tumor microenvironment adds another layer of intricacy to the HIF and NRF2 signaling systems. This review aimed to elucidate the dynamic changes and functions of the HIF and NRF2 signaling pathways in response to conditions of hypoxia and oxidative stress, emphasizing their implications within the tumor milieu. Additionally, this review explored the elaborate interplay between HIFs and NRF2, providing insights into the significance of these interactions for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Taegeun Bae
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
| |
Collapse
|
20
|
Mailloux RJ. Proline and dihydroorotate dehydrogenase promote a hyper-proliferative state and dampen ferroptosis in cancer cells by rewiring mitochondrial redox metabolism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119639. [PMID: 37996061 DOI: 10.1016/j.bbamcr.2023.119639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Redox realignment is integral to the initiation, progression, and metastasis of cancer. This requires considerable metabolic rewiring to induce aberrant shifts in redox homeostasis that favor high hydrogen peroxide (H2O2) generation for the induction of a hyper-proliferative state. The ability of tumor cells to thrive under the oxidative burden imposed by this high H2O2 is achieved by increasing antioxidant defenses. This shift in the redox stress signaling threshold (RST) also dampens ferroptosis, an iron (Fe)-dependent form of cell death activated by oxidative distress and lipid peroxidation reactions. Mitochondria are central to the malignant transformation of normal cells to cancerous ones since these organelles supply building blocks for anabolism, govern ferroptosis, and serve as the major source of cell H2O2. This review summarizes advances in understanding the rewiring of redox reactions in mitochondria to promote carcinogenesis, focusing on how cancer cells hijack the electron transport chain (ETC) to promote proliferation and evasion of ferroptosis. I then apply emerging concepts in redox homeodynamics to discuss how the rewiring of the Krebs cycle and ETC promotes shifts in the RST to favor high rates of H2O2 generation for cell signaling. This discussion then focuses on proline dehydrogenase (PRODH) and dihydroorotate dehydrogenase (DHODH), two enzymes over expressed in cancers, and how their link to one another through the coenzyme Q10 (CoQ) pool generates a redox connection that forms a H2O2 signaling platform and pyrimidine synthesome that favors a hyper-proliferative state and disables ferroptosis.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
21
|
Luo X, Wang Y, Zhu X, Chen Y, Xu B, Bai X, Weng X, Xu J, Tao Y, Yang D, Du J, Lv Y, Zhang S, Hu S, Li J, Jia H. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction. Redox Biol 2024; 69:102987. [PMID: 38100883 PMCID: PMC10761782 DOI: 10.1016/j.redox.2023.102987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Micheliolide (MCL), which is the active metabolite of parthenolide, has demonstrated promising clinical application potential. However, the effects and underlying mechanisms of MCL on atherosclerosis are still unclear. METHOD ApoE-/- mice were fed with high fat diet, with or without MCL oral administration, then the plaque area, lipid deposition and collagen content were determined. In vitro, MCL was used to pretreat macrophages combined by ox-LDL, the levels of ferroptosis related proteins, NRF2 activation, mitochondrial function and oxidative stress were detected. RESULTS MCL administration significantly attenuated atherosclerotic plaque progress, which characteristics with decreased plaque area, less lipid deposition and increased collagen. Compared with HD group, the level of GPX4 and xCT in atherosclerotic root macrophages were increased in MCL group obviously. In vitro experiment demonstrated that MCL increased GPX4 and xCT level, improved mitochondrial function, attenuated oxidative stress and inhibited lipid peroxidation to suppress macrophage ferroptosis induced with ox-LDL. Moreover, MCL inhibited KEAP1/NRF2 complex formation and enhanced NRF2 nucleus translocation, while the protective effect of MCL on macrophage ferroptosis was abolished by NRF2 inhibition. Additionally, molecular docking suggests that MCL may bind to the Arg483 site of KEAP1, which also contributes to KEAP1/NRF2 binding. Furthermore, Transfection Arg483 (KEAP1-R483S) mutant plasmid can abrogate the anti-ferroptosis and anti-oxidative effects of MC in macrophages. KEAP1-R483S mutation also limited the protective effect of MCL on atherosclerosis progress and macrophage ferroptosis in ApoE-/- mice. CONCLUSION MCL suppressed atherosclerosis by inhibiting macrophage ferroptosis via activating NRF2 pathway, the related mechanism is through binding to the Arg483 site of KEAP1 competitively.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, 200127, PR China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Jinmei Xu
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Yangyang Tao
- Department of Ultrasound, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150001, PR China
| | - Jie Du
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Sining Hu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China.
| |
Collapse
|
22
|
Hecht F, Zocchi M, Alimohammadi F, Harris IS. Regulation of antioxidants in cancer. Mol Cell 2024; 84:23-33. [PMID: 38029751 PMCID: PMC10843710 DOI: 10.1016/j.molcel.2023.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
23
|
Wen LJ, Yin JG, Wang YX, Liu K, Zhao JX. csi-miR-96-5p delivered by Clonorchis sinensis extracellular vesicles promotes intrahepatic cholangiocarcinoma proliferation and migration via the ferroptosis-related PTEN/SLC7A11/GPX4 axis. Parasit Vectors 2023; 16:465. [PMID: 38124152 PMCID: PMC10734124 DOI: 10.1186/s13071-023-06075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Clonorchis sinensis (CS) is classified as a group 1 carcinogen and can cause intrahepatic cholangiocarcinoma (ICC). CS extracellular vesicles (CsEVs) play important roles in mediating communication between parasitic helminths and humans. Ferroptosis is a novel cell death mechanism that is mainly induced by lipid peroxidation and iron overload. However, the role of CsEVs in the regulation of ferroptosis in ICC remains unclear. This study aimed to explore the role of CS-secreted miR-96-5p (csi-miR-96-5p) delivered by CsEVs in ICC progression and ferroptosis. METHODS Tissue samples were collected from ICC patients with CS infection (CS-ICC) or without CS infection (NC-ICC). The levels of csi-miR-96-5p and PTEN gene were determined by quantitative polymerase chain reaction (qPCR) and western blotting, and survival analysis was performed. CsEVs were isolated and identified by ultracentrifugation and transmission electron microscopy. Lentiviruses were used to establish stable cell lines with csi-miR-96-5p mimic expression, PTEN overexpression (PTEN-EXO) and PTEN CRISPR/Cas9-based knockout (PTEN-KO) and their respective negative controls. Cell proliferation was assessed by performing Cell Counting Kit-8 assays in vitro and in a tumor xenograft model in vivo, and cell migration was assessed by performing Transwell assays. Erastin is used to induce ferroptosis. Ferroptosis levels were evaluated using biomarkers. RESULTS High csi-miR-96-5p and low PTEN expression was observed in CS-ICC tissues and was associated with poor overall survival. csi-miR-96-5p was highly enriched in CsEVs and was taken up by ICC cells. csi-miR-96-5p mimics or PTEN-KO significantly promoted the growth and migration of ICC cells in vitro and in vivo, whereas PTEN-EXO exerted the opposite effect. Mechanistically, csi-miR-96-5p mimics or PTEN-KO inhibited erastin-induced ferroptosis, including reducing the accumulation of Fe2+, lipid reactive oxygen species, and malondialdehyde, increasing the GSH/GSSG ratio and levels of SLC7A11 and GPX4, whereas PTEN-EXOs exerted the opposite effect. CONCLUSIONS csi-miR-96-5p delivered by CsEVs reduced ferroptosis by regulating the expression of the PTEN/SLC7A11/GPX4 axis, thereby promoting ICC proliferation and migration. For the first time to our knowledge, we found that CS miRNAs could promote tumor development through ferroptosis.
Collapse
Affiliation(s)
- Li-Jia Wen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ji-Gang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yong-Xin Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ji-Xue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
24
|
Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, Kang R, Tang D, He Q. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience 2023; 26:108393. [PMID: 38047088 PMCID: PMC10690572 DOI: 10.1016/j.isci.2023.108393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.
Collapse
Affiliation(s)
- Lanlan Tang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yichun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|