1
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. SEC-MX: an approach to systematically study the interplay between protein assembly states and phosphorylation. Nat Commun 2025; 16:1176. [PMID: 39885126 PMCID: PMC11782603 DOI: 10.1038/s41467-025-56303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Conducting SEC-MX on HEK293 and HCT116 cells, we generate a proof-of-concept dataset, mapping thousands of phosphopeptides and their assembly states. Our analysis reveals intricate relationships between phosphorylation events and assembly states and generates testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
Affiliation(s)
- Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lauren C Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed A Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Liu W, Yu H, Yan G, Shen S, Gao M, Zhang X. Unraveling of Phosphotyrosine Signaling Complexes Associated with T Cell Exhaustion Using Multiplex Co-Fractionation/Mass Spectrometry. Anal Chem 2024; 96:20213-20222. [PMID: 39661755 DOI: 10.1021/acs.analchem.4c04179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
T cell exhaustion, characterized by the upregulation of inhibitory receptors and loss of effector functions, plays a crucial role in tumor immune evasion. This study utilizes a high-throughput, reproducible, and robust integrated ion-exchange chromatography-tandem mass tag (IEC-TMT) platform, coupled with a complex-centric quantification algorithm, to thoroughly profile phosphotyrosine (pTyr) protein complex changes during T cell exhaustion. The platform's high reproducibility is evidenced by >0.94 correlation and a median coefficient of variation of 0.25 among quantified complexes in HeLa cell biological replicates. This high-throughput approach allowed analysis of 312 fractions within 2 days, identifying 268 pTyr protein complexes from the T cell exhaustion model. Robust quantification of 28 complexes revealed 12 exhibiting significant abundance alterations in exhausted T cells, notably impacting lysosomal and endoplasmic reticulum-associated complexes. RTN4, a subunit of the newly identified PPI204 protein complex, is upregulated in exhausted T cells. Its knockdown reversed T cell exhaustion, enhancing antitumor immunity. These findings provide novel insights into the molecular mechanisms of T cell exhaustion and propose RTN4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Hailong Yu
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Guoquan Yan
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Mingxia Gao
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiangmin Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Dörig C, Marulli C, Peskett T, Volkmar N, Pantolini L, Studer G, Paleari C, Frommelt F, Schwede T, de Souza N, Barral Y, Picotti P. Global profiling of protein complex dynamics with an experimental library of protein interaction markers. Nat Biotechnol 2024:10.1038/s41587-024-02432-8. [PMID: 39415059 DOI: 10.1038/s41587-024-02432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Methods to systematically monitor protein complex dynamics are needed. We introduce serial ultrafiltration combined with limited proteolysis-coupled mass spectrometry (FLiP-MS), a structural proteomics workflow that generates a library of peptide markers specific to changes in PPIs by probing differences in protease susceptibility between complex-bound and monomeric forms of proteins. The library includes markers mapping to protein-binding interfaces and markers reporting on structural changes that accompany PPI changes. Integrating the marker library with LiP-MS data allows for global profiling of protein-protein interactions (PPIs) from unfractionated lysates. We apply FLiP-MS to Saccharomyces cerevisiae and probe changes in protein complex dynamics after DNA replication stress, identifying links between Spt-Ada-Gcn5 acetyltransferase activity and the assembly state of several complexes. FLiP-MS enables protein complex dynamics to be probed on any perturbation, proteome-wide, at high throughput, with peptide-level structural resolution and informing on occupancy of binding interfaces, thus providing both global and molecular views of a system under study.
Collapse
Affiliation(s)
- Christian Dörig
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cathy Marulli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Thomas Peskett
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Norbert Volkmar
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenzo Pantolini
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Camilla Paleari
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Frommelt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
6
|
Goel RK, Bithi N, Emili A. Trends in co-fractionation mass spectrometry: A new gold-standard in global protein interaction network discovery. Curr Opin Struct Biol 2024; 88:102880. [PMID: 38996623 DOI: 10.1016/j.sbi.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Co-fractionation mass spectrometry (CF-MS) uses biochemical fractionation to isolate and characterize macromolecular complexes from cellular lysates without the need for affinity tagging or capture. In recent years, this has emerged as a powerful technique for elucidating global protein-protein interaction networks in a wide variety of biospecimens. This review highlights the latest advancements in CF-MS experimental workflows including machine learning-guided analyses, for uncovering dynamic and high-resolution protein interaction landscapes with enhanced sensitivity, accuracy and throughput, enabling better biophysical characterization of endogenous protein complexes. By addressing challenges and emergent opportunities in the field, this review underscores the transformative potential of CF-MS in advancing our understanding of functional protein interaction networks in health and disease.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA.
| | - Nazmin Bithi
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Andrew Emili
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
7
|
González-Avendaño M, López J, Vergara-Jaque A, Cerda O. The power of computational proteomics platforms to decipher protein-protein interactions. Curr Opin Struct Biol 2024; 88:102882. [PMID: 39003917 DOI: 10.1016/j.sbi.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Adopting computational tools for analyzing extensive biological datasets has profoundly transformed our understanding and interpretation of biological phenomena. Innovative platforms have emerged, providing automated analysis to unravel essential insights about proteins and the complexities of their interactions. These computational advancements align with traditional studies, which employ experimental techniques to discern and quantify physical and functional protein-protein interactions (PPIs). Among these techniques, tandem mass spectrometry is notably recognized for its precision and sensitivity in identifying PPIs. These approaches might serve as important information enabling the identification of PPIs with potential pharmacological significance. This review aims to convey our experience using computational tools for detecting PPI networks and offer an analysis of platforms that facilitate predictions derived from experimental data.
Collapse
Affiliation(s)
- Mariela González-Avendaño
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Joaquín López
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Wang S, Di Y, Yang Y, Salovska B, Li W, Hu L, Yin J, Shao W, Zhou D, Cheng J, Liu D, Yang H, Liu Y. PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals. CELL REPORTS METHODS 2024; 4:100859. [PMID: 39255793 PMCID: PMC11440062 DOI: 10.1016/j.crmeth.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
To support PTM proteomic analysis and annotation in different species, we developed PTMoreR, a user-friendly tool that considers the surrounding amino acid sequences of PTM sites during BLAST, enabling a motif-centric analysis across species. By controlling sequence window similarity, PTMoreR can map phosphoproteomic results between any two species, perform site-level functional enrichment analysis, and generate kinase-substrate networks. We demonstrate that the majority of real P-sites in mice can be inferred from experimentally derived human P-sites with PTMoreR mapping. Furthermore, the compositions of 129 mammalian phosphoproteomes can also be predicted using PTMoreR. The method also identifies cross-species phosphorylation events that occur on proteins with an increased tendency to respond to the environmental factors. Moreover, the classic kinase motifs can be extracted across mammalian species, offering an evolutionary angle for refining current motifs. PTMoreR supports PTM proteomics in non-human species and facilitates quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yin Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Liqiang Hu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahui Yin
- Information Research Institute, Tongji University, Shanghai 200092, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Zhou
- Department of Medicine, Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jingqiu Cheng
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale Univeristy School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
Kim D, Nita-Lazar A. Progress in mass spectrometry approaches to profiling protein-protein interactions in the studies of the innate immune system. JOURNAL OF PROTEINS AND PROTEOMICS 2024; 15:545-559. [PMID: 39380887 PMCID: PMC11460538 DOI: 10.1007/s42485-024-00156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 10/10/2024]
Abstract
Understanding protein-protein interactions (PPIs) is pivotal for deciphering the intricacies of biological processes. Dysregulation of PPIs underlies a spectrum of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions, highlighting the imperative of investigating these interactions for therapeutic advancements. This review delves into the realm of mass spectrometry-based techniques for elucidating PPIs and their profound implications in biological research. Mass spectrometry in the PPI research field not only facilitates the evaluation of protein-protein interaction modulators but also discovers unclear molecular mechanisms and sheds light on both on- and off-target effects, thus aiding in drug development. Our discussion navigates through six pivotal techniques: affinity purification mass spectrometry (AP-MS), proximity labeling mass spectrometry (PL-MS), cross-linking mass spectrometry (XL-MS), size exclusion chromatography coupled with mass spectrometry (SEC-MS), limited proteolysis-coupled mass spectrometry (LiP-MS), and thermal proteome profiling (TPP).
Collapse
Affiliation(s)
- Doeun Kim
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| |
Collapse
|
10
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. A Multiplexed SEC-MS Approach to Systematically Study the Interplay Between Protein Assembly-States and Phosphorylation Events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.12.523793. [PMID: 36711903 PMCID: PMC9882152 DOI: 10.1101/2023.01.12.523793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly-states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly-states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Applying SEC-MX to HEK293 and HCT116 cells, we generated a proof-of-concept dataset mapping thousands of phosphopeptides and their assembly-states. Our analysis revealed intricate relationships between phosphorylation events and assembly-states and generated testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
|
11
|
LIU W, WENG L, GAO M, ZHANG X. [Applications of high performance liquid chromatography-mass spectrometry in proteomics]. Se Pu 2024; 42:601-612. [PMID: 38966969 PMCID: PMC11224944 DOI: 10.3724/sp.j.1123.2023.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 07/06/2024] Open
Abstract
Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.
Collapse
|
12
|
Rosenberger G, Li W, Turunen M, He J, Subramaniam PS, Pampou S, Griffin AT, Karan C, Kerwin P, Murray D, Honig B, Liu Y, Califano A. Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis. Nat Commun 2024; 15:3909. [PMID: 38724493 PMCID: PMC11082183 DOI: 10.1038/s41467-024-47957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. Leveraging progress in proteomic technologies and network-based methodologies, we introduce Virtual Enrichment-based Signaling Protein-activity Analysis (VESPA)-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and use it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogating tumor-specific enzyme/substrate interactions accurately infers kinase and phosphatase activity, based on their substrate phosphorylation state, effectively accounting for signal crosstalk and sparse phosphoproteome coverage. The analysis elucidates time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring, experimentally confirmed by CRISPR knock-out assays, suggesting broad applicability to cancer and other diseases.
Collapse
Affiliation(s)
- George Rosenberger
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing He
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Prem S Subramaniam
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Pampou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron T Griffin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick Kerwin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- Chan Zuckerberg Biohub New York, New York, NY, USA.
| |
Collapse
|
13
|
Kewalramani N, Emili A, Crovella M. State-of-the-art computational methods to predict protein-protein interactions with high accuracy and coverage. Proteomics 2023; 23:e2200292. [PMID: 37401192 DOI: 10.1002/pmic.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Prediction of protein-protein interactions (PPIs) commonly involves a significant computational component. Rapid recent advances in the power of computational methods for protein interaction prediction motivate a review of the state-of-the-art. We review the major approaches, organized according to the primary source of data utilized: protein sequence, protein structure, and protein co-abundance. The advent of deep learning (DL) has brought with it significant advances in interaction prediction, and we show how DL is used for each source data type. We review the literature taxonomically, present example case studies in each category, and conclude with observations about the strengths and weaknesses of machine learning methods in the context of the principal sources of data for protein interaction prediction.
Collapse
Affiliation(s)
- Neal Kewalramani
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| | - Andrew Emili
- OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Mark Crovella
- Department of Computer Science and Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Kitata RB, Yang JC, Chen YJ. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. MASS SPECTROMETRY REVIEWS 2023; 42:2324-2348. [PMID: 35645145 DOI: 10.1002/mas.21781] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Collapse
Affiliation(s)
| | - Jhih-Ci Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Hay BN, Akinlaja MO, Baker TC, Houfani AA, Stacey RG, Foster LJ. Integration of data-independent acquisition (DIA) with co-fractionation mass spectrometry (CF-MS) to enhance interactome mapping capabilities. Proteomics 2023; 23:e2200278. [PMID: 37144656 DOI: 10.1002/pmic.202200278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Proteomics technologies are continually advancing, providing opportunities to develop stronger and more robust protein interaction networks (PINs). In part, this is due to the ever-growing number of high-throughput proteomics methods that are available. This review discusses how data-independent acquisition (DIA) and co-fractionation mass spectrometry (CF-MS) can be integrated to enhance interactome mapping abilities. Furthermore, integrating these two techniques can improve data quality and network generation through extended protein coverage, less missing data, and reduced noise. CF-DIA-MS shows promise in expanding our knowledge of interactomes, notably for non-model organisms (NMOs). CF-MS is a valuable technique on its own, but upon the integration of DIA, the potential to develop robust PINs increases, offering a unique approach for researchers to gain an in-depth understanding into the dynamics of numerous biological processes.
Collapse
Affiliation(s)
- Brenna N Hay
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mopelola O Akinlaja
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Teesha C Baker
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Greg Stacey
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Benyoucef A, Haigh JJ, Brand M. Unveiling the complexity of transcription factor networks in hematopoietic stem cells: implications for cell therapy and hematological malignancies. Front Oncol 2023; 13:1151343. [PMID: 37441426 PMCID: PMC10333584 DOI: 10.3389/fonc.2023.1151343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The functionality and longevity of hematopoietic tissue is ensured by a tightly controlled balance between self-renewal, quiescence, and differentiation of hematopoietic stem cells (HSCs) into the many different blood lineages. Cell fate determination in HSCs is influenced by signals from extrinsic factors (e.g., cytokines, irradiation, reactive oxygen species, O2 concentration) that are translated and integrated by intrinsic factors such as Transcription Factors (TFs) to establish specific gene regulatory programs. TFs also play a central role in the establishment and/or maintenance of hematological malignancies, highlighting the need to understand their functions in multiple contexts. TFs bind to specific DNA sequences and interact with each other to form transcriptional complexes that directly or indirectly control the expression of multiple genes. Over the past decades, significant research efforts have unraveled molecular programs that control HSC function. This, in turn, led to the identification of more than 50 TF proteins that influence HSC fate. However, much remains to be learned about how these proteins interact to form molecular networks in combination with cofactors (e.g. epigenetics factors) and how they control differentiation, expansion, and maintenance of cellular identity. Understanding these processes is critical for future applications particularly in the field of cell therapy, as this would allow for manipulation of cell fate and induction of expansion, differentiation, or reprogramming of HSCs using specific cocktails of TFs. Here, we review recent findings that have unraveled the complexity of molecular networks controlled by TFs in HSCs and point towards possible applications to obtain functional HSCs ex vivo for therapeutic purposes including hematological malignancies. Furthermore, we discuss the challenges and prospects for the derivation and expansion of functional adult HSCs in the near future.
Collapse
Affiliation(s)
- Aissa Benyoucef
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Street L, Rothamel K, Brannan K, Jin W, Bokor B, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Abdou A, Wolin E, Doron-Mandel E, Ahdout J, Mujumdar M, Jovanovic M, Yeo GW. Large-scale map of RNA binding protein interactomes across the mRNA life-cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544225. [PMID: 37333282 PMCID: PMC10274859 DOI: 10.1101/2023.06.08.544225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Messenger RNAs (mRNAs) interact with RNA-binding proteins (RBPs) in diverse ribonucleoprotein complexes (RNPs) during distinct life-cycle stages for their processing and maturation. While substantial attention has focused on understanding RNA regulation by assigning proteins, particularly RBPs, to specific RNA substrates, there has been considerably less exploration leveraging protein-protein interaction (PPI) methodologies to identify and study the role of proteins in mRNA life-cycle stages. To address this gap, we generated an RNA-aware RBP-centric PPI map across the mRNA life-cycle by immunopurification (IP-MS) of ~100 endogenous RBPs across the life-cycle in the presence or absence of RNase, augmented by size exclusion chromatography (SEC-MS). Aside from confirming 8,700 known and discovering 20,359 novel interactions between 1125 proteins, we determined that 73% of our IP interactions are regulated by the presence of RNA. Our PPI data enables us to link proteins to life-cycle stage functions, highlighting that nearly half of the proteins participate in at least two distinct stages. We show that one of the most highly interconnected proteins, ERH, engages in multiple RNA processes, including via interactions with nuclear speckles and the mRNA export machinery. We also demonstrate that the spliceosomal protein SNRNP200 participates in distinct stress granule-associated RNPs and occupies different RNA target regions in the cytoplasm during stress. Our comprehensive RBP-focused PPI network is a novel resource for identifying multi-stage RBPs and exploring RBP complexes in RNA maturation.
Collapse
Affiliation(s)
- Lena Street
- These authors contributed equally
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine Rothamel
- These authors contributed equally
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kristopher Brannan
- These authors contributed equally
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Benjamin Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Bokor BJ, Gorhe D, Jovanovic M, Rosenberger G. Network-centric analysis of co-fractionated protein complex profiles using SECAT. STAR Protoc 2023; 4:102293. [PMID: 37182203 PMCID: PMC10199247 DOI: 10.1016/j.xpro.2023.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023] Open
Abstract
The Size-Exclusion Chromatography Analysis Toolkit (SECAT) elucidates protein complex dynamics using co-fractionated bottom-up mass spectrometry (CF-MS) data. Here, we present a protocol for the network-centric analysis and interpretation of CF-MS profiles using SECAT. We describe the technical steps for preprocessing, scoring, semi-supervised machine learning, and quantification, including common pitfalls and their solutions. We further provide guidance for data export, visualization, and the interpretation of SECAT results to discover dysregulated proteins and interactions, supporting new hypotheses and biological insights. For complete details on the use and execution of this protocol, please refer to Rosenberger et al. (2020).1.
Collapse
Affiliation(s)
- Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - George Rosenberger
- Department of Systems Biology, Columbia University, New York City, NY 10032, USA.
| |
Collapse
|
19
|
O'Reilly FJ, Graziadei A, Forbrig C, Bremenkamp R, Charles K, Lenz S, Elfmann C, Fischer L, Stülke J, Rappsilber J. Protein complexes in cells by AI-assisted structural proteomics. Mol Syst Biol 2023; 19:e11544. [PMID: 36815589 PMCID: PMC10090944 DOI: 10.15252/msb.202311544] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Accurately modeling the structures of proteins and their complexes using artificial intelligence is revolutionizing molecular biology. Experimental data enable a candidate-based approach to systematically model novel protein assemblies. Here, we use a combination of in-cell crosslinking mass spectrometry and co-fractionation mass spectrometry (CoFrac-MS) to identify protein-protein interactions in the model Gram-positive bacterium Bacillus subtilis. We show that crosslinking interactions prior to cell lysis reveals protein interactions that are often lost upon cell lysis. We predict the structures of these protein interactions and others in the SubtiWiki database with AlphaFold-Multimer and, after controlling for the false-positive rate of the predictions, we propose novel structural models of 153 dimeric and 14 trimeric protein assemblies. Crosslinking MS data independently validates the AlphaFold predictions and scoring. We report and validate novel interactors of central cellular machineries that include the ribosome, RNA polymerase, and pyruvate dehydrogenase, assigning function to several uncharacterized proteins. Our approach uncovers protein-protein interactions inside intact cells, provides structural insight into their interaction interfaces, and is applicable to genetically intractable organisms, including pathogenic bacteria.
Collapse
Affiliation(s)
- Francis J O'Reilly
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
- Present address:
Center for Structural Biology, Center for Cancer ResearchNational Cancer Institute (NCI)FrederickMDUSA
| | | | | | - Rica Bremenkamp
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | | | - Swantje Lenz
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
| | - Christoph Elfmann
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | - Lutz Fischer
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | - Juri Rappsilber
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
20
|
Rosenberger G, Li W, Turunen M, He J, Subramaniam PS, Pampou S, Griffin AT, Karan C, Kerwin P, Murray D, Honig B, Liu Y, Califano A. Network-based elucidation of colon cancer drug resistance by phosphoproteomic time-series analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528736. [PMID: 36824919 PMCID: PMC9949144 DOI: 10.1101/2023.02.15.528736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. By leveraging progress in proteomic technologies and network-based methodologies, over the past decade, we developed VESPA-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and used it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogation of tumor-specific enzyme/substrate interactions accurately inferred kinase and phosphatase activity, based on their inferred substrate phosphorylation state, effectively accounting for signal cross-talk and sparse phosphoproteome coverage. The analysis elucidated time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring that was experimentally confirmed by CRISPRko assays, suggesting broad applicability to cancer and other diseases.
Collapse
Affiliation(s)
- George Rosenberger
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing He
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Present address: Regeneron Genetics Center, Tarrytown, NY, USA
| | - Prem S Subramaniam
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Pampou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron T Griffin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick Kerwin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Low TY, Chen YJ, Ishihama Y, Chung MCM, Cordwell S, Poon TCW, Kwon HJ. The Second Asia-Oceania Human Proteome Organization (AOHUPO) Online Education Series on the Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics. Mol Cell Proteomics 2022; 21:100436. [PMID: 36309314 PMCID: PMC9700300 DOI: 10.1016/j.mcpro.2022.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
In 2021, the Asia-Oceania Human Proteome Organization (AOHUPO) initiated a new endeavor named the AOHUPO Online Education Series with the aim to promote scientific education and collaboration, exchange of ideas and culture among the young scientists in the AO region. Following the warm participation, the AOHUPO organized the second series in 2022, with the theme "The Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics". This time, the second AOHUPO Online Education Series was hosted by the UKM Medical Molecular Biology Institute (UMBI) affiliated to the National University of Malaysia (UKM) in Kuala Lumpur, Malaysia on three consecutive Fridays (11th, 18th and 25th of March). More than 300 participants coming from 29 countries/regions registered for this 3-days event. This event provided an amalgamation of six prominent speakers and all participants whose interests lay mainly in applying MS-based and non-MS-based proteomics for clinical investigation.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Max Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stuart Cordwell
- School of Life and Environmental Sciences and Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Terence Chuen Wai Poon
- Pilot Laboratory, Proteomics Core, Institute of Translational Medicine, Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Initiative, Department of Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
22
|
Sharma VS, Fossati A, Ciuffa R, Buljan M, Williams EG, Chen Z, Shao W, Pedrioli PGA, Purcell AW, Martínez MR, Song J, Manica M, Aebersold R, Li C. PCfun: a hybrid computational framework for systematic characterization of protein complex function. Brief Bioinform 2022; 23:6611913. [PMID: 35724564 PMCID: PMC9310514 DOI: 10.1093/bib/bbac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
In molecular biology, it is a general assumption that the ensemble of expressed molecules, their activities and interactions determine biological function, cellular states and phenotypes. Stable protein complexes—or macromolecular machines—are, in turn, the key functional entities mediating and modulating most biological processes. Although identifying protein complexes and their subunit composition can now be done inexpensively and at scale, determining their function remains challenging and labor intensive. This study describes Protein Complex Function predictor (PCfun), the first computational framework for the systematic annotation of protein complex functions using Gene Ontology (GO) terms. PCfun is built upon a word embedding using natural language processing techniques based on 1 million open access PubMed Central articles. Specifically, PCfun leverages two approaches for accurately identifying protein complex function, including: (i) an unsupervised approach that obtains the nearest neighbor (NN) GO term word vectors for a protein complex query vector and (ii) a supervised approach using Random Forest (RF) models trained specifically for recovering the GO terms of protein complex queries described in the CORUM protein complex database. PCfun consolidates both approaches by performing a hypergeometric statistical test to enrich the top NN GO terms within the child terms of the GO terms predicted by the RF models. The documentation and implementation of the PCfun package are available at https://github.com/sharmavaruns/PCfun. We anticipate that PCfun will serve as a useful tool and novel paradigm for the large-scale characterization of protein complex function.
Collapse
Affiliation(s)
- Varun S Sharma
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI) and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Rodolfo Ciuffa
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Marija Buljan
- Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette Luxembourg
| | - Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Anthony W Purcell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Faculty of Science, University of Zurich, Switzerland
| | - Chen Li
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
23
|
Abstract
INTRODUCTION Due to its excellent sensitivity, nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) is the mainstay in proteome research; however, this comes at the expense of limited throughput and robustness. In contrast, micro-flow LC-MS/MS enables high-throughput, robustness, quantitative reproducibility, and precision while retaining a moderate degree of sensitivity. Such features make it an attractive technology for a wide range of proteomic applications. In particular, large-scale projects involving the analysis of hundreds to thousands of samples. AREAS COVERED This review summarizes the history of chromatographic separation in discovery proteomics with a focus on micro-flow LC-MS/MS, discusses the current state-of-the-art, highlights advances in column development and instrumentation, and provides guidance on which LC flow best supports different types of proteomic applications. EXPERT OPINION Micro-flow LC-MS/MS will replace nano-flow LC-MS/MS in many proteomic applications, particularly when sample quantities are not limited and sample cohorts are large. Examples include clinical analyses of body fluids, tissues, drug discovery and chemical biology investigations, plus systems biology projects across all kingdoms of life. When combined with rapid and sensitive MS, intelligent data acquisition, and informatics approaches, it will soon become possible to analyze large cohorts of more than 10,000 samples in a comprehensive and fully quantitative fashion.
Collapse
Affiliation(s)
- Yangyang Bian
- The College of Life Science, Northwest University, Xi'an, P.R. China
| | - Chunli Gao
- The College of Life Science, Northwest University, Xi'an, P.R. China
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| |
Collapse
|
24
|
Liu Y. A peptidoform based proteomic strategy for studying functions of post-translational modifications. Proteomics 2022; 22:e2100316. [PMID: 34878717 PMCID: PMC8959388 DOI: 10.1002/pmic.202100316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Protein post-translational modifications (PTMs) generate an enormous, but as yet undetermined, expansion of the produced proteoforms. In this Viewpoint, we firstly reviewed the concepts of proteoform and peptidoform. We show that many of the current PTM biological investigation and annotation studies largely follow a PTM site-specific rather than proteoform-specific approach. We further illustrate a potentially useful matching strategy in which a particular "modified peptidoform" is matched to the corresponding "unmodified peptidoform" as a reference for the quantitative analysis between samples and conditions. We suggest this strategy has the potential to provide more directly relevant information to learn the PTM site-specific biological functions. Accordingly, we advocate for the wider use of the nomenclature "peptidoform" in future bottom-up proteomic studies.
Collapse
Affiliation(s)
- Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA,Department of Pharmacology, Yale University, School of Medicine, New Haven, CT 06520, USA,Corresponding author:
| |
Collapse
|
25
|
Landeira-Viñuela A, Díez P, Juanes-Velasco P, Lécrevisse Q, Orfao A, De Las Rivas J, Fuentes M. Deepening into Intracellular Signaling Landscape through Integrative Spatial Proteomics and Transcriptomics in a Lymphoma Model. Biomolecules 2021; 11:1776. [PMID: 34944421 PMCID: PMC8699084 DOI: 10.3390/biom11121776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Human Proteome Project (HPP) presents a systematic characterization of the protein landscape under different conditions using several complementary-omic techniques (LC-MS/MS proteomics, affinity proteomics, transcriptomics, etc.). In the present study, using a B-cell lymphoma cell line as a model, comprehensive integration of RNA-Seq transcriptomics, MS/MS, and antibody-based affinity proteomics (combined with size-exclusion chromatography) (SEC-MAP) were performed to uncover correlations that could provide insights into protein dynamics at the intracellular level. Here, 5672 unique proteins were systematically identified by MS/MS analysis and subcellular protein extraction strategies (neXtProt release 2020-21, MS/MS data are available via ProteomeXchange with identifier PXD003939). Moreover, RNA deep sequencing analysis of this lymphoma B-cell line identified 19,518 expressed genes and 5707 protein coding genes (mapped to neXtProt). Among these data sets, 162 relevant proteins (targeted by 206 antibodies) were systematically analyzed by the SEC-MAP approach, providing information about PTMs, isoforms, protein complexes, and subcellular localization. Finally, a bioinformatic pipeline has been designed and developed for orthogonal integration of these high-content proteomics and transcriptomics datasets, which might be useful for comprehensive and global characterization of intracellular protein profiles.
Collapse
Affiliation(s)
- Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, USAL/IBSAL, 37000 Salamanca, Spain; (A.L.-V.); (P.D.); (P.J.-V.); (Q.L.); (A.O.)
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, USAL/IBSAL, 37000 Salamanca, Spain; (A.L.-V.); (P.D.); (P.J.-V.); (Q.L.); (A.O.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, USAL/IBSAL, 37000 Salamanca, Spain; (A.L.-V.); (P.D.); (P.J.-V.); (Q.L.); (A.O.)
| | - Quentin Lécrevisse
- Department of Medicine and General Cytometry Service-Nucleus, USAL/IBSAL, 37000 Salamanca, Spain; (A.L.-V.); (P.D.); (P.J.-V.); (Q.L.); (A.O.)
| | - Alberto Orfao
- Department of Medicine and General Cytometry Service-Nucleus, USAL/IBSAL, 37000 Salamanca, Spain; (A.L.-V.); (P.D.); (P.J.-V.); (Q.L.); (A.O.)
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, USAL/IBSAL, 37000 Salamanca, Spain; (A.L.-V.); (P.D.); (P.J.-V.); (Q.L.); (A.O.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
26
|
Pino L, Schilling B. Proximity labeling and other novel mass spectrometric approaches for spatiotemporal protein dynamics. Expert Rev Proteomics 2021; 18:757-765. [PMID: 34496693 PMCID: PMC8650568 DOI: 10.1080/14789450.2021.1976149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proteins are highly dynamic and their biological function is controlled by not only temporal abundance changes but also via regulated protein-protein interaction networks, which respond to internal and external perturbations. A wealth of novel analytical reagents and workflows allow studying spatiotemporal protein environments with great granularity while maintaining high throughput and ease of analysis. AREAS COVERED We review technology advances for measuring protein-protein proximity interactions with an emphasis on proximity labeling, and briefly summarize other spatiotemporal approaches including protein localization, and their dynamic changes over time, specifically in human cells and mammalian tissues. We focus especially on novel technologies and workflows emerging within the past 5 years. This includes enrichment-based techniques (proximity labeling and crosslinking), separation-based techniques (organelle fractionation and size exclusion chromatography), and finally sorting-based techniques (laser capture microdissection and mass spectrometry imaging). EXPERT OPINION Spatiotemporal proteomics is a key step in assessing biological complexity, understanding refined regulatory mechanisms, and forming protein complexes and networks. Studying protein dynamics across space and time holds promise for gaining deep insights into how protein networks may be perturbed during disease and aging processes, and offer potential avenues for therapeutic interventions, drug discovery, and biomarker development.
Collapse
Affiliation(s)
- Lindsay Pino
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, CA 94945, USA
| |
Collapse
|
27
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
28
|
Skinnider MA, Foster LJ. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Nat Methods 2021; 18:806-815. [PMID: 34211188 DOI: 10.1038/s41592-021-01194-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Co-fractionation mass spectrometry (CF-MS) has emerged as a powerful technique for interactome mapping. However, there is little consensus on optimal strategies for the design of CF-MS experiments or their computational analysis. Here, we reanalyzed a total of 206 CF-MS experiments to generate a uniformly processed resource containing over 11 million measurements of protein abundance. We used this resource to benchmark experimental designs for CF-MS studies and systematically optimize computational approaches to network inference. We then applied this optimized methodology to reconstruct a draft-quality human interactome by CF-MS and predict over 700,000 protein-protein interactions across 27 eukaryotic species or clades. Our work defines new resources to illuminate proteome organization over evolutionary timescales and establishes best practices for the design and analysis of CF-MS studies.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Strategy for high-throughput identification of protein complexes by array-based multi-dimensional liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1652:462351. [PMID: 34174714 DOI: 10.1016/j.chroma.2021.462351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Comprehensive elucidation of the composition of multiprotein complexes in model organisms is essential to understand conserved biological systems, but large-scale mapping physical association networks is still challenging due to limited throughput of present methods. In this work, a strategy coupling array-based online two-dimensional liquid chromatography (array-based 2D-LC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was demonstrated for high throughput and in-depth identification of protein complexes from cultured human HeLa cell extracts. Mixed-bed ion-exchange column was employed as the first dimensional (1stD) separating mode and an array consisting of eight reversed phase columns was developed as the second dimensional (2ndD) mode. Taking advantage of array parallel strategy, this online system showed an 8-fold increase in throughput. After array-based online 2D-LC separation, altogether 256 × 2ndD fractions were collected for further LC-MS/MS analysis. Public databases of protein-protein interaction (PPI) and co-elution curves identified by LC-MS were applied to reconstruct the protein complexes. A rigorous inspection was operated by cataloging the protein complexes into chromatographic fractions to minimize the number of false positives. As result, a total number of 4,436 proteins were identified and 26,092 elution curves were graphed. A network consisting of 47,745 PPIs was established among 2,201 proteins and presented 1,530 putative protein complexes with high confidence. Most of the identified PPIs were linked to diverse biological processes and may reveal further disease mechanism and therapeutic strategy.
Collapse
|
30
|
Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, Gygi MP, Thornock A, Zarraga G, Tam S, Szpyt J, Gassaway BM, Panov A, Parzen H, Fu S, Golbazi A, Maenpaa E, Stricker K, Guha Thakurta S, Zhang T, Rad R, Pan J, Nusinow DP, Paulo JA, Schweppe DK, Vaites LP, Harper JW, Gygi SP. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021; 184:3022-3040.e28. [PMID: 33961781 PMCID: PMC8165030 DOI: 10.1016/j.cell.2021.04.011] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.
Collapse
Affiliation(s)
- Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Raphael J Bruckner
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Joe R Cannon
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kurt Baltier
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fana Gebreab
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Thornock
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Zarraga
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stanley Tam
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brandon M Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Panov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Parzen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sipei Fu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arvene Golbazi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eila Maenpaa
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Keegan Stricker
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ramin Rad
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Pan
- Broad Institute, Cambridge, MA 02142, USA
| | - David P Nusinow
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Bludau I. Discovery-Versus Hypothesis-Driven Detection of Protein-Protein Interactions and Complexes. Int J Mol Sci 2021; 22:4450. [PMID: 33923221 PMCID: PMC8123138 DOI: 10.3390/ijms22094450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Protein complexes are the main functional modules in the cell that coordinate and perform the vast majority of molecular functions. The main approaches to identify and quantify the interactome to date are based on mass spectrometry (MS). Here I summarize the benefits and limitations of different MS-based interactome screens, with a focus on untargeted interactome acquisition, such as co-fractionation MS. Specific emphasis is given to the discussion of discovery- versus hypothesis-driven data analysis concepts and their applicability to large, proteome-wide interactome screens. Hypothesis-driven analysis approaches, i.e., complex- or network-centric, are highlighted as promising strategies for comparative studies. While these approaches require prior information from public databases, also reviewed herein, the available wealth of interactomic data continuously increases, thereby providing more exhaustive information for future studies. Finally, guidance on the selection of interactome acquisition and analysis methods is provided to aid the reader in the design of protein-protein interaction studies.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|