1
|
Alemán-Andrade P, Witter MP, Tsutsui KI, Ohara S. Dorsal-Caudal and Ventral Hippocampi Target Different Cell Populations in the Medial Frontal Cortex in Rodents. J Neurosci 2025; 45:e0217252025. [PMID: 40204437 PMCID: PMC12121713 DOI: 10.1523/jneurosci.0217-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025] Open
Abstract
Direct projections from the ventral hippocampus (vHPC) to the medial frontal cortex (MFC) play crucial roles in memory and emotional regulation. Using anterograde transsynaptic tracing and ex vivo electrophysiology in male mice, we document a previously unexplored pathway that parallels the established vHPC-MFC connectivity. This pathway connects the dorsal-caudal hippocampus (dcHPC) to specific subregions of the ventral MFC (vMFC), in particular the dorsal peduncular cortex. Notably, this pathway exerts a strong inhibitory influence on vMFC by targeting a substantial proportion of inhibitory neurons. Retrograde transsynaptic tracing in male rats indicated that vMFC subregions project disynaptically back to vHPC. These results, altogether, suggest the existence of a remarkable functional circuit connecting distinct functional areas: the cognition-related dcHPC with the emotion-related vMFC and vHPC. These findings further provide valuable insights in the cognitive and emotional abnormalities associated with the HPC-MFC connectivity in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Paola Alemán-Andrade
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8577, Japan
| | - Menno P Witter
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8577, Japan
- Kavli institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8577, Japan
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Wang J, Meng F, Xu C, Zhang Y, Liang K, Han C, Gao Y, Yu X, Li Z, Zeng X, Ni J, Tan H, Yang J, Ma Y. Simultaneous intracranial recordings of interacting brains reveal neurocognitive dynamics of human cooperation. Nat Neurosci 2025; 28:161-173. [PMID: 39672965 DOI: 10.1038/s41593-024-01824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Cooperative interactions profoundly shape individual and collective behaviors of social animals. Successful cooperation requires coordinated efforts by cooperators toward collective goals. However, the underlying behavioral dynamics and neuronal mechanisms within and between cooperating brains remain largely unknown. We recorded intracranial electrophysiological signals from human pairs engaged in a cooperation game. We show that teammate coordination and goal pursuit make distinct contributions to the behavioral cooperation dynamics. Increases and decreases in high-gamma activity in the temporoparietal junction (TPJ) and amygdala distinguish between establishing and maintaining cooperation and forecast transitions between these two states. High-gamma activity from distinct neuronal populations encodes teammate coordination and goal pursuit motives, with populations of TPJ neurons preferentially tracking dominant motives of different cooperation states. Across cooperating brains, high-gamma activity in the TPJ and amygdala synchronizes in a state-dependent manner that predicts how well cooperators coordinate. These findings provide fine-grained understandings of human cooperation dynamics as a state-dependent process with distinctive neurocognitive profiles of each state.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Fangang Meng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Kun Liang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zizhou Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xiaoyu Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Huixin Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
3
|
Imtiaz Z, Kato A, Kopell BH, Qasim SE, Davis AN, Martinez LN, Heflin M, Kulkarni K, Morsi A, Gu X, Saez I. Human Substantia Nigra Neurons Encode Reward Expectations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593406. [PMID: 38766086 PMCID: PMC11100806 DOI: 10.1101/2024.05.10.593406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dopamine (DA) signals originating from substantia nigra (SN) neurons are centrally involved in the regulation of motor and reward processing. DA signals behaviorally relevant events where reward outcomes differ from expectations (reward prediction errors, RPEs). RPEs play a crucial role in learning optimal courses of action and in determining response vigor when an agent expects rewards. Nevertheless, how reward expectations, crucial for RPE calculations, are conveyed to and represented in the dopaminergic system is not fully understood, especially in the human brain where the activity of DA neurons is difficult to study. One possibility, suggested by evidence from animal models, is that DA neurons explicitly encode reward expectations. Alternatively, they may receive RPE information directly from upstream brain regions. To address whether SN neuron activity directly reflects reward expectation information, we directly examined the encoding of reward expectation signals in human putative DA neurons by performing single-unit recordings from the SN of patients undergoing neurosurgery. Patients played a two-armed bandit decision-making task in which they attempted to maximize reward. We show that neuronal firing rates (FR) of putative DA neurons during the reward expectation period explicitly encode reward expectations. First, activity in these neurons was modulated by previous trial outcomes, such that FR were greater after positive outcomes than after neutral or negative outcome trials. Second, this increase in FR was associated with shorter reaction times, consistent with an invigorating effect of DA neuron activity during expectation. These results suggest that human DA neurons explicitly encode reward expectations, providing a neurophysiological substrate for a signal critical for reward learning.
Collapse
Affiliation(s)
- Zarghona Imtiaz
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ayaka Kato
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H. Kopell
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Salman E. Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arianna Neal Davis
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lizbeth Nunez Martinez
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt Heflin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaustubh Kulkarni
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amr Morsi
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaosi Gu
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Saez
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|