1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Srinivasan S, Limani F, Hanzlova M, La Batide-Alanore S, Klotz S, Hnasko TS, Steinkellner T. Evidence for low affinity of GABA at the vesicular monoamine transporter VMAT2 - Implications for transmitter co-release from dopamine neurons. Neuropharmacology 2025; 270:110367. [PMID: 39961377 DOI: 10.1016/j.neuropharm.2025.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Midbrain dopamine (DA) neurons comprise a heterogeneous population of cells. For instance, some DA neurons express the vesicular glutamate transporter VGLUT2 allowing these cells to co-release DA and glutamate. Additionally, GABA may be co-released from DA neurons. However, most cells do not express the canonical machinery to synthesize GABA or the vesicular GABA transporter VGAT. Instead, GABA seems to be taken up into DA neurons by a plasmalemmal GABA transporter (GAT1) and stored in synaptic vesicles via the vesicular monoamine transporter VMAT2. Yet, it remains unclear whether GABA indeed interacts with VMAT2. Here, we used radiotracer flux measurements in VMAT2 expressing HEK-293 cells and synaptic vesicles from male and female mice to determine whether GABA qualifies as substrate at VMAT2. We found that GABA reduced uptake of VMAT2 substrates in mouse synaptic vesicle preparations from striatum and cerebellum at millimolar concentrations but had no effect in VMAT2-expressing HEK-293 cells. Interestingly, while the closely related amino acid glycine did not affect substrate uptake at VMAT2 in mouse synaptic vesicles, the amino sulfonic acid taurine reduced uptake similar to GABA. Lastly, we discovered that the majority of mouse and human midbrain DA neurons in the substantia nigra of either sex expressed VMAT2 and GAT1 suggesting that most of them could be capable of co-releasing DA and GABA. Together, our findings suggest that GABA is a low-affinity substrate at VMAT2 with potential implications for basal ganglia physiology and disease.
Collapse
Affiliation(s)
- Sivakumar Srinivasan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Fabian Limani
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michaela Hanzlova
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Ségolène La Batide-Alanore
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Veterans Affairs, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Afridi R, Bhusal A, Lee SE, Hwang EM, Ryu H, Kim JH, Suk K. A microglial kinase ITK mediating neuroinflammation and behavioral deficits in traumatic brain injury. Mol Cell Neurosci 2025; 132:103994. [PMID: 39864680 DOI: 10.1016/j.mcn.2025.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Microglia-mediated neuroinflammation has been implicated in the neuropathology of traumatic brain injuries (TBI). Recently, the expression of interleukin-2-inducible T-cell kinase (ITK) has been detected in brain microglia, regulating their inflammatory activities. However, the role of microglial ITK in TBI has not been investigated. In this study, we demonstrate that ITK expression and activation are upregulated in microglia following an injury caused by controlled cortical impact (CCI) - a mouse model of TBI. Pharmacological inhibition of ITK protein or knockdown of microglial ITK gene expression using adeno-associated virus mitigates neuroinflammation and improves neurological outcomes in the CCI model. Additionally, ITK mRNA expression was found to be increased in the brains of patients with chronic traumatic encephalopathy. An ITK inhibitor reduced the activation of inflammatory responses in both human and mouse microglia in vitro. Collectively, these results suggest that microglial ITK plays a pivotal role in neuroinflammation and mediating behavioral deficits following TBI. Thus, targeting the signaling pathway of microglial ITK may exert protective effects by alleviating neuroinflammation associated with TBI.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
5
|
Wu L, Wang J, Ye H, Yao Y, Hu M, Cheng J, Kong L, Liu W, Ge F. Impacts of hexafluoropropylene oxide tetrameric acid (HFPO-TeA) on neurodevelopment and GABAergic signaling in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117424. [PMID: 39616666 DOI: 10.1016/j.ecoenv.2024.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025]
Abstract
Hexafluoropropylene oxide oligomer acids (HFPOs), an emerging environmental pollutant, are increasingly utilized in the manufacture of fluorinated synthetic materials as a substitute for traditional perfluorooctanoic acid (PFOA), resulting in a corresponding rise in detection rates in aquatic environments, which may present inherent safety hazards to ecosystems and public health. However, few data are available on the issue of their toxicity and mechanism. This study aimed to investigate the potential toxic effects of hexafluoroepoxypropane tetrameric acid (HFPO-TeA), a typical HFPO, on the early developmental stages of zebrafish larvae. It revealed that HFPO-TeA exposure resulted in significant detrimental effects, including adverse impacts on general morphological characteristics, such as eye area, heart rate, and swimming bladder, in zebrafish embryos and larvae. Targeted metabolomics and transcriptomics inquiries clarified that HFPO-TeA exposure reduced the levels of the neurotransmitter gamma-aminobutyric acid (GABA) and downregulated the expression of genes related to the GABA pathway. Simultaneously, transgenic zebrafish exhibited that exposure to HFPO-TeA impedes the growth of GABAergic neurons. Moreover, the molecular docking analysis indicated that GABAA receptors might be the potential targets of HFPO-TeA. Taken together, the current data highlights that the HFPO-TeA might not be safe alternatives to PFOA. This study presented a model for HFPO-TeA-induced neurotoxicity in developing zebrafish that can aid in ecological risk assessments.
Collapse
Affiliation(s)
- Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyang Yao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miaoyang Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cheng
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingcan Kong
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China.
| |
Collapse
|
6
|
Di Palma M, Koh W, Lee CJ, Conti F. A quantitative analysis of bestrophin 1 cellular localization in mouse cerebral cortex. Acta Physiol (Oxf) 2025; 241:e14245. [PMID: 39466647 DOI: 10.1111/apha.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
AIM Calcium-activated ligand-gated chloride channels, beyond their role in maintaining anion homeostasis, modulate neuronal excitability by facilitating nonvesicular neurotransmitter release. BEST1, a key member of this family, is permeable to γ-aminobutyric acid (GABA) and glutamate. While astrocytic BEST1 is well-studied and known to regulate neurotransmitter levels, its distribution and role in other brain cell types remain unclear. This study aimed to reassess the localization of BEST1 in the mouse cerebral cortex. METHODS We examined the localization and distribution of BEST1 in the mouse parietal cortex using light microscopy, confocal double-labeling with markers for astrocytes, neurons, microglia, and oligodendrocyte precursor cells, and 3D reconstruction techniques. RESULTS In the cerebral cortex, BEST1 is more broadly distributed than previously thought. Neurons are the second most abundant BEST1+ cell type in the cerebral cortex, following astrocytes. BEST1 is diffusely expressed in neuronal somatic and neuropilar domains and is present at glutamatergic and GABAergic terminals, with a prevalence at GABAergic terminals. We also confirmed that BEST1 is expressed in cortical microglia and identified it in oligodendrocyte precursor cells, albeit to a lesser extent. CONCLUSIONS Together, these findings suggest that BEST1's role in controlling neurotransmission may extend beyond astrocytes to include other brain cells. Understanding BEST1's function in these cells could offer new insights into the molecular mechanisms shaping cortical circuitry. Further research is needed to clarify the diverse roles of BEST1 in both normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Michael Di Palma
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
7
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
8
|
Meng Z, Sun S, Pu X, Wang J, Liao X, Huang Z, Deng Y, Yin G. Ratiometric fluorescence detection of dopamine based on copper nanoclusters and carbon dots. NANOTECHNOLOGY 2024; 35:235502. [PMID: 38417161 DOI: 10.1088/1361-6528/ad2e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Nanoclusters for fluorescence detection are generally comprised of rare and expensive noble metals, and the nanoclusters based on more affordable transition metal have attracted increasing attention. This study designed a ratiometric fluorescent probe to detect dopamine (DA), an important neurotransmitter. With carbon dots encapsulated within silica (CDs@SiO2) as the reference, the emitted reference signal was almost unchanged due to the protection of inert silicon shell. Meanwhile, copper nanoclusters modified with 3-aminophenyl boronic acid (APBA-GSH-CuNCs) provided the sensing signal, in which the phenylboric acid could specifically recognize the cis-diol structure of DA, and caused the fluorescence quenching by photoinduced electron transfer. This dual emission ratiometric fluorescent probe exhibited high sensitivity and anti-interference, and was able to selectively responded to DA with a linear range of 0-1.4 mM, the detection limit of 5.6 nM, and the sensitivity of 815 mM-1. Furthermore, the probe successfully detected DA in human serum samples, yielding recoveries ranging from 92.5% to 102.7%. Overall, this study highlights the promising potential of this ratiometric probe for detecting DA.
Collapse
Affiliation(s)
- Zhihan Meng
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Juang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yi Deng
- College of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|