1
|
Stocksdale JT, Leventhal MJ, Lam S, Xu YX, Wang YO, Wang KQ, Tomas R, Faghihmonzavi Z, Raghav Y, Smith C, Wu J, Miramontes R, Sarda K, Johnson H, Shin MG, Huang T, Foster M, Barch M, Armani N, Paiz C, Easter L, Duderstadt E, Vaibhav V, Sundararaman N, Felsenfeld DP, Vogt TF, Van Eyk J, Finkbeiner S, Kaye JA, Fraenkel E, Thompson LM. Intersecting impact of CAG repeat and Huntingtin knockout in stem cell-derived cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639958. [PMID: 40060574 PMCID: PMC11888261 DOI: 10.1101/2025.02.24.639958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding Huntingtin (HTT ) . While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout ( HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2). HTT KO and the CAG repeat expansion influence developmental trajectories of eCNs, with opposing effects on the growth. Network analyses of differentially expressed genes and proteins associated with enriched epigenetic motifs identified subnetworks common to CAG repeat expansion and HTT KO that include neuronal differentiation, cell cycle regulation, and mechanisms related to transcriptional repression and may represent gain-of-function mechanisms that cannot be explained by HTT loss of function alone. A combination of dominant and loss-of-function mechanisms are likely involved in the aberrant neurodevelopmental and neurodegenerative features of HD that can help inform therapeutic strategies.
Collapse
|
2
|
Mondragon-Estrada E, Newburger JW, DePalma SR, Brueckner M, Cleveland J, Chung WK, Gelb BD, Goldmuntz E, Hagler DJ, Huang H, McQuillen P, Miller TA, Panigrahy A, Porter GA, Roberts AE, Rollins CK, Russell MW, Tristani-Firouzi M, Grant PE, Im K, Morton SU. Noncoding variants and sulcal patterns in congenital heart disease: Machine learning to predict functional impact. iScience 2025; 28:111707. [PMID: 39877905 PMCID: PMC11772982 DOI: 10.1016/j.isci.2024.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding de novo variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals. Predicted impact was compared between participants with CHD and a jointly called cohort without CHD. We then assessed the relationship of the predicted impact of ncDNVs with their sulcal folding patterns. ncDNVs predicted to increase H3K9me2 modification were associated with larger disruptions in right parietal sulcal patterns in the CHD cohort. Genes predicted to be regulated by these ncDNVs were enriched for functions related to neuronal development. This highlights the potential of deep learning models to generate hypotheses about the role of noncoding variants in brain development.
Collapse
Affiliation(s)
- Enrique Mondragon-Estrada
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Jane W. Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | | | - Martina Brueckner
- Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - John Cleveland
- Departments of Surgery and Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy K. Chung
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald J. Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick McQuillen
- Departments of Pediatrics and Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas A. Miller
- Department of Pediatrics, Primary Children’s Hospital, University of Utah, Salt Lake City, UT, USA
- Division of Pediatric Cardiology, Maine Medical Center, Portland, ME, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - George A. Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E. Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Caitlin K. Rollins
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mark W. Russell
- Department of Pediatrics, C.S. Mott Children’s Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - P. Ellen Grant
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Kiho Im
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sarah U. Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Peterson JK, Clarke S, Gelb BD, Kasparian NA, Kazazian V, Pieciak K, Pike NA, Setty SP, Uveges MK, Rudd NA. Trisomy 21 and Congenital Heart Disease: Impact on Health and Functional Outcomes From Birth Through Adolescence: A Scientific Statement From the American Heart Association. J Am Heart Assoc 2024; 13:e036214. [PMID: 39263820 DOI: 10.1161/jaha.124.036214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 09/13/2024]
Abstract
Due to improvements in recognition and management of their multisystem disease, the long-term survival of infants, children, and adolescents with trisomy 21 and congenital heart disease now matches children with congenital heart disease and no genetic condition in many scenarios. Although this improved survival is a triumph, individuals with trisomy 21 and congenital heart disease have unique and complex care needs in the domains of physical, developmental, and psychosocial health, which affect functional status and quality of life. Pulmonary hypertension and single ventricle heart disease are 2 known cardiovascular conditions that reduce life expectancy in individuals with trisomy 21. Multisystem involvement with respiratory, endocrine, gastrointestinal, hematological, neurological, and sensory systems can interact with cardiovascular health concerns to amplify adverse effects. Neurodevelopmental, psychological, and functional challenges can also affect quality of life. A highly coordinated interdisciplinary care team model, or medical home, can help address these complex and interactive conditions from infancy through the transition to adult care settings. The purpose of this Scientific Statement is to identify ongoing cardiovascular and multisystem, developmental, and psychosocial health concerns for children with trisomy 21 and congenital heart disease from birth through adolescence and to provide a framework for monitoring and management to optimize quality of life and functional status.
Collapse
|
5
|
Leger BS, Meredith JJ, Ideker T, Sanchez-Roige S, Palmer AA. Rare and common variants associated with alcohol consumption identify a conserved molecular network. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1704-1715. [PMID: 39031522 PMCID: PMC11576244 DOI: 10.1111/acer.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified hundreds of common variants associated with alcohol consumption. In contrast, genetic studies of alcohol consumption that use rare variants are still in their early stages. No prior studies of alcohol consumption have examined whether common and rare variants implicate the same genes and molecular networks, leaving open the possibility that the two approaches might identify distinct biology. METHODS To address this knowledge gap, we used publicly available alcohol consumption GWAS summary statistics (GSCAN, N = 666,978) and whole exome sequencing data (Genebass, N = 393,099) to identify a set of common and rare variants for alcohol consumption. We used gene-based analysis to implicate genes from common and rare variant analyses, which we then propagated onto a shared molecular network using a network colocalization procedure. RESULTS Gene-based analysis of each dataset implicated 294 (common variants) and 35 (rare variants) genes, including ethanol metabolizing genes ADH1B and ADH1C, which were identified by both analyses, and ANKRD12, GIGYF1, KIF21B, and STK31, which were identified in only the rare variant analysis, but have been associated with other neuropsychiatric traits. Network colocalization revealed significant network overlap between the genes identified via common and rare variants. The shared network identified gene families that function in alcohol metabolism, including ADH, ALDH, CYP, and UGT. Seventy-one of the genes in the shared network were previously implicated in neuropsychiatric or substance use disorders but not alcohol-related behaviors (e.g. EXOC2, EPM2A, and CACNG4). Differential gene expression analysis showed enrichment in the liver and several brain regions. CONCLUSIONS Genes implicated by network colocalization identify shared biology relevant to alcohol consumption, which also underlie neuropsychiatric traits and substance use disorders that are comorbid with alcohol use, providing a more holistic understanding of two disparate sources of genetic information.
Collapse
Affiliation(s)
- Brittany S Leger
- Program in Biomedical Sciences, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Willsey HR, Seaby EG, Godwin A, Ennis S, Guille M, Grainger RM. Modelling human genetic disorders in Xenopus tropicalis. Dis Model Mech 2024; 17:dmm050754. [PMID: 38832520 PMCID: PMC11179720 DOI: 10.1242/dmm.050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94518, USA
| | - Eleanor G Seaby
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Annie Godwin
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Sarah Ennis
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Guille
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
8
|
Leger BS, Meredith JJ, Ideker T, Sanchez-Roige S, Palmer AA. Rare and Common Variants Associated with Alcohol Consumption Identify a Conserved Molecular Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582195. [PMID: 38464225 PMCID: PMC10925118 DOI: 10.1101/2024.02.26.582195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of common variants associated with alcohol consumption. In contrast, rare variants have only begun to be studied for their role in alcohol consumption. No studies have examined whether common and rare variants implicate the same genes and molecular networks. To address this knowledge gap, we used publicly available alcohol consumption GWAS summary statistics (GSCAN, N=666,978) and whole exome sequencing data (Genebass, N=393,099) to identify a set of common and rare variants for alcohol consumption. Gene-based analysis of each dataset have implicated 294 (common variants) and 35 (rare variants) genes, including ethanol metabolizing genes ADH1B and ADH1C, which were identified by both analyses, and ANKRD12, GIGYF1, KIF21B, and STK31, which were identified only by rare variant analysis, but have been associated with related psychiatric traits. We then used a network colocalization procedure to propagate the common and rare gene sets onto a shared molecular network, revealing significant overlap. The shared network identified gene families that function in alcohol metabolism, including ADH, ALDH, CYP, and UGT. 74 of the genes in the network were previously implicated in comorbid psychiatric or substance use disorders, but had not previously been identified for alcohol-related behaviors, including EXOC2, EPM2A, CACNB3, and CACNG4. Differential gene expression analysis showed enrichment in the liver and several brain regions supporting the role of network genes in alcohol consumption. Thus, genes implicated by common and rare variants identify shared functions relevant to alcohol consumption, which also underlie psychiatric traits and substance use disorders that are comorbid with alcohol use.
Collapse
Affiliation(s)
- Brittany S Leger
- Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Serrano F, Guffey D, Shekerdemian L, Noll L, Voigt RG, Monteiro S. Early identification of autism spectrum disorder in children with CHD attending a Cardiac Developmental Outcomes Program. Cardiol Young 2024; 34:483-488. [PMID: 37466015 DOI: 10.1017/s1047951123001701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE To determine the prevalence and timing of autism spectrum disorder diagnosis in a cohort of congenital heart disease (CHD) patients receiving neurodevelopmental follow-up and identify associated risk factors. METHOD Retrospective single-centre observational study of 361 children undergoing surgery for CHD during the first 6 months of life. Data abstracted included age at autism spectrum disorder diagnosis, child and maternal demographics, and medical history. RESULTS Autism spectrum disorder was present in 9.1% of children with CHD, with a median age at diagnosis of 34 months and 87.9% male. Prematurity, history of post-operative extracorporeal membrane oxygenation, and seizures were higher among those with autism (p = 0.013, p = 0.023, p = 0.001, respectively). Infants with autism spectrum disorder were older at the time of surgery (54 days vs 13.5 days, p = 0.002), and infants with surgery at ≥ 30 days of age had an increased risk of autism spectrum disorder (OR 2.31; 95% CI =1.12, 4.77, p = 0.023). On multivariate logistic regression analysis, being male (OR 4.85, p = 0.005), surgery ≥ 30 days (OR 2.46, p = 0.025), extracorporeal membrane oxygenation (OR 4.91, p = 0.024), and seizures (OR 4.32, p = 0.003) remained associated with increased odds for autism spectrum disorder. Maternal age, race, ethnicity, and surgical complexity were not associated. CONCLUSIONS Children with CHD in our cohort had more than three times the risk of autism spectrum disorder and were diagnosed at a much earlier age compared to the general population. Several factors (male, surgery at ≥ 30 days, post-operative extracorporeal membrane oxygenation, and seizures) were associated with increased odds of autism. These findings support the importance of offering neurodevelopmental follow-up after cardiac surgery in infancy.
Collapse
Affiliation(s)
- Faridis Serrano
- Department of Pediatrics, Division of Critical Care Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Danielle Guffey
- Baylor College of Medicine, Dan L. Duncan Institute for Clinical and Translational Research, Houston, TX, USA
| | - Lara Shekerdemian
- Department of Pediatrics, Division of Critical Care Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Lisa Noll
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Robert G Voigt
- Department of Pediatrics, Division of Developmental Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Sonia Monteiro
- Department of Pediatrics, Division of Developmental Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Zhao Y, Deng W, Wang Z, Wang Y, Zheng H, Zhou K, Xu Q, Bai L, Liu H, Ren Z, Jiang Z. Genetics of congenital heart disease. Clin Chim Acta 2024; 552:117683. [PMID: 38030030 DOI: 10.1016/j.cca.2023.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
During embryonic development, the cardiovascular system and the central nervous system exhibit a coordinated developmental process through intricate interactions. Congenital heart disease (CHD) refers to structural or functional abnormalities that occur during embryonic or prenatal heart development and is the most common congenital disorder. One of the most common complications in CHD patients is neurodevelopmental disorders (NDD). However, the specific mechanisms, connections, and precise ways in which CHD co-occurs with NDD remain unclear. According to relevant research, both genetic and non-genetic factors are significant contributors to the co-occurrence of sporadic CHD and NDD. Genetic variations, such as chromosomal abnormalities and gene mutations, play a role in the susceptibility to both CHD and NDD. Further research should aim to identify common molecular mechanisms that underlie the co-occurrence of CHD and NDD, possibly originating from shared genetic mutations or shared gene regulation. Therefore, this review article summarizes the current advances in the genetics of CHD co-occurring with NDD, elucidating the application of relevant gene detection techniques. This is done with the aim of exploring the genetic regulatory mechanisms of CHD co-occurring with NDD at the gene level and promoting research and treatment of developmental disorders related to the cardiovascular and central nervous systems.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Wei Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhaoyue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Yanxia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Hongyu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Qian Xu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Le Bai
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Huiting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Ehrler M, Bellinger DC, Cassidy AR, Newburger JW, Calderon J. Social cognition and behavioral outcomes in congenital heart disease: profiles and neuropsychiatric comorbidities. Child Neuropsychol 2023; 29:1041-1063. [PMID: 37017255 DOI: 10.1080/09297049.2023.2196398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Autism spectrum disorders are more prevalent in children with congenital heart disease (CHD) than in the general population. Children with CHD without diagnosed autism are also at increased risk for neurodevelopmental and psychiatric impairments. We characterized social and behavioral outcomes in children with CHD and examined neurodevelopmental and psychiatric comorbidities. Children without diagnosed autism who underwent infant open-heart surgery were eligible. Parent-reports assessed social communication, unusual behaviors, self-regulation, anxiety, and executive function (EF). Neuropsychological tests assessing theory of mind (ToM), working memory, and verbal comprehension were administered. Outcomes were compared to normative data. Linear regressions were estimated with parent-reported scores and ToM abilities as outcomes. Predictors were anxiety symptoms, parent-reported EF, and working memory scores. Covariates were age, parental education, ADHD diagnosis, and verbal comprehension. Clinically relevant comorbidities were identified (N children scoring ≥1SD below the norm). Fifty-six children (10.8 ± 1.8 years) participated virtually. Compared to norms, children with CHD had impaired ToM, more unusual behaviors (p = .002), and less self-regulation (p = .018), but better social communication (p = .014). "Autism-like" traits were positively associated with anxiety symptoms (ß(95% CI) = 0.28(0.08-0.49), p = .008) and worse working memory (ß(95% CI) = -0.36(-0.59-0.13), p = .003). Twenty-one out of 22 children who displayed clinically relevant social and behavioral scores also showed anxiety symptoms (n = 4), impaired EF (n = 7), or both (n = 10). Children with CHD without diagnosed autism have elevated unusual behaviors, lower self-regulation, and impaired ToM. There is a high risk of co-existing anxiety and impaired EF which may increase disease burden. Targeted therapeutic interventions are needed to reduce long-term psychosocial risks in these children.AbbreviationAttention deficit/hyperactivity disorder (ADHD), Autism Spectrum Rating Scale (ASRS), Behavior Rating Inventory of Executive Functions for school-aged children, 2nd Edition (BRIEF-2), cardiopulmonary bypass (CPB), congenital heart disease (CHD), Empathy/Systematizing Quotient Child Version (ESQ-C), Multidimensional Anxiety Scale for Children, 2nd Edition (MASC-2), Social Responsiveness Scale (School-age form), 2nd Edition (SRS-2), theory of mind (ToM), Theory of Mind Task Battery (ToM-TB), Wechsler Intelligence Scale for Children, 5th edition (WISC-V).
Collapse
Affiliation(s)
- Melanie Ehrler
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Departments of Cardiology, Cardiac Neurodevelopmental Program, Boston Children's Hospital, Boston, MA, USA
| | - David C Bellinger
- Departments of Psychiatry, Cardiac Neurodevelopmental Program, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology, Cardiac Neurodevelopmental Program, Boston Children's Hospital, Boston, MA, USA
- Departments of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA
- Departments of Neurology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Adam R Cassidy
- Departments of Psychiatry, Cardiac Neurodevelopmental Program, Boston Children's Hospital, Boston, MA, USA
- Departments of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA
- Departments of Psychiatry and Psychology & Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jane W Newburger
- Departments of Cardiology, Cardiac Neurodevelopmental Program, Boston Children's Hospital, Boston, MA, USA
- Pediatrics, Harvard Medical School, Harvard University, Boston, USA
| | - Johanna Calderon
- Departments of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA
- National Institute of Health and Medical Research, Inserm U1046 PhyMedExp, Cardiac Neurodevelopment Research, University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Bashiri H, Rostamzadeh F, Sabet N, Moslemizadeh A, Rajizadeh MA, Jafari E. Sex-related beneficial effects of exercise on cardiac function and rhythm in autistic rats. Birth Defects Res 2023; 115:1486-1499. [PMID: 37522293 DOI: 10.1002/bdr2.2230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cardiovascular diseases are prevalent in autistic patients. As exercise is useful in the treatment of medical conditions, this study aimed to identify the effect of low-intensity endurance exercise (LIEE) and moderate-intensity endurance exercise (MIEE) on cardiovascular events in autistic rats. METHODS Valproic acid (VPA) was administrated once on gestational day 12.5 to pregnant rats to produce autism-like symptoms in offspring. Thirty-day-old offspring were divided into 12 groups: Male-CTL, Male-VPA, Male-CTL + LIEE, Male-CTL + MIEE, Male-VPA + LIEE, Male-VPA + MIEE, Female-CTL, Female-VPA, Female-CTL + LIEE, Female-CTL + MIEE, Female-VPA + LIEE, and Female-VPA + MIEE. LIEE and MIEE were performed 5 days a week for 30 days. Twenty-four hours after the last exercise session, electrocardiogram and hemodynamic and cardiac function indices were recorded. RESULTS The results indicated that +dp/dt max and contractility index (CI) decreased in the Female-VPA group compared to the Female-CTL group. LIEE increased these parameters in the Female-VPA + LIEE group. However, MIEE normalized CI in the Male-VPA + MIEE compared to the Male-VPA group. Tau increased in the Female-VPA group compared to the Female-CTL group and it decreased in the Female-VPA + MIEE group compared to the Female-VPA group. LIEE and MIEE recovered the reduction of heart rate and the increase in P, R, and T amplitudes in Male-VPA group. LIEE and MIEE increased heart rate variability in the Male-VPA and Female-VPA groups. CONCLUSIONS The findings showed that LIEE and MIEE alleviated cardiac dysfunction and disturbances in heart rhythm in the autistic offspring. Exercise may be recommended as a routine program for autistic patients to prevent and treat the harmful cardiovascular consequences of autism.
Collapse
Affiliation(s)
- Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
13
|
Wright SN, Leger BS, Rosenthal SB, Liu SN, Jia T, Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Garcia Martinez A, George A, Gileta AF, Han W, Netzley AH, King CP, Lamparelli A, Martin C, St Pierre CL, Wang T, Bimschleger H, Richards J, Ishiwari K, Chen H, Flagel SB, Meyer P, Robinson TE, Solberg Woods LC, Kreisberg JF, Ideker T, Palmer AA. Genome-wide association studies of human and rat BMI converge on synapse, epigenome, and hormone signaling networks. Cell Rep 2023; 42:112873. [PMID: 37527041 PMCID: PMC10546330 DOI: 10.1016/j.celrep.2023.112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.
Collapse
Affiliation(s)
- Sarah N Wright
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Program in Biomedical Sciences, University of California San Diego, La Jolla, CA 93093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tongqiu Jia
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anthony George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Alesa H Netzley
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Connor Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Jerry Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14203, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shelly B Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Nayar K, Katz L, Heinrich K, Berger N. Autism spectrum disorder and congenital heart disease: a narrative review of the literature. Cardiol Young 2023; 33:843-853. [PMID: 37231612 DOI: 10.1017/s1047951123000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Individuals born with congenital heart disease (CHD) are at an increased risk of developing neurodevelopmental disorders. Despite this, studies are limited in their investigation of autism spectrum disorder in the context of CHD. This review provides an overview of the literature examining autism spectrum disorder in CHD and discusses strengths, limitations, and future directions. Recent efforts have been made to extrapolate the association between CHD and symptoms of autism. Findings suggest that the core features of autism spectrum disorder are also implicated in children with CHD, namely social-cognitive weaknesses, pragmatic language differences, and social problems. Compared to norm-referenced samples, separate studies have identified divergent and overlapping neuropsychological profiles among both patient groups, yet there are no studies directly comparing the two groups. There is emerging evidence of prevalence rates of autism diagnosis in CHD showing an increased odds of having autism spectrum disorder among children with CHD relative to the general population or matched controls. There also appears to be genetic links to this overlap, with several genes identified as being tied to both CHD and autism. Together, research points to potentially shared underlying mechanisms contributing to the pathophysiology of neurodevelopmental, neuropsychological, and clinical traits in CHD and autism spectrum disorder. Future investigation delineating profiles across these patient populations can fill a significant gap in the literature and aid in treatment approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Kritika Nayar
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Autism Assessment, Research, & Treatment Services, Rush University Medical Center, Chicago, IL, USA
| | - Lindsay Katz
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatric Psychology and Neuropsychology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kimberley Heinrich
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Berger
- Department of Psychiatry & Behavioral Sciences, Autism Assessment, Research, & Treatment Services, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
15
|
Moons P, Van Bulck L, Daelman B, Luyckx K. Mental health in adult congenital heart disease. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2023; 12:100455. [PMID: 39711816 PMCID: PMC11657484 DOI: 10.1016/j.ijcchd.2023.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Mental health issues are common in individuals with congenital heart disease (CHD), stemming from various factors such as traumatic experiences, existential questions, and genetic predisposition. This article provides an overview of the literature on mental disorders and mental health in adults with CHD (ACHD) and presents new data on mental health as a predictor of quality of life (QoL). Empirical data show that disorders such as depression, anxiety, bipolar disorder, psychosis, Attention Deficit Hyperactivity Disorder (ADHD), and autism spectrum disorders occur more often in people with CHD than in healthy counterparts (Graphical abstract). Further, mental health is a strong predictor of QoL. Therefore, psychological interventions should be integrated into CHD care to enhance mental health and QoL of afflicted patients.
Collapse
Affiliation(s)
- Philip Moons
- KU Leuven Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Institute of Health and Care Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Liesbet Van Bulck
- KU Leuven Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Research Foundation Flanders (FWO), Brussels, Belgium
| | - Bo Daelman
- KU Leuven Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Koen Luyckx
- KU Leuven School Psychology and Development in Context, KU Leuven, Leuven, Belgium
- UNIBS, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
16
|
Ma D, Huang JL, Xiong T. Association between congenital heart disease and autism spectrum disorders: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33247. [PMID: 36930132 PMCID: PMC10019193 DOI: 10.1097/md.0000000000033247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD), the most common heart defect in children, refers to congenital disease with abnormal development of the heart or large blood vessels during the fetal period. The researchers suggest that children with CHD show more obvious neurodevelopmental disorders than children with normal development, and children with CHD may have a higher risk of social interaction and communication disorders. This is similar to the characteristics of children with autism spectrum disorder (ASD). However, the association between type of CHD and ASD is not well understood. This systematic review and meta-analysis will reveal the relationship between type of CHD and ASD. METHODS We will search the Cochrane Library, Embase, PubMed, China National Knowledge Infrastructure, Wanfang, Chinese Scientific Journals Full text, and China Biology Medicine disc databases using relevant subject terms and free words. We will use a fixed effects model or random effects model for meta-analysis. The risk of bias will be assessed by the Newcastle-Ottawa Scale and the agency for health care research and quality. Heterogeneity will be tested by Q statistics and I² values. Publication bias will be detected by funnel plots and Egger test. Subgroup analyses and sensitivity analyses will also be used to explore and interpret the heterogeneity. RESULTS The study will afford additional insight into the investigation the association between type of CHD and ASD. CONCLUSIONS The results will provide evidence for the early identification and early intervention of ASD in children with CHD, which may contribute to improving the neurodevelopmental outcome of children with CHD.
Collapse
Affiliation(s)
- Dan Ma
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China
| | - Jing-Lan Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China
| | - Tao Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China
| |
Collapse
|
17
|
Mapping the common gene networks that underlie related diseases. Nat Protoc 2023:10.1038/s41596-022-00797-1. [PMID: 36653526 DOI: 10.1038/s41596-022-00797-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network. This procedure uses network propagation to measure the network 'distance' between gene sets. For colocalized diseases, the network can be further analyzed to extract common gene communities at progressive granularities. In particular, we show how to: (1) obtain input gene sets and a reference gene interaction network; (2) identify common subnetworks of genes that encompass or are in close proximity to all gene sets; (3) use multiscale community detection to identify systems and pathways represented by each common subnetwork to generate a network colocalized systems map; (4) validate identified genes and systems using a mouse variant database; and (5) visualize and further investigate select genes, interactions and systems for relevance to phenotype(s) of interest. We demonstrate the utility of this approach by identifying shared biological mechanisms underlying autism and congenital heart disease. However, this protocol is general and can be applied to any gene sets attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run takes less than an hour. Software and documentation are available at https://github.com/ucsd-ccbb/NetColoc .
Collapse
|
18
|
Chen GT, Geschwind DH. Challenges and opportunities for precision medicine in neurodevelopmental disorders. Adv Drug Deliv Rev 2022; 191:114564. [PMID: 36183905 PMCID: PMC10409256 DOI: 10.1016/j.addr.2022.114564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of disorders, linked because of their origins in brain developmental processes, including diverse conditions across the age span, including autism spectrum disorders (ASD) and schizophrenia (SCZ). Clinical treatment of these disorders has traditionally focused on symptom management, as the severity of developmental disruption varies widely and the precise molecular mechanisms, timing, and progression of these disorders is usually not known. Several hundred genes have been identified as major risk factors for ASD and SCZ, which creates new potential therapeutic avenues, and there is strong evidence that these genes converge upon key molecular pathways, pointing to opportunities for precision medicine. In this review, we focus on forms of ASD and SCZ with known genetic etiologies and discuss advances in research technologies that enable a more systemic understanding of disease progression. We highlight recent advances in targeted clinical treatment and discuss ongoing preclinical efforts as well as new initiatives aimed at developing scalable platforms for NDD precision medicine.
Collapse
Affiliation(s)
- George T Chen
- Department of Neurology, David Geffen School of Medicine, UCLA, United States; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, United States
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, UCLA, United States; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, United States; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, United States; Department of Human Genetics, David Geffen School of Medicine, UCLA, United States; Institute of Precision Health, UCLA, United States.
| |
Collapse
|
19
|
Wang YJ, Zhang X, Lam CK, Guo H, Wang C, Zhang S, Wu JC, Snyder M, Li J. Systems analysis of de novo mutations in congenital heart diseases identified a protein network in the hypoplastic left heart syndrome. Cell Syst 2022; 13:895-910.e4. [PMID: 36167075 PMCID: PMC9671831 DOI: 10.1016/j.cels.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Despite a strong genetic component, only a few genes have been identified in congenital heart diseases (CHDs). We introduced systems analyses to uncover the hidden organization on biological networks of mutations in CHDs and leveraged network analysis to integrate the protein interactome, patient exomes, and single-cell transcriptomes of the developing heart. We identified a CHD network regulating heart development and observed that a sub-network also regulates fetal brain development, thereby providing mechanistic insights into the clinical comorbidities between CHDs and neurodevelopmental conditions. At a small scale, we experimentally verified uncharacterized cardiac functions of several proteins. At a global scale, our study revealed developmental dynamics of the network and observed its association with the hypoplastic left heart syndrome (HLHS), which was further supported by the dysregulation of the network in HLHS endothelial cells. Overall, our work identified previously uncharacterized CHD factors and provided a generalizable framework applicable to studying many other complex diseases. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yuejun Jessie Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Xicheng Zhang
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Hongchao Guo
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA
| | - Cheng Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Sai Zhang
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Radiology, Stanford University School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA; Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA.
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Sempou E, Kostiuk V, Zhu J, Cecilia Guerra M, Tyan L, Hwang W, Camacho-Aguilar E, Caplan MJ, Zenisek D, Warmflash A, Owens NDL, Khokha MK. Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. Nat Commun 2022; 13:6681. [PMID: 36335122 PMCID: PMC9637099 DOI: 10.1038/s41467-022-34363-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022] Open
Abstract
Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identify KCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vm and thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion of kcnh6 leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vm using a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.
Collapse
Affiliation(s)
- Emily Sempou
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M Cecilia Guerra
- Departments of Biosciences and Bioengineering Rice University, 345 Anderson Biological Labs, Houston, TX, 77005, USA
| | - Leonid Tyan
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Woong Hwang
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Elena Camacho-Aguilar
- Departments of Biosciences and Bioengineering Rice University, 345 Anderson Biological Labs, Houston, TX, 77005, USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Aryeh Warmflash
- Departments of Biosciences and Bioengineering Rice University, 345 Anderson Biological Labs, Houston, TX, 77005, USA
| | - Nick D L Owens
- Department of Clinical and Biomedical Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
21
|
A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. Int J Mol Sci 2022; 23:ijms23147578. [PMID: 35886924 PMCID: PMC9323330 DOI: 10.3390/ijms23147578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a global driver of disability, and we currently lack effective therapies to promote neural repair and recovery. TBI is characterized by an initial insult, followed by a secondary injury cascade, including inflammation, excitotoxicity, and glial cellular response. This cascade incorporates molecular mechanisms that represent potential targets of therapeutic intervention. In this study, we investigate the response to focal impact injury to the optic tectum of Xenopus laevis tadpoles. This injury disrupts the blood-brain barrier, causing edema, and produces deficits in visually-driven behaviors which are resolved within one week. Within 3 h, injured brains show a dramatic transcriptional activation of inflammatory cytokines, upregulation of genes associated with inflammation, and recruitment of microglia to the injury site and surrounding tissue. Shortly afterward, astrocytes undergo morphological alterations and accumulate near the injury site, and these changes persist for at least 48 h following injury. Genes associated with astrocyte reactivity and neuroprotective functions also show elevated levels of expression following injury. Since our results demonstrate that the response to focal impact injury in Xenopus resembles the cellular alterations observed in rodents and other mammalian models, the Xenopus tadpole offers a new, scalable vertebrate model for TBI.
Collapse
|
22
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Assimopoulos S, Hammill C, Fernandes DJ, Spencer Noakes TL, Zhou YQ, Nutter LMJ, Ellegood J, Anagnostou E, Sled JG, Lerch JP. Genetic mouse models of autism spectrum disorder present subtle heterogenous cardiac abnormalities. Autism Res 2022; 15:1189-1208. [PMID: 35445787 PMCID: PMC9325472 DOI: 10.1002/aur.2728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) and congenital heart disease (CHD) are linked on a functional and genetic level. Most work has investigated CHD‐related neurodevelopmental abnormalities. Cardiac abnormalities in ASD have been less studied. We investigated the prevalence of cardiac comorbidities relative to ASD genetic contributors. Using high frequency ultrasound imaging, we screened 9 ASD‐related genetic mouse models (Arid1b(+/−), Chd8(+/−), 16p11.2 (deletion), Sgsh(+/−), Sgsh(−/−), Shank3 Δexon 4–9(+/−), Shank3 Δexon 4–9(−/−), Fmr1(−/−), Vps13b(+/−)), and pooled wild‐type littermates (WTs). We measured heart rate (HR), aorta diameter (AoD), thickness and thickening of the left‐ventricular (LV) anterior and posterior walls, LV chamber diameter, fractional shortening, stroke volume and cardiac output, mitral inflow Peak E and A velocity ratio, ascending aorta velocity time integral (VTI). Mutant groups presented small‐scale alterations in cardiac structure and function compared to WTs (LV anterior wall thickness and thickening, chamber diameter and fractional shortening, HR). A greater number of significant differences was observed among mutant groups than between mutant groups and WTs. Mutant groups differed primarily in structural measures (LV chamber diameter and anterior wall thickness, HR, AoD). The mutant groups with most differences to WTs were 16p11.2 (deletion), Fmr1(−/−), Arid1b(+/−). The mutant groups with most differences from other mutant groups were 16p11.2 (deletion), Sgsh(+/−), Fmr1(−/−). Our results recapitulate the associated clinical findings. The characteristic ASD heterogeneity was recapitulated in the cardiac phenotype. The type of abnormal measures (morphological, functional) can highlight common underlying mechanisms. Clinically, knowledge of cardiac abnormalities in ASD can be essential as even non‐lethal abnormalities impact normal development.
Collapse
Affiliation(s)
- Stephania Assimopoulos
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Hammill
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darren J Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tara Leigh Spencer Noakes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauryl M J Nutter
- Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Fisher ME, Segerdell E, Matentzoglu N, Nenni MJ, Fortriede JD, Chu S, Pells TJ, Osumi-Sutherland D, Chaturvedi P, James-Zorn C, Sundararaj N, Lotay VS, Ponferrada V, Wang DZ, Kim E, Agalakov S, Arshinoff BI, Karimi K, Vize PD, Zorn AM. The Xenopus phenotype ontology: bridging model organism phenotype data to human health and development. BMC Bioinformatics 2022; 23:99. [PMID: 35317743 PMCID: PMC8939077 DOI: 10.1186/s12859-022-04636-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.
Collapse
Affiliation(s)
- Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erik Segerdell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicolas Matentzoglu
- Monarch Initiative, London, UK
- Semanticly Ltd, London, UK
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stanley Chu
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Troy J Pells
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | | | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nivitha Sundararaj
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vaneet S Lotay
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dong Zhuo Wang
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Eugene Kim
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Sergei Agalakov
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Bradley I Arshinoff
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Kamran Karimi
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|