1
|
Huang M, Chen H, Wei J, Pi C, Duan M, Pu X, Niu Z, Xu S, Tu S, Liu S, Li J, Zhang L, Liu Y, Chen H, Xu C, Xie J. FGF8 promotes lipid droplet accumulation via the FGFR1/p-p38 axis in chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40370197 DOI: 10.3724/abbs.2025075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Chondrocytes store lipids in the form of lipid droplets (LDs) and maintain cartilage lipid metabolic homeostasis by consuming or regenerating LDs. This modulation is largely mediated by a series of biochemical factors. Fibroblast growth factor 8 (FGF8) is one of the most important factors involved in the proliferation, differentiation, and migration of chondrocytes and has attracted increasing attention in the physiology and pathology of cartilage. However, the effect of FGF8 on LD accumulation in chondrocytes remains unclear. This study aims to elucidate the role of FGF8 in LDs and explore the underlying biomechanism involved. The results reveal that FGF8 promotes LD accumulation in chondrocytes by upregulating perilipin1 (Plin1) expression. FGF8 activates the cytoplasmic p-p38 signaling pathway via fibroblast growth factor receptor 1 (FGFR1) to increase LD accumulation in chondrocytes. Subsequent experiments with siRNAs and specific inhibitors further confirm the importance of the FGFR1/p38 axis for LD accumulation in chondrocytes exposed to FGF8. The results increase our understanding of the role of FGF8 in the lipid metabolic homeostasis of chondrocytes and provide insights into the physiology and pathology of cartilage.
Collapse
Affiliation(s)
- Minglei Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shasha Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sijun Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunming Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Ruan T, Ling Y, Wu C, Niu Y, Liu G, Xu C, Lv Z, Yuan Y, Zhou X, Wang Q, Xu S. Abnormal epigenetic modification of lysosome and lipid regulating genes in Alzheimer's disease. J Alzheimers Dis 2025; 104:1185-1200. [PMID: 40151896 DOI: 10.1177/13872877251322955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundAbnormal lipid metabolism has been identified as a potential pathogenic mechanism of Alzheimer's disease (AD), which might be epigenetically regulated. Lysosomes are critical organelles for lipid metabolism. However, the epigenetic modifications of lysosome and lipid regulating genes remain unclear in AD patients.ObjectiveExplore the role of abnormal epigenetic modifications, especially methylation of lysosome and lipid metabolism-related genes in AD.MethodsMethylation beadchip and MALDI-TOF mass spectrometry were used to detect genome-wide DNA methylation levels and validate key gene methylation, respectively. Clinical data were collected from all participants. Associations between clinical biochemical characteristics and altered DNA methylation in AD patients were analyzed, and a risk factor model of AD was established.Results41 differentially methylated positions (DMPs) corresponding to 33 genes were identified in AD patients, with 18 hypermethylated and 23 hypomethylated positions. Significant alterations were observed in lipid regulating genes (CTNNB1, DGKQ, SLC27A1) and lysosomal transmembrane gene (TMEM175). Clinical analysis revealed that TP, ALB, IB, ADA, ALP, HCY, GLU, TC, BUN, HDL-C, LDL-C, and APOA1 levels were significantly higher in AD patients, whereas A/G and DB levels were lower. TMEM175 hypermethylation was further verified and found to correlate with TC, HDL-C, LDL-C, APOA1, IB, and HCY. The AUC of the AD risk model, which integrated clinical lipid markers and TMEM175 methylation, reached 0.9519 (p < 0.0001).ConclusionsAbnormal epigenetic regulation of lysosomal gene and lipid dyshomeostasis were high-risk factors in AD. Methylation modifications of lysosome and lipid regulating genes might be key processes in AD pathogenesis.
Collapse
Affiliation(s)
- Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yunxiang Ling
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Jinhua Maternal and Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Yanfang Niu
- Department of Neurology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guili Liu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinkai Zhou
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qinwen Wang
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Neurology, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Liu J, Aye Y. Tools to Dissect Lipid Droplet Regulation, Players, and Mechanisms. ACS Chem Biol 2025; 20:539-552. [PMID: 40035358 PMCID: PMC11934092 DOI: 10.1021/acschembio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Spurred by the authors' own recent discovery of reactive metabolite-regulated nexuses involving lipid droplets (LDs), this perspective discusses the latest knowledge and multifaceted approaches toward deconstructing the function of these dynamic organelles, LD-associated localized signaling networks, and protein players. Despite accumulating knowledge surrounding protein families and pathways of conserved importance for LD homeostasis surveillance and maintenance across taxa, much remains to be understood at the molecular level. In particular, metabolic stress-triggered contextual changes in LD-proteins' localized functions, crosstalk with other organelles, and feedback signaling loops and how these are specifically rewired in disease states remain to be illuminated with spatiotemporal precision. We hope this perspective promotes an increased interest in these essential organelles and innovations of new tools and strategies to better understand context-specific LD regulation critical for organismal health.
Collapse
Affiliation(s)
- Jinmin Liu
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| | - Yimon Aye
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
4
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
Peng W, Chen S, Ma J, Wei W, Lin N, Xing J, Guo W, Li H, Zhang L, Chan K, Yen A, Zhu G, Yue J. Endosomal trafficking participates in lipid droplet catabolism to maintain lipid homeostasis. Nat Commun 2025; 16:1917. [PMID: 39994216 PMCID: PMC11850777 DOI: 10.1038/s41467-025-57038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
The interplay between lipid droplets (LDs) and endosomes remains unknown. Here, we screen and synthesize AP1-coumarin, an LD-specific probe, by conjugating a fluorescent dye coumarin to a triazine compound AP1. AP1-coumarin labels all stages of LDs in live cells and markedly induces the accumulation of enlarged RAB5-RAB7 double-positive intermediate endosomes. The AP1-coumarin-labeled LDs contact these intermediate endosomes, with some LDs even being engulfed in them. When LD biogenesis is inhibited, the ability of AP1-coumarin to label LDs is markedly reduced, and the accumulation of enlarged intermediate endosomes is abolished. Moreover, blocking the biogenesis of LDs decreases the number of late endosomes while increasing the number of early endosomes and inhibits the endosomal trafficking of low-density lipoprotein (LDL) and transferrin. Correspondingly, interference with RAB5 or RAB7, either through knockdown or using dominant-negative mutants, inhibits LD catabolism, whereas the expression of a RAB7 constitutively active mutant accelerates LD catabolism. Additionally, CCZ1 knockdown not only induces the accumulation of intermediate endosomes but also inhibits LD catabolism. These results collectively suggest that LDs and endosomes interact and influence each other's functions, and endosomal trafficking participates in the catabolic process of LDs to maintain lipid homeostasis.
Collapse
Affiliation(s)
- Wang Peng
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, China
| | - Shu Chen
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jingyu Ma
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, China
| | - Wenjie Wei
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Naixin Lin
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinchao Xing
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Wenjing Guo
- Analysis and Testing Center, Guangzhou Institute of Biomedicine and Health (GIBH) Chinese Academy of Sciences, Guangzhou, China
| | - Heying Li
- Analysis and Testing Center, Guangzhou Institute of Biomedicine and Health (GIBH) Chinese Academy of Sciences, Guangzhou, China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kuiming Chan
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Guangyu Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, China.
- College of Life Sciences, Wuhan University, Wuhan, China.
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
6
|
Cai YT, Liu YC, Gu YY, Zhu YQ, Liu YH, Chen J, Yang Y, Liu MX. Red fluorescent AIE bioprobes with a large Stokes shift for droplet-specific imaging and fatty liver diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125325. [PMID: 39490184 DOI: 10.1016/j.saa.2024.125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Lipid droplets (LDs) as spherical dynamic subcellular organelles, play an important role in various cellular functions such as protein degradation, lipid metabolism, energy storage, signal transduction, and membrane formation. Abnormal function of LDs will lead to a series of diseases and hence monitoring the status of LDs is particularly important. In this study, we synthesized a water-insoluble red fluorescent emitting small molecule fluorescent probe (TPE-TCF), which exhibited aggregation-induced emission (AIE) properties and enabled highly selective real-time imaging of LDs (Pearson's R value was 0.90). More interestingly, this probe was able to track the dynamic processes of LDs in living cells, including lipophagy, and monitor fatty liver disease in mice. Therefore, TPE-TCF with red fluorescence emission, good biocompatibility, large Stokes shift, AIE properties, LDs imaging, and fatty liver recognition capabilities can be practically used in more LDs-related diseases.
Collapse
Affiliation(s)
- Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ya-Qi Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yong-Hong Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China.
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
7
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2025; 25:92-107. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
8
|
Kumar R, Arrowood C, Schott MB, Nazarko TY. Microlipophagy from Simple to Complex Eukaryotes. Cells 2025; 14:141. [PMID: 39851569 PMCID: PMC11764314 DOI: 10.3390/cells14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes and disease pathogenesis. While fungal, plant, and algal cells use microlipophagy, the most prominent form of lipophagy in animal cells is macrolipophagy. However, recent studies showed that animal cells can also use microlipophagy to metabolize their lipid droplets. Therefore, to no surprise, microlipophagy is conserved from simple unicellular to the most complex multicellular eukaryotes, and many eukaryotic cells can operate both forms of lipophagy. Macrolipophagy is the most studied and better understood at the molecular level, while our understanding of microlipophagy is very sparse. This review will discuss microlipophagy from the perspective of its conservation in eukaryotes and its importance in diseases. To better appreciate the conserved nature of microlipophagy, different organisms and types of cells in which microlipophagy has been reported are also shown in a tabular form. We also point toward the gaps in our understanding of microlipophagy, including the signaling behind microlipophagy, especially in the cells of complex multicellular organisms.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Colin Arrowood
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
9
|
Sharma R, Wu K, Han K, Russo AC, Dagur PK, Combs CA, Yao X, Levine SJ, Sack MN. BLOC1S1 Control of Vacuolar Organelle Fidelity Modulates Murine T H2 Cell Immunity and Allergy Susceptibility. Allergy 2024. [PMID: 39737471 DOI: 10.1111/all.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4+ T cells may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity. METHODS CD4+ T cells were analyzed from control and CD4+ T-cell-specific BLOC1S1 knockout mice. Polarization profiles were assayed using biochemical and molecular signatures, and signaling pathways were disrupted pharmacologically or via siRNA. Mouse models of airway and skin inflammation were generated by Ovalbumin and MC903 exposure, respectively. RESULTS TH2 regulator GATA3 and phosphorylated STAT6 were preferentially induced in BLOC1S1-depleted primary CD4+ T (TKO) cells. The levels of IL-4, IL-5, and IL-13 were markedly induced in the absence of BLOC1S1. At the organelle level, mitochondrial DNA leakage evoked cGAS-STING and NF-κB pathway activation with subsequent TH2 polarization. The induction of autophagy with rapamycin reduced cytosolic mtDNA and reversed these TH2 signatures. Furthermore, genetic knockdown of STING and NF-κB inhibition ameliorated this immune regulatory cascade in TKO cells. Finally, at a functional level, TKO mice displayed an increased susceptibility to allergic conditions, including dermatitis and allergic asthma. CONCLUSIONS BLOC1S1 depletion in mouse CD4+ T cells mediated disruption of mitochondrial integrity to initiate a predominant TH2-responsive phenotype via STING-NF-κB-driven signaling of the canonical TH2 regulatory program.
Collapse
Affiliation(s)
- Rahul Sharma
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kaiyuan Wu
- Cardiovascular Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
| | - Anna Chiara Russo
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
| | | | | | - Xianglan Yao
- Critical Care Medicine and Pulmonary Branch, Bethesda, Maryland, USA
| | - Stewart J Levine
- Critical Care Medicine and Pulmonary Branch, Bethesda, Maryland, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA
- Cardiovascular Branch, NHLBI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Chen S, Zhang W, Tang C, Rong X, Liu Y, Luo Y, Xu L, Xu Z, Wang J, Wang Y, Du Q, Liu B, Zhang Y, Liu J, Guo D. Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic treatment of atherosclerosis by mitigating inflammatory storms and promoting cholesterol efflux. J Nanobiotechnology 2024; 22:664. [PMID: 39465387 PMCID: PMC11514794 DOI: 10.1186/s12951-024-02939-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Atherosclerosis (AS) poses a significant threat to human life and health. However, conventional antiatherogenic medications exhibit insufficient targeting precision and restricted therapeutic effectiveness. Moreover, during the progression of AS, macrophages undergo polarization toward the proinflammatory M1 phenotype and generate reactive oxygen species (ROS) to accelerate the occurrence of inflammatory storms, and ingest excess lipids to form foam cells by inhibiting cholesterol efflux. In our study, we developed a macrophage membrane-functionalized hollow mesoporous manganese dioxide nanomedicine (Col@HMnO2-MM). This nanomedicine has the ability to evade immune cell phagocytosis, enables prolonged circulation within the body, targets the inflammatory site of AS for effective drug release, and alleviates the inflammatory storm at the AS site by eliminating ROS. Furthermore, Col@HMnO2-MM has the ability to generate oxygen autonomously by breaking down surplus hydrogen peroxide generated at the inflammatory AS site, thereby reducing the hypoxic microenvironment of the plaque by downregulating hypoxia-inducible factor (HIF-1α), which in turn enhances cholesterol efflux to inhibit foam cell formation. In an APOE-/- mouse model, Col@HMnO2-MM significantly reduced inflammatory factor levels, lipid storage, and plaque formation without significant long-term toxicity. In summary, this synergistic treatment significantly improved the effectiveness of nanomedicine and may offer a novel strategy for precise AS therapy.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chun Tang
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiyue Rong
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yun Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Luo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lian Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhongsheng Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Junrui Wang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yi Wang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qianying Du
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yu Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jia Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
11
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Jia H, Han D, Yan X, Zhang L, Liang J, Lu W. Genome-Wide Association and RNA-Seq Analyses Reveal a Potential Candidate Gene Related to Oil Content in Soybean Seeds. Int J Mol Sci 2024; 25:8134. [PMID: 39125702 PMCID: PMC11311756 DOI: 10.3390/ijms25158134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Soybean is a crucial crop globally, serving as a significant source of unsaturated fatty acids and protein in the human diet. However, further enhancements are required for the related genes that regulate soybean oil synthesis. In this study, 155 soybean germplasms were cultivated under three different environmental conditions, followed by phenotypic identification and genome-wide association analysis using simplified sequencing data. Genome-wide association analysis was performed using SLAF-seq data. A total of 36 QTLs were significantly associated with oil content (-log10(p) > 3). Out of the 36 QTLs associated with oil content, 27 exhibited genetic overlap with previously reported QTLs related to oil traits. Further transcriptome sequencing was performed on extreme high-low oil soybean varieties. Combined with transcriptome expression data, 22 candidate genes were identified (|log2FC| ≥ 3). Further haplotype analysis of the potential candidate genes showed that three potential candidate genes had excellent haplotypes, including Glyma.03G186200, Glyma.09G099500, and Glyma.18G248900. The identified loci harboring beneficial alleles and candidate genes likely contribute significantly to the molecular network's underlying marker-assisted selection (MAS) and oil content.
Collapse
Affiliation(s)
| | | | | | | | | | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China; (H.J.); (D.H.); (X.Y.); (L.Z.); (J.L.)
| |
Collapse
|
13
|
Lv F, Fang H, Huang L, Wang Q, Cao S, Zhao W, Zhou Z, Zhou W, Wang X. Curcumin Equipped Nanozyme-Like Metal-Organic Framework Platform for the Targeted Atherosclerosis Treatment with Lipid Regulation and Enhanced Magnetic Resonance Imaging Capability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309062. [PMID: 38696653 PMCID: PMC11234396 DOI: 10.1002/advs.202309062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/21/2024] [Indexed: 05/04/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) has become the leading cause of death worldwide, and early diagnosis and treatment of atherosclerosis (AS) are crucial for reducing the occurrence of acute cardiovascular events. However, early diagnosis of AS is challenging, and oral anti-AS drugs suffer from limitations like imprecise targeting and low bioavailability. To overcome the aforementioned shortcomings, Cur/MOF@DS is developed, a nanoplatform integrating diagnosis and treatment by loading curcumin (Cur) into metal-organic frameworks with nanozymes and magnetic resonance imaging (MRI) properties. In addition, the surface-modification of dextran sulfate (DS) enables PCN-222(Mn) effectively target scavenger receptor class A in macrophages or foam cells within the plaque region. This nanoplatform employs mechanisms that effectively scavenge excessive reactive oxygen species in the plaque microenvironment, promote macrophage autophagy and regulate macrophage polarization to realize lipid regulation. In vivo and in vitro experiments confirm that this nanoplatform has outstanding MRI performance and anti-AS effects, which may provide a new option for early diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Fanzhen Lv
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Huaqiang Fang
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Li Huang
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Qingqing Wang
- School of PharmacyNanchang UniversityNanchangJiangxi330006China
| | - Shuangyuan Cao
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangJiangxi330006China
| | - Wenpeng Zhao
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Zhibin Zhou
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Weimin Zhou
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Xiaolei Wang
- School of PharmacyNanchang UniversityNanchangJiangxi330006China
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangJiangxi330006China
| |
Collapse
|
14
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
15
|
Sharma R, Wu K, Han K, Russo AC, Dagur PK, Combs CA, Sack MN. BLOC1S1 control of vacuolar organelle fidelity modulates T H2 cell immunity and allergy susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586144. [PMID: 39803487 PMCID: PMC11722528 DOI: 10.1101/2024.03.21.586144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4+ T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity. Transcript levels of the canonical transcription factors driving CD4+T cell polarization in response to activation showed that, the TH2 regulator GATA3 and phosphorylated STAT6 were preferentially induced in BLOC1S1 depleted primary CD4+ T (TKO) cells. In parallel, in response to both T cell receptor activation and in response to TH2 polarization the levels of IL-4, IL-5 and IL-13 were markedly induced in the absence of BLOC1S1. At the organelle level, mitochondrial DNA leakage evoked cGAS-STING and NF-kB pathway activation with subsequent TH2 polarization. The induction of autophagy with rapamycin reduced cytosolic mtDNA and reverses these TH2 signatures. Furthermore, genetic knockdown of STING and STING and NF-κB inhibition ameliorated this immune regulatory cascade in TKO cells. Finally, at a functional level, TKO mice displayed increased susceptible to allergic conditions including atopic dermatitis and allergic asthma. In conclusion, BLOC1S1 depletion mediated disruption of mitochondrial integrity to initiate a predominant TH2 responsive phenotype via STING-NF-κB driven signaling of the canonical TH2 regulatory program.
Collapse
Affiliation(s)
- Rahul Sharma
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| | - Kaiyuan Wu
- Cardiovascular Branch, NHLBI, NIH, Maryland, USA
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| | - Anna Chiara Russo
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| | | | | | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Maryland, USA
| |
Collapse
|
16
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Diep DTV, Bohnert M. The Vacuole Lipid Droplet Contact Site vCLIP. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241308722. [PMID: 39717764 PMCID: PMC11664512 DOI: 10.1177/25152564241308722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2023] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
Lipid droplets frequently form contact sites with the membrane of the vacuole, the lysosome-like organelle in yeast. These vacuole lipid droplet (vCLIP) contact sites respond strongly to metabolic cues: while only a subset of lipid droplets is bound to the vacuole when nutrients are abundant, other metabolic states induce stronger contact site formation. Physical lipid droplet-vacuole binding is related to the process of lipophagy, a lipid droplet-specific form of microautophagy. The molecular basis for the formation and function of vCLIP contact sites remained enigmatic for a long time. This knowledge gap was filled when it was found that vCLIP is formed by the structurally related lipid droplet tether proteins Ldo16 and Ldo45, and the vacuolar surface protein Vac8. Ldo45 additionally recruits the phosphatidylinositol transfer protein Pdr16 to vCLIP. Here, we review the literature on the lipid droplet-vacuole contact site in light of the progress in our understanding of its molecular basis and discuss future directions for the field.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| |
Collapse
|