1
|
Bamidele N, Ansodaria A, Chen Z, Cheng H, Panwala R, Jazbec E, Sontheimer EJ. Rational Design of Enhanced Nme2Cas9 and Nme2 SmuCas9 Nucleases and Base Editors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620986. [PMID: 39554198 PMCID: PMC11565991 DOI: 10.1101/2024.10.30.620986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
CRISPR-Cas genome editing tools enable precise, RNA-guided modification of genomes within living cells. The most clinically advanced genome editors are Cas9 nucleases, but many nuclease technologies provide only limited control over genome editing outcomes. Adenine base editors (ABEs) and cytosine base editors (CBEs) enable precise and efficient nucleotide conversions of A:T-to-G:C and C:G-to-T:A base pairs, respectively. Therapeutic use of base editors (BEs) provides an avenue to correct approximately 30% of human pathogenic variants. Nonetheless, factors such as protospacer adjacent motif (PAM) availability, accuracy, product purity, and delivery limit the full therapeutic potential of BEs. We previously developed Nme2Cas9 and its BE derivatives, including ABEs compatible with single adeno-associated virus (AAV) vector delivery, in part to enable editing near N4CC PAMs. Further engineering yielded domain-inlaid BEs with enhanced activity, as well as Nme2Cas9/SmuCas9 chimeras that target single-cytidine (N4C) PAMs. Here we further enhance Nme2Cas9 and Nme2SmuCas9 editing effectors for improved efficiency and vector compatibility through site-directed mutagenesis and deaminase linker optimization. Finally, we define the editing and specificity profiles of the resulting variants by using paired guide-target libraries.
Collapse
Affiliation(s)
- Nathan Bamidele
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Current address: Profluent, Emeryville, CA 94608, USA
| | - Aditya Ansodaria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Current address: Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Eva Jazbec
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
2
|
Mao X, Xu J, Jiang J, Li Q, Yao P, Jiang J, Gong L, Dong Y, Tu B, Wang R, Tang H, Yao F, Wang F. Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Commun Biol 2024; 7:1454. [PMID: 39506042 PMCID: PMC11541961 DOI: 10.1038/s42003-024-07173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jinyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Li Gong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Yin Dong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Bowen Tu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Rong Wang
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Tang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Fang Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- Changzhou Institute for Advanced Study of Public Health, Nanjing Medical University, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Fengming Wang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Prokhorova DV, Kupryushkin MS, Zhukov SA, Zharkov TD, Dovydenko IS, Yakovleva KI, Pereverzev IM, Matveeva AM, Pyshnyi DV, Stepanov GA. Effect of the Phosphoryl Guanidine Modification in Chimeric DNA-RNA crRNAs on the Activity of the CRISPR-Cas9 System In Vitro. ACS Chem Biol 2024; 19:1311-1319. [PMID: 38814157 DOI: 10.1021/acschembio.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Currently, the CRISPR-Cas9 system serves as a prevalent tool for genome editing and gene expression regulation. Its therapeutic application is limited by off-target effects that can affect genomic integrity through nonspecific, undesirable changes in the genome. Various strategies have been explored to mitigate the off-target effects. Many approaches focus on modifying components of the system, namely, Cas9 and guide RNAs, to enhance specificity. However, a common challenge is that methods aiming to increase specificity often result in a significant reduction in the editing efficiency. Here, we introduce a novel approach to modifying crRNA to balance CRISPR-Cas9 specificity and efficiency. Our approach involves incorporating nucleoside modifications, such as replacing ribo- to deoxyribonucleosides and backbone modifications, using phosphoryl guanidine groups, specifically 1,3-dimethylimidazolidin-2-ylidene phosphoramidate. In this case, within the first 10 nucleotides from the 5' crRNA end, phosphodiester bonds are substituted with phosphoryl guanidine groups. We demonstrate that crRNAs containing a combination of deoxyribonucleosides and single or multiple phosphoryl guanidine groups facilitate the modulation of CRISPR-Cas9 system activity while improving its specificity in vitro.
Collapse
Affiliation(s)
- Daria V Prokhorova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Sergey A Zhukov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Timofey D Zharkov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Ilya S Dovydenko
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Kristina I Yakovleva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Ivan M Pereverzev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Anastasiya M Matveeva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Dmitriy V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Kovalev MA, Davletshin AI, Karpov DS. Engineering Cas9: next generation of genomic editors. Appl Microbiol Biotechnol 2024; 108:209. [PMID: 38353732 PMCID: PMC10866799 DOI: 10.1007/s00253-024-13056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Cas9 endonuclease of the CRISPR/Cas type IIA system from Streptococcus pyogenes is the heart of genome editing technology that can be used to treat human genetic and viral diseases. Despite its large size and other drawbacks, S. pyogenes Cas9 remains the most widely used genome editor. A vast amount of research is aimed at improving Cas9 as a promising genetic therapy. Strategies include directed evolution of the Cas9 protein, rational design, and domain swapping. The first generation of Cas9 editors comes directly from the wild-type protein. The next generation is obtained by combining mutations from the first-generation variants, adding new mutations to them, or refining mutations. This review summarizes and discusses recent advances and ways in the creation of next-generation genomic editors derived from S. pyogenes Cas9. KEY POINTS: • The next-generation Cas9-based editors are more active than in the first one. • PAM-relaxed variants of Cas9 are improved by increased specificity and activity. • Less mutagenic and immunogenic variants of Cas9 are created.
Collapse
Affiliation(s)
- Maxim A Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
| |
Collapse
|
5
|
Molina Vargas A, Sinha S, Osborn R, Arantes P, Patel A, Dewhurst S, Hardy D, Cameron A, Palermo G, O’Connell M. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res 2024; 52:921-939. [PMID: 38033324 PMCID: PMC10810210 DOI: 10.1093/nar/gkad1132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
An increasingly pressing need for clinical diagnostics has required the development of novel nucleic acid-based detection technologies that are sensitive, fast, and inexpensive, and that can be deployed at point-of-care. Recently, the RNA-guided ribonuclease CRISPR-Cas13 has been successfully harnessed for such purposes. However, developing assays for detection of genetic variability, for example single-nucleotide polymorphisms, is still challenging and previously described design strategies are not always generalizable. Here, we expanded our characterization of LbuCas13a RNA-detection specificity by performing a combination of experimental RNA mismatch tolerance profiling, molecular dynamics simulations, protein, and crRNA engineering. We found certain positions in the crRNA-target-RNA duplex that are particularly sensitive to mismatches and establish the effect of RNA concentration in mismatch tolerance. Additionally, we determined that shortening the crRNA spacer or modifying the direct repeat of the crRNA leads to stricter specificities. Furthermore, we harnessed our understanding of LbuCas13a allosteric activation pathways through molecular dynamics and structure-guided engineering to develop novel Cas13a variants that display increased sensitivities to single-nucleotide mismatches. We deployed these Cas13a variants and crRNA design strategies to achieve superior discrimination of SARS-CoV-2 strains compared to wild-type LbuCas13a. Together, our work provides new design criteria and Cas13a variants to use in future easier-to-implement Cas13-based RNA detection applications.
Collapse
Affiliation(s)
- Adrian M Molina Vargas
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Souvik Sinha
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Raven Osborn
- Clinical and Translational Sciences Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Pablo R Arantes
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Amun Patel
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Dwight J Hardy
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Mitchell R O’Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
6
|
Trasanidou D, Potocnik A, Barendse P, Mohanraju P, Bouzetos E, Karpouzis E, Desmet A, van Kranenburg R, van der Oost J, Staals RHJ, Mougiakos I. Characterization of the AcrIIC1 anti‒CRISPR protein for Cas9‒based genome engineering in E. coli. Commun Biol 2023; 6:1042. [PMID: 37833505 PMCID: PMC10576004 DOI: 10.1038/s42003-023-05418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Anti-CRISPR proteins (Acrs) block the activity of CRISPR-associated (Cas) proteins, either by inhibiting DNA interference or by preventing crRNA loading and complex formation. Although the main use of Acrs in genome engineering applications is to lower the cleavage activity of Cas proteins, they can also be instrumental for various other CRISPR-based applications. Here, we explore the genome editing potential of the thermoactive type II-C Cas9 variants from Geobacillus thermodenitrificans T12 (ThermoCas9) and Geobacillus stearothermophilus (GeoCas9) in Escherichia coli. We then demonstrate that the AcrIIC1 protein from Neisseria meningitidis robustly inhibits their DNA cleavage activity, but not their DNA binding capacity. Finally, we exploit these AcrIIC1:Cas9 complexes for gene silencing and base-editing, developing Acr base-editing tools. With these tools we pave the way for future engineering applications in mesophilic and thermophilic bacteria combining the activities of Acr and CRISPR-Cas proteins.
Collapse
Affiliation(s)
- Despoina Trasanidou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ana Potocnik
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Patrick Barendse
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Prarthana Mohanraju
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Evgenios Bouzetos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Efthymios Karpouzis
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Amber Desmet
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
- Corbion, Gorinchem, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
- SNIPR Biome, Copenhagen, Denmark.
| |
Collapse
|
7
|
Vargas AMM, Osborn R, Sinha S, Arantes PR, Patel A, Dewhurst S, Palermo G, O'Connell MR. New design strategies for ultra-specific CRISPR-Cas13a-based RNA-diagnostic tools with single-nucleotide mismatch sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550755. [PMID: 37547020 PMCID: PMC10402140 DOI: 10.1101/2023.07.26.550755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The pressing need for clinical diagnostics has required the development of novel nucleic acid-based detection technologies that are sensitive, fast, and inexpensive, and that can be deployed at point-of-care. Recently, the RNA-guided ribonuclease CRISPR-Cas13 has been successfully harnessed for such purposes. However, developing assays for detection of genetic variability, for example single-nucleotide polymorphisms, is still challenging and previously described design strategies are not always generalizable. Here, we expanded our characterization of LbuCas13a RNA-detection specificity by performing a combination of experimental RNA mismatch tolerance profiling, molecular dynamics simulations, protein, and crRNA engineering. We found certain positions in the crRNA-target-RNA duplex that are particularly sensitive to mismatches and establish the effect of RNA concentration in mismatch tolerance. Additionally, we determined that shortening the crRNA spacer or modifying the direct repeat of the crRNA leads to stricter specificities. Furthermore, we harnessed our understanding of LbuCas13a allosteric activation pathways through molecular dynamics and structure-guided engineering to develop novel Cas13a variants that display increased sensitivities to single-nucleotide mismatches. We deployed these Cas13a variants and crRNA design strategies to achieve superior discrimination of SARS-CoV-2 strains compared to wild-type LbuCas13a. Together, our work provides new design criteria and new Cas13a variants for easier-to-implement Cas13-based diagnostics. KEY POINTS Certain positions in the Cas13a crRNA-target-RNA duplex are particularly sensitive to mismatches.Understanding Cas13a's allosteric activation pathway allowed us to develop novel high-fidelity Cas13a variants.These Cas13a variants and crRNA design strategies achieve superior discrimination of SARS-CoV-2 strains. GRAPHICAL ABSTRACT
Collapse
|
8
|
Sinan S, Appleby NM, Russell R. Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550589. [PMID: 37546762 PMCID: PMC10402064 DOI: 10.1101/2023.07.25.550589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (Kd = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the affinities of both the precursor and mature forms of the crRNA, while deletion of an upstream sequence had no significant effect on affinity of the pre-crRNA. After processing, the mature crRNA remains very tightly bound to Cas12a, with a half-life of ~1 day and a Kd value of 60 pM. Addition of a 5'-phosphoryl group, which is normally lost during the processing reaction as the scissile phosphate, tightens binding of the mature crRNA by ~10-fold by accelerating binding and slowing dissociation. Using a direct competition assay, we found that pre-crRNA binding specificity is robust to other changes in RNA sequence, including tested changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. Together our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in some genome editing applications.
Collapse
Affiliation(s)
- Selma Sinan
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| | - Nathan M. Appleby
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| |
Collapse
|
9
|
Kauert DJ, Madariaga-Marcos J, Rutkauskas M, Wulfken A, Songailiene I, Sinkunas T, Siksnys V, Seidel R. The energy landscape for R-loop formation by the CRISPR-Cas Cascade complex. Nat Struct Mol Biol 2023:10.1038/s41594-023-01019-2. [PMID: 37415009 DOI: 10.1038/s41594-023-01019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2023] [Indexed: 07/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) sequences and CRISPR-associated (Cas) genes comprise CIRSPR-Cas effector complexes, which have revolutionized gene editing with their ability to target specific genomic loci using CRISPR RNA (crRNA) complementarity. Recognition of double-stranded DNA targets proceeds via DNA unwinding and base pairing between crRNA and the DNA target strand, forming an R-loop structure. Full R-loop extension is a prerequisite for subsequent DNA cleavage. However, the recognition of unintended sequences with multiple mismatches has limited therapeutic applications and is still poorly understood on a mechanistic level. Here we set up ultrafast DNA unwinding experiments on the basis of plasmonic DNA origami nanorotors to study R-loop formation by the Cascade effector complex in real time, close to base-pair resolution. We resolve a weak global downhill bias of the forming R-loop, followed by a steep uphill bias for the final base pairs. We also show that the energy landscape is modulated by base flips and mismatches. These findings suggest that Cascade-mediated R-loop formation occurs on short timescales in submillisecond single base-pair steps, but on longer timescales in six base-pair intermediate steps, in agreement with the structural periodicity of the crRNA-DNA hybrid.
Collapse
Affiliation(s)
- Dominik J Kauert
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | | | - Marius Rutkauskas
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Alexander Wulfken
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tomas Sinkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
10
|
Spasskaya DS, Davletshin AI, Bachurin SS, Tutyaeva VV, Garbuz DG, Karpov DS. Improving the on-target activity of high-fidelity Cas9 editors by combining rational design and random mutagenesis. Appl Microbiol Biotechnol 2023; 107:2385-2401. [PMID: 36917274 DOI: 10.1007/s00253-023-12469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Genomic and post-genomic editors based on CRISPR/Cas systems are widely used in basic research and applied sciences, including human gene therapy. Most genome editing tools are based on the CRISPR/Cas9 type IIA system from Streptococcus pyogenes. Unfortunately, a number of drawbacks have hindered its application in therapeutic approaches, the most serious of which is the relatively high level of off-targets. To overcome this obstacle, various high-fidelity Cas9 variants have been created. However, they show reduced on-target activity compared to wild-type Cas9 possibly due to increased sensitivity to eukaryotic chromatin. Here, we combined a rational approach with random mutagenesis to create a set of new Cas9 variants showing high specificity and increased activity in Saccharomyces cerevisiae yeast. Moreover, a novel mutation in the PAM (protospacer adjacent motif)-interacting Cas9 domain was found, which increases the on-target activity of high-fidelity Cas9 variants while retaining their high specificity. The obtained data suggest that this mutation acts by weakening the eukaryotic chromatin barrier for Cas9 and rearranging the RuvC active center. Improved Cas9 variants should further advance genome and post-genome editing technologies. KEY POINTS: • D147Y and P411T mutations increase the activity of high-fidelity Cas9 variants. • The new L1206P mutation further increases the activity of high-fidelity Cas9 variants. • The L1206P mutation weakens the chromatin barrier for Cas9 editors.
Collapse
Affiliation(s)
- Daria S Spasskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Stanislav S Bachurin
- FSBEI HE Rostov State Medical University Ministry of Health, Nakhichevanskiy Lane 29, Rostov-On-Don, 344022, Russia
| | - Vera V Tutyaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - David G Garbuz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Dmitry S Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Yang H, Eremeeva E, Abramov M, Jacquemyn M, Groaz E, Daelemans D, Herdewijn P. CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids. Nucleic Acids Res 2023; 51:1501-1511. [PMID: 36611237 PMCID: PMC9976875 DOI: 10.1093/nar/gkac1147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
An enzymatic method has been successfully established enabling the generation of partially base-modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine (thG) analogs, as well as fully modified RZA featuring thG, 5-bromocytosine, 7-deazaadenine and 5-chlorouracil. The transcriptional efficiency of emissive fully modified RZA was found to benefit from the use of various T7 RNA polymerase variants. Moreover, dthG could be incorporated into PCR products by Taq DNA polymerase together with the other three base-modified nucleotides. Notably, the obtained RNA products containing thG as well as thG together with 5-bromocytosine could function as effectively as natural sgRNAs in an in vitro CRISPR-Cas9 cleavage assay. N1-Methylpseudouridine was also demonstrated to be a faithful non-canonical substitute of uridine to direct Cas9 nuclease cleavage when incorporated in sgRNA. The Cas9 inactivation by 7-deazapurines indicated the importance of the 7-nitrogen atom of purines in both sgRNA and PAM site for achieving efficient Cas9 cleavage. Additional aspects of this study are discussed in relation to the significance of sgRNA-protein and PAM--protein interactions that were not highlighted by the Cas9-sgRNA-DNA complex crystal structure. These findings could expand the impact and therapeutic value of CRISPR-Cas9 and other RNA-based technologies.
Collapse
Affiliation(s)
- Hui Yang
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Elena Eremeeva
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium.,Queensland University of Technology, Centre for Agriculture and the Bioeconomy, Molecular Engineering Group, George Street 2, 4000 Brisbane, Queensland, Australia
| | - Mikhail Abramov
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Elisabetta Groaz
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium.,University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - Dirk Daelemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| |
Collapse
|
12
|
A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex. Nat Commun 2022; 13:7460. [PMID: 36460652 PMCID: PMC9718816 DOI: 10.1038/s41467-022-35116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
CRISPR-Cas effector complexes recognise nucleic acid targets by base pairing with their crRNA which enables easy re-programming of the target specificity in rapidly emerging genome engineering applications. However, undesired recognition of off-targets, that are only partially complementary to the crRNA, occurs frequently and represents a severe limitation of the technique. Off-targeting lacks comprehensive quantitative understanding and prediction. Here, we present a detailed analysis of the target recognition dynamics by the Cascade surveillance complex on a set of mismatched DNA targets using single-molecule supercoiling experiments. We demonstrate that the observed dynamics can be quantitatively modelled as a random walk over the length of the crRNA-DNA hybrid using a minimal set of parameters. The model accurately describes the recognition of targets with single and double mutations providing an important basis for quantitative off-target predictions. Importantly the model intrinsically accounts for observed bias regarding the position and the proximity between mutations and reveals that the seed length for the initiation of target recognition is controlled by DNA supercoiling rather than the Cascade structure.
Collapse
|
13
|
Swartjes T, Shang P, van den Berg DTM, Künne T, Geijsen N, Brouns SJJ, van der Oost J, Staals RHJ, Notebaart RA. Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides. CRISPR J 2022; 5:571-585. [PMID: 35856642 PMCID: PMC9419950 DOI: 10.1089/crispr.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.
Collapse
Affiliation(s)
- Thomas Swartjes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Tim Künne
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Peleg-Chen D, Shuvali G, Brio L, Ifrach A, Iancu O, Barbiro-Michaely E, Hendel A, Gerber D. Microfluidic tool for rapid functional characterization of CRISPR complexes. N Biotechnol 2022; 68:1-8. [PMID: 35026470 PMCID: PMC8891023 DOI: 10.1016/j.nbt.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/28/2022]
Abstract
RNA guided nucleases are regarded as the future genome editing technologies. As such, they need to meet strong safety margins. Two major challenges in incorporating CRISPR technologies into the clinical world are off-target activity and editing efficiency. The common way to tackle such issues is to measure the binding and cleavage kinetics of the CRISPR enzyme. This can be challenging since, for example, DNA is not released from the CAS9 protein post cleavage. Here a promising new microfluidic approach to characterizing Enzymatic Interaction and Function of CRISPR complexes on a microfluidic platform (EnzyMIF) is presented. The method can rapidly detect the kd, koff, km and kcat for various RNA guided nucleases. In this work, two single guide RNAs with significantly different in-cell cleavage efficiency, RAG2 and RAG1, are used as proof-of-concept. The EnzyMIF assay results provide biochemical characterization of these guide RNAs that can explain the difference in cleavage using both wild type (WT) CAS9 and HiFi CAS9. Notably, it is shown that EnzyMIF characterization correlates with cell culture genomic editing efficiency results. It is suggested that EnzyMIF can predict the quality of cleavage rapidly and quantitatively.
Collapse
Affiliation(s)
- Dana Peleg-Chen
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Guy Shuvali
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Lev Brio
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Amit Ifrach
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Ortal Iancu
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Efrat Barbiro-Michaely
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Ayal Hendel
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel.
| | - Doron Gerber
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
15
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Eslami-Mossallam B, Klein M, Smagt CVD, Sanden KVD, Jones SK, Hawkins JA, Finkelstein IJ, Depken M. A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity. Nat Commun 2022; 13:1367. [PMID: 35292641 PMCID: PMC8924176 DOI: 10.1038/s41467-022-28994-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/11/2022] [Indexed: 12/26/2022] Open
Abstract
The S. pyogenes (Sp) Cas9 endonuclease is an important gene-editing tool. SpCas9 is directed to target sites based on complementarity to a complexed single-guide RNA (sgRNA). However, SpCas9-sgRNA also binds and cleaves genomic off-targets with only partial complementarity. To date, we lack the ability to predict cleavage and binding activity quantitatively, and rely on binary classification schemes to identify strong off-targets. We report a quantitative kinetic model that captures the SpCas9-mediated strand-replacement reaction in free-energy terms. The model predicts binding and cleavage activity as a function of time, target, and experimental conditions. Trained and validated on high-throughput bulk-biochemical data, our model predicts the intermediate R-loop state recently observed in single-molecule experiments, as well as the associated conversion rates. Finally, we show that our quantitative activity predictor can be reduced to a binary off-target classifier that outperforms the established state-of-the-art. Our approach is extensible, and can characterize any CRISPR-Cas nuclease - benchmarking natural and future high-fidelity variants against SpCas9; elucidating determinants of CRISPR fidelity; and revealing pathways to increased specificity and efficiency in engineered systems.
Collapse
Affiliation(s)
- Behrouz Eslami-Mossallam
- Kavli Institute of NanoScience and Department of BionanoScience, Delft University of Technology, Delft, 2629HZ, the Netherlands
- Dept. Building Physics and Systems, TNO Building and Construction Research, Leeghwaterstraat 44, Delft, The Netherlands
| | - Misha Klein
- Kavli Institute of NanoScience and Department of BionanoScience, Delft University of Technology, Delft, 2629HZ, the Netherlands
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Constantijn V D Smagt
- Kavli Institute of NanoScience and Department of BionanoScience, Delft University of Technology, Delft, 2629HZ, the Netherlands
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Koen V D Sanden
- Kavli Institute of NanoScience and Department of BionanoScience, Delft University of Technology, Delft, 2629HZ, the Netherlands
| | - Stephen K Jones
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - John A Hawkins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Science, University of Texas at Austin, Austin, TX, 78712, USA
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg, Germany
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Martin Depken
- Kavli Institute of NanoScience and Department of BionanoScience, Delft University of Technology, Delft, 2629HZ, the Netherlands.
| |
Collapse
|
17
|
Kirillov B, Savitskaya E, Panov M, Ogurtsov AY, Shabalina S, Koonin E, Severinov KV. Uncertainty-aware and interpretable evaluation of Cas9-gRNA and Cas12a-gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning. Nucleic Acids Res 2022; 50:e11. [PMID: 34791389 PMCID: PMC8789050 DOI: 10.1093/nar/gkab1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
The choice of guide RNA (gRNA) for CRISPR-based gene targeting is an essential step in gene editing applications, but the prediction of gRNA specificity remains challenging. Lack of transparency and focus on point estimates of efficiency disregarding the information on possible error sources in the model limit the power of existing Deep Learning-based methods. To overcome these problems, we present a new approach, a hybrid of Capsule Networks and Gaussian Processes. Our method predicts the cleavage efficiency of a gRNA with a corresponding confidence interval, which allows the user to incorporate information regarding possible model errors into the experimental design. We provide the first utilization of uncertainty estimation in computational gRNA design, which is a critical step toward accurate decision-making for future CRISPR applications. The proposed solution demonstrates acceptable confidence intervals for most test sets and shows regression quality similar to existing models. We introduce a set of criteria for gRNA selection based on off-target cleavage efficiency and its variance and present a collection of pre-computed gRNAs for human chromosome 22. Using Neural Network Interpretation methods, we show that our model rediscovers an established biological factor underlying cleavage efficiency, the importance of the seed region in gRNA.
Collapse
Affiliation(s)
- Bogdan Kirillov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ekaterina Savitskaya
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Maxim Panov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Konstantin V Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Zhdanova PV, Chernonosov AA, Prokhorova DV, Stepanov GA, Kanazhevskaya LY, Koval VV. Probing the Dynamics of Streptococcus pyogenes Cas9 Endonuclease Bound to the sgRNA Complex Using Hydrogen-Deuterium Exchange Mass Spectrometry. Int J Mol Sci 2022; 23:1129. [PMID: 35163047 PMCID: PMC8834707 DOI: 10.3390/ijms23031129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
The Cas9 endonuclease is an essential component of the CRISPR-Cas-based genome editing tools. The attainment of high specificity and efficiency of Cas9 during targetted DNA cleavage is the main problem that limits the clinical application of the CRISPR-Cas9 system. A deep understanding of the Cas9 mechanism and its structural-functional relationships is required to develop strategies for precise gene editing. Here, we present the first attempt to describe the solution structure of Cas9 from S. pyogenes using hydrogen-deuterium exchange mass spectrometry (HDX-MS) coupled to molecular dynamics simulations. HDX data revealed multiple protein regions with deuterium uptake levels varying from low to high. By analysing the difference in relative deuterium uptake by apoCas9 and its complex with sgRNA, we identified peptides involved in the complex formation and possible changes in the protein conformation. The REC3 domain was shown to undergo the most prominent conformational change upon enzyme-RNA interactions. Detection of the HDX in two forms of the enzyme provided detailed information about changes in the Cas9 structure induced by sgRNA binding and quantified the extent of the changes. The study demonstrates the practical utility of HDX-MS for the elucidation of mechanistic aspects of Cas9 functioning.
Collapse
Affiliation(s)
- Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Daria V. Prokhorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Lyubov Yu. Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Abstract
RNA-based machines are ubiquitous in Nature and increasingly important for medicines. They fold into complex, dynamic structures that process information and catalyze reactions, including reactions that generate new RNAs and proteins across biology. What are the experimental strategies and steps that are necessary to understand how these complex machines work? Two 1990 papers from Herschlag and Cech on "Catalysis of RNA Cleavage by the Tetrahymena thermophila Ribozyme" provide a master class in dissecting an RNA machine through kinetics approaches. By showing how to propose a kinetic framework, fill in the numbers, do cross-checks, and make comparisons across mutants and different RNA systems, the papers illustrate how to take a mechanistic approach and distill the results into general insights that are difficult to attain through other means.
Collapse
Affiliation(s)
- Rhiju Das
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Department
of Physics, Stanford University, Stanford, California 94305, United States
| | - Rick Russell
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 2021; 12:6267. [PMID: 34725353 PMCID: PMC8560862 DOI: 10.1038/s41467-021-26518-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes. Long-term expression of Cas9 following precision genome editing in vivo may lead to undesirable consequences. Here we show that a single-vector, self-inactivating AAV system containing Cas9 nuclease, guide, and DNA donor can use homology-directed repair to correct disease mutations in vivo.
Collapse
|
21
|
Donohoue PD, Pacesa M, Lau E, Vidal B, Irby MJ, Nyer DB, Rotstein T, Banh L, Toh MS, Gibson J, Kohrs B, Baek K, Owen ALG, Slorach EM, van Overbeek M, Fuller CK, May AP, Jinek M, Cameron P. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells. Mol Cell 2021; 81:3637-3649.e5. [PMID: 34478654 DOI: 10.1016/j.molcel.2021.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022]
Abstract
The off-target activity of the CRISPR-associated nuclease Cas9 is a potential concern for therapeutic genome editing applications. Although high-fidelity Cas9 variants have been engineered, they exhibit varying efficiencies and have residual off-target effects, limiting their applicability. Here, we show that CRISPR hybrid RNA-DNA (chRDNA) guides provide an effective approach to increase Cas9 specificity while preserving on-target editing activity. Across multiple genomic targets in primary human T cells, we show that 2'-deoxynucleotide (dnt) positioning affects guide activity and specificity in a target-dependent manner and that this can be used to engineer chRDNA guides with substantially reduced off-target effects. Crystal structures of DNA-bound Cas9-chRDNA complexes reveal distorted guide-target duplex geometry and allosteric modulation of Cas9 conformation. These structural effects increase specificity by perturbing DNA hybridization and modulating Cas9 activation kinetics to disfavor binding and cleavage of off-target substrates. Overall, these results pave the way for utilizing customized chRDNAs in clinical applications.
Collapse
Affiliation(s)
- Paul D Donohoue
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA.
| | - Martin Pacesa
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Elaine Lau
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Bastien Vidal
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Matthew J Irby
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - David B Nyer
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Tomer Rotstein
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Lynda Banh
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Mckenzi S Toh
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Jason Gibson
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Bryan Kohrs
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Kevin Baek
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Arthur L G Owen
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Euan M Slorach
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Megan van Overbeek
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Christopher K Fuller
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA
| | - Andrew P May
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA.
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Peter Cameron
- Caribou Biosciences, Inc., 2929 Seventh Street, Suite 105, Berkeley, CA 94710, USA.
| |
Collapse
|
22
|
Aquino-Jarquin G. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Mol Genet Metab 2021; 134:77-86. [PMID: 34391646 DOI: 10.1016/j.ymgme.2021.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9-based technology has revolutionized biomedical research by providing a high-fidelity gene-editing method, foreshadowing a significant impact on the therapeutics of many human genetic disorders previously considered untreatable. However, off-target events represent a critical hurdle before genome editing can be fully established in clinical practice. This mini-review recapitulates some recent advances for detecting and overcoming off-target effects mediated by the CRISPR/Cas9 system that could increase the likelihood of clinical success of the CRISPR-based approaches.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico; Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México, Mexico.
| |
Collapse
|
23
|
Uslu M, Siyah P, Harvey AJ, Kocabaş F. Modulating Cas9 activity for precision gene editing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:89-127. [PMID: 34127203 DOI: 10.1016/bs.pmbts.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The CRISPR/Cas9 is a RNA-guided nuclease complex that can be specifically programmed to target a user-specified DNA sequence. It has been a powerful and effective tool of genome editing. However, off-target activity of the Cas9 nuclease limits its potential use in the correction of inherited diseases and bona fide gene editing. Various protein engineering and guide RNA selection strategies have been utilized to improve Cas9-based genome-editing specificity and efficiency. We, however, have not yet achieved a degree of safety such that Cas9 gene editing approaches could be applicable in clinical settings. Here, we discuss the recently developed and precise gene editing technologies based on spCas9. Furthermore, we describe Cas9 modulating tools to increase the fidelity of the CRISPR/Cas9 system. These studies suggest that there is still a need for pharmaceutical modulation of Cas9 activity during gene editing procedures. Pharmaceutical modulation of Cas9 nuclease activity at on-target or off-target genomic loci could 1 day allow researchers to develop robust and precise therapeutical strategies in gene editing.
Collapse
Affiliation(s)
- Merve Uslu
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey; Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Pınar Siyah
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey; Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Andrew John Harvey
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey; Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
24
|
Boyle EA, Becker WR, Bai HB, Chen JS, Doudna JA, Greenleaf WJ. Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. SCIENCE ADVANCES 2021; 7:7/8/eabe5496. [PMID: 33608277 PMCID: PMC7895440 DOI: 10.1126/sciadv.abe5496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The RNA-guided nuclease Cas9 has unlocked powerful methods for perturbing both the genome through targeted DNA cleavage and the regulome through targeted DNA binding, but limited biochemical data have hampered efforts to quantitatively model sequence perturbation of target binding and cleavage across diverse guide sequences. We present scalable, sequencing-based platforms for high-throughput filter binding and cleavage and then perform 62,444 quantitative binding and cleavage assays on 35,047 on- and off-target DNA sequences across 90 Cas9 ribonucleoproteins (RNPs) loaded with distinct guide RNAs. We observe that binding and cleavage efficacy, as well as specificity, vary substantially across RNPs; canonically studied guides often have atypically high specificity; sequence context surrounding the target modulates Cas9 on-rate; and Cas9 RNPs may sequester targets in nonproductive states that contribute to "proofreading" capability. Lastly, we distill our findings into an interpretable biophysical model that predicts changes in binding and cleavage for diverse target sequence perturbations.
Collapse
Affiliation(s)
- Evan A Boyle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Winston R Becker
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Hua B Bai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janice S Chen
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), University of California, Howard Hughes Medical Institute, Department of Chemistry, and the Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), University of California, Howard Hughes Medical Institute, Department of Chemistry, and the Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Feng Y, Liu S, Chen R, Xie A. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. J Zhejiang Univ Sci B 2021; 22:73-86. [PMID: 33448189 PMCID: PMC7818014 DOI: 10.1631/jzus.b2000282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is widely used for targeted genomic and epigenomic modifications and imaging in cells and organisms, and holds tremendous promise in clinical applications. The efficiency and accuracy of the technology are partly determined by the target binding affinity and residence time of Cas9-single-guide RNA (sgRNA) at a given site. However, little attention has been paid to the effect of target binding affinity and residence duration on the repair of Cas9-induced DNA double-strand breaks (DSBs). We propose that the choice of DSB repair pathway may be altered by variation in the binding affinity and residence duration of Cas9-sgRNA at the cleaved target, contributing to significantly heterogeneous mutations in CRISPR/Cas9 genome editing. Here, we discuss the effect of Cas9-sgRNA target binding and residence on the choice of DSB repair pathway in CRISPR/Cas9 genome editing, and the opportunity this presents to optimize Cas9-based technology.
Collapse
Affiliation(s)
- Yili Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China.
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| | - Sicheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Ruodan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Anyong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| |
Collapse
|
26
|
Yang M, Woolfenden HC, Zhang Y, Fang X, Liu Q, Vigh ML, Cheema J, Yang X, Norris M, Yu S, Carbonell A, Brodersen P, Wang J, Ding Y. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res 2020; 48:8767-8781. [PMID: 32652041 PMCID: PMC7470952 DOI: 10.1093/nar/gkaa577] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNA (miRNA)-mediated cleavage is involved in numerous essential cellular pathways. miRNAs recognize target RNAs via sequence complementarity. In addition to complementarity, in vitro and in silico studies have suggested that RNA structure may influence the accessibility of mRNAs to miRNA-induced silencing complexes (miRISCs), thereby affecting RNA silencing. However, the regulatory mechanism of mRNA structure in miRNA cleavage remains elusive. We investigated the role of in vivo RNA secondary structure in miRNA cleavage by developing the new CAP-STRUCTURE-seq method to capture the intact mRNA structurome in Arabidopsis thaliana. This approach revealed that miRNA target sites were not structurally accessible for miRISC binding prior to cleavage in vivo. Instead, we found that the unfolding of the target site structure plays a key role in miRISC activity in vivo. We found that the single-strandedness of the two nucleotides immediately downstream of the target site, named Target Adjacent nucleotide Motif, can promote miRNA cleavage but not miRNA binding, thus decoupling target site binding from cleavage. Our findings demonstrate that mRNA structure in vivo can modulate miRNA cleavage, providing evidence of mRNA structure-dependent regulation of biological processes.
Collapse
Affiliation(s)
- Minglei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiaofeng Fang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qi Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria L Vigh
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Norris
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sha Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, People's Republic of China
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, 46022, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jiawei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, People's Republic of China
- ShanghaiTech University, Shanghai 200031, People’s Republic of China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
27
|
Yang D, Liu W, Deng X, Xie W, Chen H, Zhong Z, Ma J. GC-Content Dependence of Elastic and Overstretching Properties of DNA:RNA Hybrid Duplexes. Biophys J 2020; 119:852-861. [PMID: 32738216 DOI: 10.1016/j.bpj.2020.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 01/25/2023] Open
Abstract
DNA:RNA hybrid duplex plays important roles in various biological processes. Both its structural stability and interactions with proteins are highly sequence dependent. In this study, we utilize homebuilt optical tweezers to investigate how GC contents in the sequence influence the structural and mechanical properties of DNA:RNA hybrid by measuring its contour length, elasticities, and overstretching dynamics. Our results support that the DNA:RNA hybrid adopts a conformation between the A- and B-form helix, and the GC content does not affect its structural and elastic parameters obviously when varying from 40 to 60% before the overstretching transition of DNA:RNA hybrid occurs. In the overstretching transition, however, our study unravels significant heterogeneity and strong sequence dependence, suggesting the presence of a highly dynamic competition between the two processes, namely the S-form duplex formation (nonhysteretic) and the unpeeling (hysteretic). Analyzing the components left in DNA:RNA hybrid after the overstretching transition suggests that the RNA strand is more easily unpeeled than the DNA strand, whereas an increase in the GC content from 40 to 60% can significantly reduce unpeeling. Large hysteresis is observed between the stretching and relaxation processes, which is also quantitatively correlated with the percentage of unpeeling in the DNA:RNA duplex. Increasing in both the salt concentration and GC content can effectively reduce the hysteresis with the latter being more significant. Together, our study reveals that the mechanical properties of DNA:RNA hybrid duplexes are significantly different from double-stranded DNA and double-stranded RNA, and its overstretching behavior is highly sequence dependent. These results should be taken into account in the future studies on DNA:RNA-hybrid-related functional structures and motor proteins.
Collapse
Affiliation(s)
- Dongni Yang
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenzhao Liu
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangyu Deng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Xie
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, Fujian, China
| | - Zhensheng Zhong
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Abstract
CRISPR-Cas systems have been engineered as powerful tools to control gene expression in bacteria. The most common strategy relies on the use of Cas effectors modified to bind target DNA without introducing DNA breaks. These effectors can either block the RNA polymerase or recruit it through activation domains. Here, we discuss the mechanistic details of how Cas effectors can modulate gene expression by blocking transcription initiation or acting as transcription roadblocks. CRISPR-Cas tools can be further engineered to obtain fine-tuned control of gene expression or target multiple genes simultaneously. Several caveats in using these tools have also been revealed, including off-target effects and toxicity, making it important to understand the design rules of engineered CRISPR-Cas effectors in bacteria. Alternatively, some types of CRISPR-Cas systems target RNA and could be used to block gene expression at the posttranscriptional level. Finally, we review applications of these tools in high-throughput screens and the progress and challenges in introducing CRISPR knockdown to other species, including nonmodel bacteria with industrial or clinical relevance. A deep understanding of how CRISPR-Cas systems can be harnessed to control gene expression in bacteria and build powerful tools will certainly open novel research directions.
Collapse
Affiliation(s)
- Antoine Vigouroux
- Synthetic Biology, Institut Pasteur, Paris, France
- Microbial Morphogenesis and Growth, Institut Pasteur, Paris, France
| | - David Bikard
- Synthetic Biology, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Levesque S, Agudelo D, Doyon Y. Rewired Cas9s with Minimal Sequence Constraints. Trends Pharmacol Sci 2020; 41:429-431. [PMID: 32416935 DOI: 10.1016/j.tips.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022]
Abstract
The genome editing toolkit is ever expanding. Although CRISPR-Cas systems can target virtually any gene, single-nucleotide resolution is yet to be achieved. Walton and colleagues engineered nucleases and base editors compatible with every protospacer adjacent motif (PAM) to achieve high-precision targeting. Their findings revealed the striking plasticity of Cas9.
Collapse
Affiliation(s)
- Sébastien Levesque
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
| | - Daniel Agudelo
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
30
|
Becskei A. Tuning up Transcription Factors for Therapy. Molecules 2020; 25:E1902. [PMID: 32326099 PMCID: PMC7221782 DOI: 10.3390/molecules25081902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
The recent developments in the delivery and design of transcription factors put their therapeutic applications within reach, exemplified by cell replacement, cancer differentiation and T-cell based cancer therapies. The success of such applications depends on the efficacy and precision in the action of transcription factors. The biophysical and genetic characterization of the paradigmatic prokaryotic repressors, LacI and TetR and the designer transcription factors, transcription activator-like effector (TALE) and CRISPR-dCas9 revealed common principles behind their efficacy, which can aid the optimization of transcriptional activators and repressors. Further studies will be required to analyze the linkage between dissociation constants and enzymatic activity, the role of phase separation and squelching in activation and repression and the long-range interaction of transcription factors with epigenetic regulators in the context of the chromosomes. Understanding these mechanisms will help to tailor natural and synthetic transcription factors to the needs of specific applications.
Collapse
Affiliation(s)
- Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Bratovič M, Fonfara I, Chylinski K, Gálvez EJC, Sullivan TJ, Boerno S, Timmermann B, Boettcher M, Charpentier E. Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Nat Chem Biol 2020; 16:587-595. [PMID: 32123387 DOI: 10.1038/s41589-020-0490-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
The RNA-programmable DNA-endonuclease Cas9 is widely used for genome engineering, where a high degree of specificity is required. To investigate which features of Cas9 determine the sensitivity to mismatches along the target DNA, we performed in vitro biochemical assays and bacterial survival assays in Escherichia coli. We demonstrate that arginines in the Cas9 bridge helix influence guide RNA, and target DNA binding and cleavage. They cluster in two groups that either increase or decrease the Cas9 sensitivity to mismatches. We show that the bridge helix is essential for R-loop formation and that R63 and R66 reduce Cas9 specificity by stabilizing the R-loop in the presence of mismatches. Additionally, we identify Q768 that reduces sensitivity of Cas9 to protospacer adjacent motif-distal mismatches. The Cas9_R63A/Q768A variant showed increased specificity in human cells. Our results provide a firm basis for function- and structure-guided mutagenesis to increase Cas9 specificity for genome engineering.
Collapse
Affiliation(s)
- Majda Bratovič
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Institute for Biology, Humboldt University, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Fonfara
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Krzysztof Chylinski
- The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.,Protein Technologies Facility, The Vienna Biocenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Eric J C Gálvez
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany. .,Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Institute for Biology, Humboldt University, Berlin, Germany. .,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
32
|
Aschenbrenner S, Kallenberger SM, Hoffmann MD, Huck A, Eils R, Niopek D. Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity. SCIENCE ADVANCES 2020; 6:eaay0187. [PMID: 32076642 PMCID: PMC7002122 DOI: 10.1126/sciadv.aay0187] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
The limited target specificity of CRISPR-Cas nucleases poses a challenge with respect to their application in research and therapy. Here, we present a simple and original strategy to enhance the specificity of CRISPR-Cas9 genome editing by coupling Cas9 to artificial inhibitory domains. Applying a combination of mathematical modeling and experiments, we first determined how CRISPR-Cas9 activity profiles relate to Cas9 specificity. We then used artificially weakened anti-CRISPR (Acr) proteins either coexpressed with or directly fused to Cas9 to fine-tune its activity toward selected levels, thereby achieving an effective kinetic insulation of ON- and OFF-target editing events. We demonstrate highly specific genome editing in mammalian cells using diverse single-guide RNAs prone to potent OFF-targeting. Last, we show that our strategy is compatible with different modes of delivery, including transient transfection and adeno-associated viral vectors. Together, we provide a highly versatile approach to reduce CRISPR-Cas OFF-target effects via kinetic insulation.
Collapse
Affiliation(s)
- Sabine Aschenbrenner
- Synthetic Biology Group, Institute for Pharmacy and Molecular Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
| | - Stefan M. Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
- Health Data Science Unit, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Mareike D. Hoffmann
- Synthetic Biology Group, Institute for Pharmacy and Molecular Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Adrian Huck
- Synthetic Biology Group, Institute for Pharmacy and Molecular Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
- Health Data Science Unit, University Hospital Heidelberg, Heidelberg 69120, Germany
- Corresponding author. (R.E.); (D.N.)
| | - Dominik Niopek
- Synthetic Biology Group, Institute for Pharmacy and Molecular Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Health Data Science Unit, University Hospital Heidelberg, Heidelberg 69120, Germany
- Corresponding author. (R.E.); (D.N.)
| |
Collapse
|
33
|
Abstract
Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.
Collapse
Affiliation(s)
- Jan Mathony
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
| | - Mareike D Hoffmann
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Niopek
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany.
- Health Data Science Unit, Heidelberg University Hospital and Medical Faculty of Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
34
|
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1565. [PMID: 31429211 PMCID: PMC7006490 DOI: 10.1002/wrna.1565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
35
|
Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Wang Y. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Mol Cell 2019; 76:938-952.e5. [PMID: 31668930 PMCID: PMC6934045 DOI: 10.1016/j.molcel.2019.09.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.
Collapse
Affiliation(s)
- Wei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Zhi Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Chao Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangkang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Alireza Edraki
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Xue Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiuyu Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Sheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Yanli Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China.
| |
Collapse
|
36
|
Understanding off-target effects through hybridization kinetics and thermodynamics. Cell Biol Toxicol 2019; 36:11-15. [PMID: 31823200 PMCID: PMC7051922 DOI: 10.1007/s10565-019-09505-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
|
37
|
Becker WR, Ober-Reynolds B, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2. Mol Cell 2019; 75:741-755.e11. [PMID: 31324449 PMCID: PMC6823844 DOI: 10.1016/j.molcel.2019.06.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/23/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022]
Abstract
Argonaute proteins loaded with microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC), which represses target RNA expression. Predicting the biological targets, specificity, and efficiency of both miRNAs and siRNAs has been hamstrung by an incomplete understanding of the sequence determinants of RISC binding and cleavage. We applied high-throughput methods to measure the association kinetics, equilibrium binding energies, and single-turnover cleavage rates of mouse AGO2 RISC. We find that RISC readily tolerates insertions of up to 7 nt in its target opposite the central region of the guide. Our data uncover specific guide:target mismatches that enhance the rate of target cleavage, suggesting novel siRNA design strategies. Using these data, we derive quantitative models for RISC binding and target cleavage and show that our in vitro measurements and models predict knockdown in an engineered cellular system.
Collapse
Affiliation(s)
- Winston R Becker
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | | | - Karina Jouravleva
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Samson M Jolly
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
O'Reilly D, Kartje ZJ, Ageely EA, Malek-Adamian E, Habibian M, Schofield A, Barkau CL, Rohilla KJ, DeRossett LB, Weigle AT, Damha MJ, Gagnon KT. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res 2019; 47:546-558. [PMID: 30517736 PMCID: PMC6344873 DOI: 10.1093/nar/gky1214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat) endonucleases are at the forefront of biotechnology, synthetic biology and gene editing. Methods for controlling enzyme properties promise to improve existing applications and enable new technologies. CRISPR enzymes rely on RNA cofactors to guide catalysis. Therefore, chemical modification of the guide RNA can be used to characterize structure-activity relationships within CRISPR ribonucleoprotein (RNP) enzymes and identify compatible chemistries for controlling activity. Here, we introduce chemical modifications to the sugar–phosphate backbone of Streptococcus pyogenes Cas9 CRISPR RNA (crRNA) to probe chemical and structural requirements. Ribose sugars that promoted or accommodated A-form helical architecture in and around the crRNA ‘seed’ region were tolerated best. A wider range of modifications were acceptable outside of the seed, especially D-2′-deoxyribose, and we exploited this property to facilitate exploration of greater chemical diversity within the seed. 2′-fluoro was the most compatible modification whereas bulkier O-methyl sugar modifications were less tolerated. Activity trends could be rationalized for selected crRNAs using RNP stability and DNA target binding experiments. Cas9 activity in vitro tolerated most chemical modifications at predicted 2′-hydroxyl contact positions, whereas editing activity in cells was much less tolerant. The biochemical principles of chemical modification identified here will guide CRISPR-Cas9 engineering and enable new or improved applications.
Collapse
Affiliation(s)
- Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Zachary J Kartje
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Eman A Ageely
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Elise Malek-Adamian
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Maryam Habibian
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Annabelle Schofield
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Christopher L Barkau
- Department of Biochemistry & Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Kushal J Rohilla
- Department of Biochemistry & Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Lauren B DeRossett
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Austin T Weigle
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Keith T Gagnon
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA.,Department of Biochemistry & Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, USA
| |
Collapse
|
39
|
Miller JC, Patil DP, Xia DF, Paine CB, Fauser F, Richards HW, Shivak DA, Bendaña YR, Hinkley SJ, Scarlott NA, Lam SC, Reik A, Zhou Y, Paschon DE, Li P, Wangzor T, Lee G, Zhang L, Rebar EJ. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat Biotechnol 2019; 37:945-952. [PMID: 31359006 DOI: 10.1038/s41587-019-0186-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Engineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites. For three ZFN pairs, we engineered single-residue substitutions in the FokI domain that preserved full on-target activity but showed a reduction in off-target indels of up to 3,000-fold. By combining this approach with substitutions that reduced the affinity of zinc fingers, we developed ZFNs specific for the TRAC locus that mediated 98% knockout in T cells with no detectable off-target activity at an assay background of ~0.01%. We anticipate that this approach, and the FokI variants we report, will enable routine generation of nucleases for gene editing with no detectable off-target activity.
Collapse
Affiliation(s)
| | | | - Danny F Xia
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Patrick Li
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | - Gary Lee
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Lei Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | |
Collapse
|
40
|
Kim D, Luk K, Wolfe SA, Kim JS. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu Rev Biochem 2019; 88:191-220. [PMID: 30883196 DOI: 10.1146/annurev-biochem-013118-111730] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmable nucleases and deaminases, which include zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR RNA-guided nucleases, and RNA-guided base editors, are now widely employed for the targeted modification of genomes in cells and organisms. These gene-editing tools hold tremendous promise for therapeutic applications. Importantly, these nucleases and deaminases may display off-target activity through the recognition of near-cognate DNA sequences to their target sites, resulting in collateral damage to the genome in the form of local mutagenesis or genomic rearrangements. For therapeutic genome-editing applications with these classes of programmable enzymes, it is essential to measure and limit genome-wide off-target activity. Herein, we discuss the key determinants of off-target activity for these systems. We describe various cell-based and cell-free methods for identifying genome-wide off-target sites and diverse strategies that have been developed for reducing the off-target activity of programmable gene-editing enzymes.
Collapse
Affiliation(s)
- Daesik Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea;
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea;
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Klein M, Eslami-Mossallam B, Arroyo DG, Depken M. Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules. Cell Rep 2019; 22:1413-1423. [PMID: 29425498 DOI: 10.1016/j.celrep.2018.01.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Due to their specificity, efficiency, and ease of programming, CRISPR-associated nucleases are popular tools for genome editing. On the genomic scale, these nucleases still show considerable off-target activity though, posing a serious obstacle to the development of therapies. Off targeting is often minimized by choosing especially high-specificity guide sequences, based on algorithms that codify empirically determined off-targeting rules. A lack of mechanistic understanding of these rules has so far necessitated their ad hoc implementation, likely contributing to the limited precision of present algorithms. To understand the targeting rules, we kinetically model the physics of guide-target hybrid formation. Using only four parameters, our model elucidates the kinetic origin of the experimentally observed off-targeting rules, thereby rationalizing the results from both binding and cleavage assays. We favorably compare our model to published data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the human Argonaute 2 system.
Collapse
Affiliation(s)
- Misha Klein
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Behrouz Eslami-Mossallam
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Dylan Gonzalez Arroyo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Martin Depken
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands.
| |
Collapse
|
42
|
Kim HY, Kang SJ, Jeon Y, An J, Park J, Lee HJ, Jang JE, Ahn J, Bang D, Chung HS, Jeong C, Ahn DR. Chimeric crRNAs with 19 DNA residues in the guide region show the retained DNA cleavage activity of Cas9 with potential to improve the specificity. Chem Commun (Camb) 2019; 55:3552-3555. [PMID: 30843540 DOI: 10.1039/c8cc08468h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We demonstrated that 19 out of 20 RNA residues in the guide region of crRNA can be replaced with DNA residues with high GC-contents. The cellular activity of the chimeric crRNAs to disrupt the target gene was comparable to that of the native crRNA.
Collapse
Affiliation(s)
- Hyo Young Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-Pérez JA, Sontheimer EJ. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing. Mol Cell 2019; 73:714-726.e4. [PMID: 30581144 PMCID: PMC6386616 DOI: 10.1016/j.molcel.2018.12.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/25/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
CRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospacer-adjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (N4CC) that provides for high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA targeting Pcsk9 in adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Nme2Cas9 combines all-in-one AAV compatibility, exceptional editing accuracy within cells, and high target site density for in vivo genome editing applications.
Collapse
Affiliation(s)
- Alireza Edraki
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yeonsoo Yoon
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Judith Gallant
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jaime A Rivera-Pérez
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
Yourik P, Fuchs RT, Mabuchi M, Curcuru JL, Robb GB. Staphylococcus aureus Cas9 is a multiple-turnover enzyme. RNA (NEW YORK, N.Y.) 2019; 25:35-44. [PMID: 30348755 PMCID: PMC6298560 DOI: 10.1261/rna.067355.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
Cas9 nuclease is the key effector of type II CRISPR adaptive immune systems found in bacteria. The nuclease can be programmed by a single guide RNA (sgRNA) to cleave DNA in a sequence-specific manner. This property has led to its widespread adoption as a genome editing tool in research laboratories and holds great promise for biotechnological and therapeutic applications. The general mechanistic features of catalysis by Cas9 homologs are comparable; however, a high degree of diversity exists among the protein sequences, which may result in subtle mechanistic differences. S. aureus (SauCas9) and especially S. pyogenes (SpyCas9) are among the best-characterized Cas9 proteins and share ∼17% sequence identity. A notable feature of SpyCas9 is an extremely slow rate of reaction turnover, which is thought to limit the amount of substrate DNA cleavage. Using in vitro biochemistry and enzyme kinetics, we directly compare SpyCas9 and SauCas9 activities. Here, we report that in contrast to SpyCas9, SauCas9 is a multiple-turnover enzyme, which to our knowledge is the first report of such activity in a Cas9 homolog. We also show that DNA cleaved with SauCas9 does not undergo any detectable single-stranded degradation after the initial double-stranded break observed previously with SpyCas9, thus providing new insights and considerations for future design of CRISPR/Cas9-based applications.
Collapse
Affiliation(s)
- Paul Yourik
- RNA and Genome Editing, New England Biolabs Inc., Ipswich, Massachusetts 01938, USA
| | - Ryan T Fuchs
- RNA and Genome Editing, New England Biolabs Inc., Ipswich, Massachusetts 01938, USA
| | - Megumu Mabuchi
- RNA and Genome Editing, New England Biolabs Inc., Ipswich, Massachusetts 01938, USA
| | - Jennifer L Curcuru
- RNA and Genome Editing, New England Biolabs Inc., Ipswich, Massachusetts 01938, USA
| | - G Brett Robb
- RNA and Genome Editing, New England Biolabs Inc., Ipswich, Massachusetts 01938, USA
| |
Collapse
|
45
|
Abstract
Though making up nearly half of the known CRISPR-Cas9 family of enzymes, the Type II-C CRISPR-Cas9 has been underexplored for their molecular mechanisms and potential in safe gene editing applications. In comparison with the more popular Type II-A CRISPR-Cas9, the Type II-C enzymes are generally smaller in size and utilize longer base pairing in identification of their DNA substrates. These characteristics suggest easier portability and potentially less off-targets for Type II-C in gene editing applications. We describe identification and biochemical characterization of a thermophilic Type II-C CRISPR-Cas from Acidothermus cellulolyticus (AceCas9). We describe several library-based methods that enabled us to identify the PAM sequence and elements critical to protospacer mismatch surveillance of AceCas9.
Collapse
|
46
|
Hand TH, Das A, Roth MO, Smith CL, Jean-Baptiste UL, Li H. Phosphate Lock Residues of Acidothermus cellulolyticus Cas9 Are Critical to Its Substrate Specificity. ACS Synth Biol 2018; 7:2908-2917. [PMID: 30458109 PMCID: PMC6525624 DOI: 10.1021/acssynbio.8b00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite being utilized widely in genome sciences, CRISPR-Cas9 remains limited in achieving high fidelity in cleaving DNA. A better understanding of the molecular basis of Cas9 holds the key to improve Cas9-based tools. We employed direct evolution and in vitro characterizations to explore structural parameters that impact the specificity of the thermophilic Cas9 from Acidothermus cellulolyticus (AceCas9). By identifying variants that are able to cleave mismatched protospacers within the seed region, we found a critical role of the phosphate lock residues in substrate specificity in a manner that depends on their sizes and charges. Removal of the negative charge from the phosphate lock residues significantly decreases sensitivity to the guide-DNA mismatches. An increase in size of the substituted residues further reduces the sensitivity to mismatches at the first position of the protospacer. Our findings identify the phosphate lock residues as an important site for tuning the specificity and catalytic efficiency of Cas9.
Collapse
Affiliation(s)
- Travis H. Hand
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Anuska Das
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Mitchell O. Roth
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Chardasia L. Smith
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Uriel L. Jean-Baptiste
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
47
|
Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD, Settle AH, Lied AM, McGovern K, Fuller CK, Cameron P, Fazzio TG, Zhu LJ, Wolfe SA, Sontheimer EJ. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol 2018; 19:214. [PMID: 30518407 PMCID: PMC6282386 DOI: 10.1186/s13059-018-1591-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/17/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wildtype SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs are considerably smaller and therefore better suited for viral delivery. RESULTS Here we show that wildtype NmeCas9, when programmed with guide sequences of the natural length of 24 nucleotides, exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5'-N4GATT-3'), for NmeCas9 genome editing in human cells. CONCLUSIONS Our results show that NmeCas9 is a naturally high-fidelity genome-editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering.
Collapse
Affiliation(s)
- Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Xin D Gao
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Alireza Edraki
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Ankit Gupta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Present Address: Bluebird bio, Cambridge, MA, USA
| | - Kanae E Sasaki
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Present Address: Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Tong Wu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Paul D Donohoue
- Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA, 94710, USA
| | - Alexander H Settle
- Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA, 94710, USA
- Present Address: Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra M Lied
- Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA, 94710, USA
| | - Kyle McGovern
- Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA, 94710, USA
- Present Address: Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Chris K Fuller
- Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA, 94710, USA
| | - Peter Cameron
- Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA, 94710, USA
| | - Thomas G Fazzio
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
48
|
Strohkendl I, Saifuddin FA, Rybarski JR, Finkelstein IJ, Russell R. Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a. Mol Cell 2018; 71:816-824.e3. [PMID: 30078724 PMCID: PMC6679935 DOI: 10.1016/j.molcel.2018.06.043] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
Class 2 CRISPR-Cas nucleases are programmable genome editing tools with promising applications in human health and disease. However, DNA cleavage at off-target sites that resemble the target sequence is a pervasive problem that remains poorly understood mechanistically. Here, we use quantitative kinetics to dissect the reaction steps of DNA targeting by Acidaminococcus sp Cas12a (also known as Cpf1). We show that Cas12a binds DNA tightly in two kinetically separable steps. Protospacer-adjacent motif (PAM) recognition is followed by rate-limiting R-loop propagation, leading to inevitable DNA cleavage of both strands. Despite functionally irreversible binding, Cas12a discriminates strongly against mismatches along most of the DNA target sequence. This result implies substantial reversibility during R-loop formation-a late transition state-and defies common descriptions of a "seed" region. Our results provide a quantitative basis for the DNA cleavage patterns measured in vivo and observations of greater reported target specificity for Cas12a than for the Cas9 nuclease.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fatema A Saifuddin
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - James R Rybarski
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
49
|
Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Lee K, Jung I, Kim D, Kim S, Kim JS. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 2018; 9:3048. [PMID: 30082838 PMCID: PMC6078992 DOI: 10.1038/s41467-018-05477-x] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022] Open
Abstract
The use of CRISPR-Cas9 as a therapeutic reagent is hampered by its off-target effects. Although rationally designed S. pyogenes Cas9 (SpCas9) variants that display higher specificities than the wild-type SpCas9 protein are available, these attenuated Cas9 variants are often poorly efficient in human cells. Here, we develop a directed evolution approach in E. coli to obtain Sniper-Cas9, which shows high specificities without killing on-target activities in human cells. Unlike other engineered Cas9 variants, Sniper-Cas9 shows WT-level on-target activities with extended or truncated sgRNAs with further reduced off-target activities and works well in a preassembled ribonucleoprotein (RNP) format to allow DNA-free genome editing.
Collapse
Affiliation(s)
| | - Euihwan Jeong
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, 34121, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | | | | | - Eunji Shin
- Toolgen, Seoul, 08501, Republic of Korea
| | | | - Kangin Lee
- Toolgen, Seoul, 08501, Republic of Korea
| | | | - Daesik Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, 34121, Republic of Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
50
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|