1
|
Reynaud M, Vianello S, Lee SH, Salis P, Wu K, Frederich B, Lecchini D, Besseau L, Roux N, Laudet V. The multi-level effect of chlorpyrifos during clownfish metamorphosis. Mol Cell Endocrinol 2025; 603:112535. [PMID: 40187546 DOI: 10.1016/j.mce.2025.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Chemical pollution in coastal waters, particularly from agricultural runoff organophosphates, poses a significant threat to marine ecosystems, including coral reefs. Pollutants such as chlorpyrifos (CPF) are widely used in agriculture and have adverse effects on marine life and humans. In this paper, we investigate the impact of CPF on the metamorphosis of a coral reef fish model, the clownfish Amphiprion ocellaris, focusing on the disruption of thyroid hormone (TH) signalling pathways. Our findings reveal that by reducing TH levels, CPF exposure impairs the formation of characteristic white bands in clownfish larvae, indicative of metamorphosis progression. Interestingly, TH treatment can rescue these effects, establishing a direct causal link between CPF effect and TH disruption. The body shape changes occurring during metamorphosis are also impacted by CPF exposure, shape changes are less advanced in CPF-treated larvae than in control conditions. Moreover, transcriptomic analysis elucidates CPF's effects on all components of the TH signalling pathway. Additionally, CPF induces systemic effects on cholesterol and vitamin D metabolism, DNA repair, and immunity, highlighting its broader TH-independent impacts. Pollutants are often overlooked in marine ecosystems, particularly in coral reefs. Developing and enhancing coral reef fish models, such as Amphiprion ocellaris (Cuvier, 1830), offers a more comprehensive understanding of how chemical pollution affects these ecosystems. This approach provides new insights into the complex mechanisms underlying CPF toxicity during fish metamorphosis, shedding light on the broader impact of environmental pollutants on marine organisms.
Collapse
Affiliation(s)
- Mathieu Reynaud
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
| | - Stefano Vianello
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Shu-Hua Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Pauline Salis
- Sorbonne Université, CNRS, Biologie Intégrative des Organisms Marins, BIOM, Observatoire Océanologique, Banyuls-sur-Mer, F-66650, France
| | - Kai Wu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Bruno Frederich
- Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Liège, Belgium
| | - David Lecchini
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", 66100, Perpignan, France
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organisms Marins, BIOM, Observatoire Océanologique, Banyuls-sur-Mer, F-66650, France
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan; CNRS IRL 2028 "Eco-Evo-Devo of Coral Reef Fish Life Cycle" (EARLY, France.
| |
Collapse
|
2
|
Herrera M, Vianello S, Mitchell L, Chamot Z, Lorin-Nebel C, Bonnelye E, Roux N, Besseau L, Gibert Y, Laudet V. From Genes to Pathways: A Curated Gene Approach to Accurate Pathway Reconstruction in Teleost Fish Transcriptomics. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025. [PMID: 40296566 DOI: 10.1002/jez.b.23299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 02/21/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Interpreting the vast amounts of data generated by high-throughput sequencing technologies can often present a significant challenge, particularly for non-model organisms. While automated approaches like GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses are widely used, they often lack specificity for non-model organisms. To bridge this gap, we present a manually curated gene list tailored for teleost fish transcriptomics. This resource focuses on key biological processes crucial for understanding teleost fish physiology, development, and adaptation, including hormone signaling, various metabolic pathways, appetite regulation, digestion, gastrointestinal function, vision, ossification, osmoregulation, and pigmentation. Developed through collaborative efforts of specialists in diverse fields, the list prioritizes genes with established roles in teleost physiology, experimental evidence, and conservation across species. This curated list aims to provide researchers with a reliable starting point for transcriptomic analyses, offering a carefully evaluated set of genes relevant to current research priorities. By streamlining the process of gene selection and interpretation, this resource supports the broader teleost fish research community in designing and analyzing studies that investigate molecular responses to developmental and environmental changes. We encourage the scientific community to collaboratively expand and refine this list, ensuring its continued relevance and utility for teleost fish research.
Collapse
Affiliation(s)
- Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Stefano Vianello
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan, Taipei, Taiwan
| | - Laurie Mitchell
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Zoé Chamot
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia
| | | | - Edith Bonnelye
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-UMR127- Canther-Cancer Heterogeneity, Plasticity, and Resistance to Therapies, Lille, France
| | - Natacha Roux
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Laurence Besseau
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Paris, France
| | - Yann Gibert
- Department of Cellular and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan, Taipei, Taiwan
- CNRS IRL 2028 "Eco-Evo-Devo of Coral Reef Fish Life Cycle" (EARLY), Tokyo, Japan
| |
Collapse
|
3
|
Downie AT, Champion C, Booth DJ. Physiological Traits for Predicting Poleward Extensions in Tropical Fishes: From Lab to Management. GLOBAL CHANGE BIOLOGY 2025; 31:e70213. [PMID: 40290058 PMCID: PMC12035794 DOI: 10.1111/gcb.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Tropicalization, the phenomena by which tropical organisms are extending their distributions poleward into temperate latitudes in response to increasing temperatures and strengthening boundary currents, is occurring globally. Vagrant tropical species have large ecological and economic ramifications for the temperate habitats they invade. However, not all vagrants are able to persist long term in temperate habitats, with the first winter being a potential bottleneck for their persistence. This brings into question how some tropical vagrant species are successful at surviving temperate conditions and the physiology underpinning this success. This provides the opportunity to not only look at the available data introspectively but also forward-thinking by applying a range of holistic physiological traits relevant for biology and management. Therefore, the aim of our review is twofold: to review the current state-of-knowledge of the physiological mechanisms underpinning tropicalization and to develop a physiological framework by which current practices can complement new perspectives and tools. We use range-expanding tropical reef fishes as a model group of over 100 species undergoing climate-driven range shifts and eastern Australia as a case-study location due to it being a primary focal "living laboratory" for understanding tropicalization dynamics since the early 2000s. Current studies suggest that diet, behavior, and metabolic trade-offs may explain vagrant fish persistence, but these studies focus on whole-animal traits. Our framework helps expand upon focal traits, life stages, experimental design, physiological traits (e.g., we highlight the value of genetic and cellular markers for metabolic pathway changes under cold stress as potential biomarkers) and species to improve our understanding of the mechanisms underpinning tropicalization. Taken together, our framework places emphasis on measuring a suite of complimentary physiological traits, from cellular to whole-animal, to help guide future predictions of the long-term persistence of tropical species in temperate habitats.
Collapse
Affiliation(s)
- Adam T. Downie
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Curtis Champion
- Fisheries Research, Department of Primary Industries and Regional DevelopmentNational Marine Science CenterCoffs HarborNew South WalesAustralia
| | - David J. Booth
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Roux N, Delannoy C, Yu SY, Miura S, Carlu L, Besseau L, Nakagawa T, Sato C, Kitajima K, Guerardel Y, Laudet V. Anemonefish use sialic acid metabolism as Trojan horse to avoid giant sea anemone stinging. BMC Biol 2025; 23:39. [PMID: 39953546 PMCID: PMC11829568 DOI: 10.1186/s12915-025-02144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Anemonefish association with sea anemones is a prime example of mutualistic symbiosis. These fish live inside the sea anemone, benefitting from the protection of its toxic nematocysts, and in return, protect the anemone from its own predators. How anemonefish manage to avoid their host toxic stings remains unclear. One hypothesis suggests that low levels of sialic acids in anemonefish mucus prevent nematocyst discharge. RESULTS This study verified four predictions: (i) anemonefish mucus has lower sialic acid levels than non-symbiotic damselfish; (ii) this reduction is specific to mucus; (iii) during development, sialic acid levels inversely correlate with protection; (iv) sea anemone mucus has minimal sialic acids. CONCLUSIONS We conclude that anemonefish regulates the level of sialic acids in their mucus to avoid nematocyst discharge. We also highlight several genes implicated in sialic acid removal that could explain the protection mechanisms in place. This mechanism, potentially used by Dascyllus trimaculatus juveniles, suggests a convergent strategy for mutualistic associations with sea anemones.
Collapse
Affiliation(s)
- Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Okinawa, 904-0495, Japan
| | - Clément Delannoy
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, 59000, France
| | - Shin-Yi Yu
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, 59000, France
| | - Saori Miura
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Lilian Carlu
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, 66650, France
- CNRS IRL 2028, Eco-Evo-Devo of Coral Reef Fish Life Cycle" (EARLY), Banyuls-Sur-Mer, France
| | - Takahiro Nakagawa
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 4648601, Japan
| | - Chihiro Sato
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 4648601, Japan
| | - Ken Kitajima
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 4648601, Japan
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, 59000, France.
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan.
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taipei, Taiwan.
| |
Collapse
|
5
|
Liao Y, Han T, Jiang D, Zhu C, Shi G, Li G, Shi H. Functions of thyroid hormone signaling in regulating melanophore, iridophore, erythrophore, and pigment pattern formation in spotted scat (Scatophagus argus). BMC Genomics 2025; 26:79. [PMID: 39871198 PMCID: PMC11773731 DOI: 10.1186/s12864-025-11286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Spotted scat, a marine aquaculture fish, has variable body color development stages during their ontogenesis. However, the regulatory mechanism of body color patterns formation was poorly understood. Thyroid hormones (TH) function as an important endocrine factor in regulating metamorphosis. In this study, exogenous thyroid hormones 3,5,3'-L-triiodothyronine (T3) and its inhibitor thiourea (TU) were used to treat spotted scat juveniles during the metamorphosis stage (from 60 to 90 dpf). The function and molecular mechanism of thyroid hormone signaling in regulating body color patterns formation was revealed, using the micro-observation of pigments cells distribution, colorimetric evaluation and carotenoids concentration measurement by spectrophotometry, and comparative transcriptome analysis. RESULTS Spotted scat body color patterns consisted of whole body black color, black bar, black and red spots, and its final pattern was formed through the metamorphosis. When spotted scat were treated with the inhibitor TU to disrupt thyroid hormone signaling, the levels of T3 and T4 were significantly decreased, the melanophores numbers were significantly increased, as well as the expression of genes involved in melanin synthesis and melanophore differentiation (tyr, tyrp1, dct, mitf, pmel, oca2, slc24a5, and erbb3) was significantly increased. Besides, the expression of genes associated with carotenoids and pteridine metabolism (apod, pnpla2, rdh12, stard10, xdh, abca1, retsat, scarb1, rgs2, and gch1) and carotenoids accumulation were stimulated, when thyroid hormone signaling was disrupted by TU. On the contrary, the levels of T3 and T4 were significantly elevated in spotted scat treated with T3, which could weaken the skin redness and reduce the number of black spots and melanophores, as well as the number and diameter of larval erythrophores. Notably, unlike melanophores and erythrophores, the differentiation of iridophore was promoted by thyroid hormones, gene related to iridophore differentiation (fhl2-l, fhl2, ltk, id2a, alx4) and guanine metabolism (gmps, hprt1, ppat, impdh1b) were up-regulated after T3 treatment, but they were down-regulated after TU treatment. CONCLUSIONS Above results showed that thyroid hormone signaling might play critical roles in regulation pigments synthesis and deposition, thereby affecting pigment cells (melanophores, iridophores and erythrophores) formation and body color patterns. The mechanisms of hyperthyroid and hypothyroid on different pigment cells development were different. Excess thyroid hormone might impact the rearrangement of melanophore by regulating cell cycle, resulting in the abnormalities of black spots in spotted scat. Meanwhile, the excessed thyroid hormone could reduce the number and diameter of larval erythrophores, as well as weaken the skin redness of juvenile erythrophores, but they were enhanced by the disruption of thyroid hormone. However, the formation of iridophore differentiation and guanine synthesis genes expression were stimulated by thyroid hormones. These findings provide new insights for exploring the formation of body color patterns in fish, and help to elucidate the molecular mechanism of thyroid hormone in regulating pigment cell development and body coloration, and may also contribute to selective breeding of ornamental fish.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tong Han
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunhua Zhu
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
| | - Gang Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - GuangLi Li
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongjuan Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
6
|
Borisov V, Shkil F. Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development. Anat Rec (Hoboken) 2024. [PMID: 39431292 DOI: 10.1002/ar.25592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.
Collapse
Affiliation(s)
- Vasily Borisov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Fedor Shkil
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
7
|
Tzika AC, Ullate-Agote A, Helleboid PY, Kummrow M. PMEL is involved in snake colour pattern transition from blotches to stripes. Nat Commun 2024; 15:7655. [PMID: 39227572 PMCID: PMC11371805 DOI: 10.1038/s41467-024-51927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Corn snakes are emerging models for animal colouration studies. Here, we focus on the Terrazzo morph, whose skin pattern is characterized by stripes rather than blotches. Using genome mapping, we discover a disruptive mutation in the coding region of the Premelanosome protein (PMEL) gene. Our transcriptomic analyses reveal that PMEL expression is significantly downregulated in Terrazzo embryonic tissues. We produce corn snake PMEL knockouts, which present a comparable colouration phenotype to Terrazzo and the subcellular structure of their melanosomes and xanthosomes is also similarly impacted. Our single-cell expression analyses of wild-type embryonic dorsal skin demonstrate that all chromatophore progenitors express PMEL at varying levels. Finally, we show that in wild-type embryos PMEL-expressing cells are initially uniformly spread before forming aggregates and eventually blotches, as seen in the adults. In Terrazzo embryos, the aggregates fail to form. Our results provide insights into the mechanisms governing colouration patterning in reptiles.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Huerlimann R, Roux N, Maeda K, Pilieva P, Miura S, Chen HC, Izumiyama M, Laudet V, Ravasi T. The transcriptional landscape underlying larval development and metamorphosis in the Malabar grouper ( Epinephelus malabaricus). eLife 2024; 13:RP94573. [PMID: 39120998 PMCID: PMC11315451 DOI: 10.7554/elife.94573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.
Collapse
Affiliation(s)
- Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Polina Pilieva
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Saori Miura
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Hsiao-chian Chen
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaJiau ShiTaiwan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate UniversityOnna-sonJapan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleAustralia
| |
Collapse
|
9
|
Zwahlen J, Gairin E, Vianello S, Mercader M, Roux N, Laudet V. The ecological function of thyroid hormones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220511. [PMID: 38310932 PMCID: PMC10838650 DOI: 10.1098/rstb.2022.0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Jann Zwahlen
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Stefano Vianello
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Lan 262, Taiwan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Lan 262, Taiwan
| |
Collapse
|
10
|
Seebacher F, Little AG. Thyroid hormone links environmental signals to DNA methylation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220506. [PMID: 38310936 PMCID: PMC10838643 DOI: 10.1098/rstb.2022.0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 02/06/2024] Open
Abstract
Environmental conditions experienced within and across generations can impact individual phenotypes via so-called 'epigenetic' processes. Here we suggest that endocrine signalling acts as a 'sensor' linking environmental inputs to epigenetic modifications. We focus on thyroid hormone signalling and DNA methylation, but other mechanisms are likely to act in a similar manner. DNA methylation is one of the most important epigenetic mechanisms, which alters gene expression patterns by methylating cytosine bases via DNA methyltransferase enzymes. Thyroid hormone is mechanistically linked to DNA methylation, at least partly by regulating the activity of DNA methyltransferase 3a, which is the principal enzyme that mediates epigenetic responses to environmental change. Thyroid signalling is sensitive to natural and anthropogenic environmental impacts (e.g. light, temperature, endocrine-disrupting pollution), and here we propose that thyroid hormone acts as an environmental sensor to mediate epigenetic modifications. The nexus between thyroid hormone signalling and DNA methylation can integrate multiple environmental signals to modify phenotypes, and coordinate phenotypic plasticity at different time scales, such as within and across generations. These dynamics can have wide-ranging effects on health and fitness of animals, because they influence the time course of phenotypic adjustments and potentially the range of environmental stimuli that can elicit epigenetic responses. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia
| | - Alexander G. Little
- Department of Biology, Life Sciences Building, McMaster University, Ontario, Canada L8S 4K1
| |
Collapse
|
11
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|