1
|
Shen Y, Wang L, Guo Z, Wang J, Zhang R, Tang C, Wu J. METTL14 promotes TBK1 mRNA stability through IGF2BP3-recognized m6A modification and enhances mitophagy in BMSCs. Cell Signal 2025; 133:111873. [PMID: 40381973 DOI: 10.1016/j.cellsig.2025.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/02/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Osteoporosis, particularly postmenopausal osteoporosis, represents a growing global health challenge characterized by impaired bone remodeling and increased fracture risk. The impairment of bone regeneration manifests in the field of oral and maxillofacial medicine as delayed alveolar bone healing after tooth extraction and poor osseointegration of dental implants, significantly compromising oral functional rehabilitation. This study investigates the role of METTL14 in osteogenic differentiation and its potential regulatory mechanisms in bone metabolism. We identified differential expression patterns of METTL14 in bone marrow-derived mesenchymal stem cells (BMSCs) between osteoporotic patients and healthy controls. Through loss-of-function experiments, we further demonstrated the critical role of METTL14 in promoting osteogenic differentiation, providing direct evidence for its functional importance in bone metabolism regulation. Transcriptome sequencing analysis revealed a significant association between METTL14 and mitophagy. JC-1 assay, Mitosox assay, mt-Keima assay, western blotting and immunofluorescence demonstrated METTL14's positive regulatory role in mitophagy, with TBK1 identified as the most significantly altered downstream target through qRT-PCR and rescue experiments. We further elucidated that IGF2BP3, an m6A reader, promotes osteogenesis and regulates TBK1 mRNA stability, as evidenced by Actinomycin D treatment and mitochondrial-lysosomal colocalization assays. In vivo experiments showed that METTL14 overexpression enhanced alveolar bone healing in ovariectomized osteoporotic mice. These findings provide novel evidence supporting METTL14 as a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yue Shen
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Long Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Zixiang Guo
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Jiaohong Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Runzi Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Chunbo Tang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China.
| | - Jin Wu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
2
|
Küng C, Lazarou M, Nguyen TN. Advances in mitophagy initiation mechanisms. Curr Opin Cell Biol 2025; 94:102493. [PMID: 40117675 DOI: 10.1016/j.ceb.2025.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Mitophagy is an important lysosomal degradative pathway that removes damaged or unwanted mitochondria to maintain cellular and organismal homeostasis. The mechanisms behind how mitophagy is initiated to form autophagosomes around mitochondria have gained a lot of interest since they can be potentially targeted by mitophagy-inducing therapeutics. Mitophagy initiation can be driven by various autophagy receptors or adaptors that respond to different cellular and mitochondrial stimuli, ranging from mitochondrial damage to metabolic rewiring. This review will cover recent advances in our understanding of how mitophagy is initiated, and by doing so reveal the mechanistic plasticity of how autophagosome formation can begin.
Collapse
Affiliation(s)
- Catharina Küng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| | - Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| |
Collapse
|
3
|
Zheng Z, Cao S, Liu Y, Luo J, Wang H, Lu X, Zhou J, Yuan S, Zuo D, Chen Q. Hepatocyte-expressed HERC2 enhances type I interferon-mediated anti-HBV immune response by promoting K33 ubiquitination of TBK1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf095. [PMID: 40381993 DOI: 10.1093/jimmun/vkaf095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health challenge, characterized by chronic liver inflammation and compromised antiviral immunity. The outcome of HBV infection and associated liver pathogenesis is influenced mainly by the host innate immune and inflammatory responses. Characterizing the mechanisms underlying these responses might provide new therapeutic strategies for HBV treatment. HECT domain and RCC1-like domain 2 (HERC2) belongs to the large HERC family of ubiquitin E3 ligases, which are implicated in tissue development and inflammation. We initially observed that hepatic tissues from chronic hepatitis B patients express lower levels of HERC2 compared with healthy donors. In this study, we identified HERC2 as a critical suppressor of HBV infection. Hepatocyte-specific HERC2-deficient mice exhibited increased susceptibility to HBV infection. Our findings demonstrate that HERC2 directly interacts with TBK1, a vital regulator of the innate immune response, mediating its K33 ubiquitination and activation. This HERC2-mediated activation of TBK1 triggers a signaling cascade that culminates in the activation of transcription factors IRF3 and IRF7, subsequently driving the production of type I interferons, crucial antiviral cytokines. The findings deepen our understanding of the molecular mechanisms underlying HBV pathogenesis and present potential avenues for developing targeted immunomodulatory therapies to combat HBV infection more effectively.
Collapse
Affiliation(s)
- Zhuojun Zheng
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Sihang Cao
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yunzhi Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialiang Luo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingyun Chen
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Borbolis F, Ploumi C, Palikaras K. Calcium-mediated regulation of mitophagy: implications in neurodegenerative diseases. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:4. [PMID: 39911695 PMCID: PMC11790495 DOI: 10.1038/s44324-025-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Calcium signaling plays a pivotal role in diverse cellular processes through precise spatiotemporal regulation and interaction with effector proteins across distinct subcellular compartments. Mitochondria, in particular, act as central hubs for calcium buffering, orchestrating energy production, redox balance and apoptotic signaling, among others. While controlled mitochondrial calcium uptake supports ATP synthesis and metabolic regulation, excessive accumulation can trigger oxidative stress, mitochondrial membrane permeabilization, and cell death. Emerging findings underscore the intricate interplay between calcium homeostasis and mitophagy, a selective type of autophagy for mitochondria elimination. Although the literature is still emerging, this review delves into the bidirectional relationship between calcium signaling and mitophagy pathways, providing compelling mechanistic insights. Furthermore, we discuss how disruptions in calcium homeostasis impair mitophagy, contributing to mitochondrial dysfunction and the pathogenesis of common neurodegenerative diseases.
Collapse
Affiliation(s)
- Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Ploumi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1. Int J Mol Sci 2025; 26:495. [PMID: 39859212 PMCID: PMC11764967 DOI: 10.3390/ijms26020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues.
Collapse
Affiliation(s)
- Tingting Wang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Augustin Penda Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| |
Collapse
|
6
|
Oh S, Mandell MA. Regulation of Mitochondria-Derived Immune Activation by 'Antiviral' TRIM Proteins. Viruses 2024; 16:1161. [PMID: 39066323 PMCID: PMC11281404 DOI: 10.3390/v16071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are key orchestrators of antiviral responses that serve as platforms for the assembly and activation of innate immune-signaling complexes. In response to viral infection, mitochondria can be triggered to release immune-stimulatory molecules that can boost interferon production. These same molecules can be released by damaged mitochondria to induce pathogenic, antiviral-like immune responses in the absence of infection. This review explores how members of the tripartite motif-containing (TRIM) protein family, which are recognized for their roles in antiviral defense, regulate mitochondria-based innate immune activation. In antiviral defense, TRIMs are essential components of immune signal transduction pathways and function as directly acting viral restriction factors. TRIMs carry out conceptually similar activities when controlling immune activation related to mitochondria. First, they modulate immune-signaling pathways that can be activated by mitochondrial molecules. Second, they co-ordinate the direct removal of mitochondria and associated immune-activating factors through mitophagy. These insights broaden the scope of TRIM actions in innate immunity and may implicate TRIMs in diseases associated with mitochondria-derived inflammation.
Collapse
Affiliation(s)
- Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|