1
|
Keith MJ, Al-Duri B, McDonald TO, Leeke GA. Solvent-Based Recycling as a Waste Management Strategy for Fibre-Reinforced Polymers: Current State of the Art. Polymers (Basel) 2025; 17:843. [PMID: 40219233 PMCID: PMC11991026 DOI: 10.3390/polym17070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
The growing use of fibre-reinforced polymers (FRPs) is driving a demand for the development of sustainable end-of-life strategies. Solvolysis, a chemical recycling method using solvents to decompose the polymer matrix, has emerged as a promising approach for reclaiming both fibres and organic compounds from FRP waste. This work provides a comprehensive overview of solvolysis techniques by discussing the environmental benefits and economic opportunities of this technology, summarising the process conditions, and evaluating the characteristics of the recovered products. The economic viability of solvolysis lies in recovering high-value components; predominantly carbon fibres from CFRPs and organic products from GFRPs, which are suitable for reuse or as a feedstock for new composites. Solvolysis can operate under low temperature and pressure (LTP) or high temperature and pressure (HTP) conditions. The choice of solvent, catalyst, reaction time, and temperature is crucial to achieving high resin decomposition while preserving fibre properties. To achieve an economically viable and environmentally beneficial process, it will be essential to optimise these parameters. A key challenge is maintaining the strength and surface properties of the recovered fibres, as degradation in their performance can limit their suitability for high-performance applications. The implication of this is that, without careful consideration of the recycling process, FRPs cannot be fully circular. They will be continuously downgraded into low-value applications and ultimately incinerated or landfilled. This review further explores the diversity of organic products obtained, which can range from monomers to oligomers to complex mixtures. Efficient separation and upgrading techniques, such as distillation and liquid-liquid extraction, are essential to maximise the value of the recovered organics. These additional processing steps are likely to result in greater financial and resource costs within a commercial recycling system. This review concludes with a summary of commercial solvent-based recycling ventures and an outlook on future research directions, which includes the need to develop processes capable of recovering high-value, long carbon fibres. Successful development of such a process would represent a step-change in the value proposition of a carbon fibre recycling industry.
Collapse
Affiliation(s)
- Matthew J. Keith
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (B.A.-D.); (G.A.L.)
| | - Bushra Al-Duri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (B.A.-D.); (G.A.L.)
| | - Tom O. McDonald
- Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Gary A. Leeke
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (B.A.-D.); (G.A.L.)
| |
Collapse
|
2
|
Zhao H, Ye Y, Zhang Y, Yang L, Du W, Wang S, Hou Z. Upcycling of waste polyesters for the development of a circular economy. Chem Commun (Camb) 2024; 60:13832-13857. [PMID: 39504002 DOI: 10.1039/d4cc04780j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The rapidly increasing production and widespread application of plastics have brought convenience to our lives, but they have consumed a huge amount of nonrenewable fossil energy, leading to additional CO2 emissions and generation of an enormous amount of plastic waste (also called white pollution). Chemical recycling and upcycling of waste plastic products (also called waste plastic refineries) into recycled monomers and/or valuable chemicals can decrease the dependence on fossil energy and/or reduce the emission of CO2, enabling the full utilization of carbon resources for the development of a circular economy. Polyesters, a vital class of plastics, are ideal feedstocks for chemical recycling due to the easily depolymerizable ester bonds compared to polyolefins. Among them, polyethylene terephthalate (PET) is the most widely used product, making its chemical recycling to a circular carbon resource a hot topic with significant concerns. In this feature article, recent progress in depolymerization of waste polyesters (PET and/or PET-containing materials) and the subsequent upgrading of depolymerized monomers (or intermediates) to valuable chemicals was reviewed and prospected. Newly reported technologies, such as thermal catalysis, photocatalysis, electrocatalysis, and biocatalysis, were discussed. The achievements, challenges, and potential of industrial applications of chemical recycling of polyesters were addressed.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Yingdan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Yibin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Lei Yang
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Weichen Du
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Songlin Wang
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| |
Collapse
|
3
|
Zheng Q, Suga Y, Su Y, Yamaguchi H, Watanabe M. Simultaneous Material and Chemical Recycling of Waste PET/PE Multi-Layer Films under Hydrothermal Conditions. Angew Chem Int Ed Engl 2024; 63:e202410888. [PMID: 39085051 DOI: 10.1002/anie.202410888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Multi-layer plastic films are widely used in various fields especially for packaging, but due to complex composition, it is very difficult to recover single-material polymers or high-purity monomers from them after usage. In this study, we proposed a hydrothermal process for recycling PET/PE (PET: Polyethylene terephthalate; PE: Polyethylene) films. PET can be hydrolyzed to monomers of terephthalic acid (TPA) and ethylene glycol (EG). Using a hydrothermal system equipped with two filters, PE, TPA, and EG were collected separately, indicating the simultaneous material and chemical recycling of PET/PE films was firstly achieved. At 300 °C and 10 MPa for 60 min, PET conversion reached around 100 %, and TPA yield of 83.0 % was obtained with a high TPA purity of 96.1 %. In addition, the effect of the holding time on PET conversion, TPA yield, EG yield, and TPA purity was studied. This research opened up a new and sustainable pathway to recycle multi-layer plastic films in both lab and industry.
Collapse
Affiliation(s)
- Qingxin Zheng
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshiki Suga
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Yu Su
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hiroya Yamaguchi
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Masaru Watanabe
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
4
|
Jindakaew J, Ratanatawanate C, Erwann J, Kaewsaneha C, Sreearunothai P, Opaprakasit P, Yang RX, Elaissari A. Upcycling of post-consumer polyethylene terephthalate bottles into aluminum-based metal-organic framework adsorbents for efficient orthophosphate removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173394. [PMID: 38788943 DOI: 10.1016/j.scitotenv.2024.173394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
2-Phosphonobutane-1,2,4,-tricarboxylic acid (PBTC) is an orthophosphate compound widely used as an antiscalant chemical and corrosion inhibitor in manufacturing. However, PBTC poses persistent environmental concerns due to its stability and resistance to conventional water treatment. In addressing the issues of PBTC in aquatic systems, Al-based metal-organic frameworks (MOFs) have been developed and applied as sustainable adsorbents. The materials are synthesized from terephthalic acid (TPA) linkers derived from upcycling products of post-consumer polyethylene terephthalate (PET) bottles. The PET-derived linker was prepared using alkaline hydrolysis followed by acidification and employed in forming MIL-53 (Al), with a comparative assessment against the corresponding MOFs made from commercial-grade TPA. The structures and properties of the materials were characterized with microscopic and spectroscopic methods. The synthesized adsorbents achieved a phosphate adsorption capacity of 826 mg/g at pH 5, with kinetics fitting a pseudo-second-order model and isotherm patterns aligning with Langmuir, Freundlich, and Sips models, indicative of diverse adsorption on heterogeneous surfaces. The results highlight the role of electrostatic interactions and hydrogen bonding mechanisms in PBTC adsorption. The eco-friendly materials with high adsorption performance offer an innovative route for sustainable waste management and water purification.
Collapse
Affiliation(s)
- Jirawan Jindakaew
- School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand; Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, Nanohybrids and Coating Research Group, National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jeanneau Erwann
- Centre de Diffractométrie Henri Longchambon, Université Claude Bernard Lyon1, F-69622 Villeurbanne, 43 Bd du 11 novembre 1918, France
| | - Chariya Kaewsaneha
- School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Paiboon Sreearunothai
- School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Pakorn Opaprakasit
- School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand.
| | - Ren-Xuan Yang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1 Sec. 3, Chung-Hsiao E. Rd., Taipei 106344, Taiwan.
| | - Abdelhamid Elaissari
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
5
|
Vogt ETC, Weckhuysen BM. The refinery of the future. Nature 2024; 629:295-306. [PMID: 38720037 DOI: 10.1038/s41586-024-07322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.
Collapse
Affiliation(s)
- Eelco T C Vogt
- Inorganic Chemistry and Catalysis Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Matsumura M, Inagaki J, Yamada R, Tashiro N, Ito K, Sasaki M. Material Separation from Polyester/Cotton Blended Fabrics Using Hydrothermal Treatment. ACS OMEGA 2024; 9:13125-13133. [PMID: 38524496 PMCID: PMC10956089 DOI: 10.1021/acsomega.3c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
The production of textile products is increasing annually, and most of them are disposed of after use without recycling. One of the reasons for the low recycling percentage of discarded textile products is the difficulty of recycling as a single material as these products are produced from a combination of two or more materials. Therefore, a technology to separate materials is necessary to improve the recycling percentage of textile products and to build a sustainable recycling industry. The aim of this study was to separate the most common combination of materials, such as cotton/polyester, in an environmentally friendly technique using hydrothermal treatment with only water. Herein, the optimal treatment conditions for blended fabrics in a high-pressure reactor were studied. Moreover, cotton could be separated by treating the fabrics at 220 to 230 °C for 10 min while maintaining the shape of the fabrics. Additionally, polyester showed a melting point, confirming that polyester could be separated without decomposition into monomers, unlike common chemical recycling. The strength of the separated cotton and the molecular weight of the polyester were evaluated, and a kinetic analysis of the changes due to the treatment was conducted. The activation energy obtained from the Arrhenius plot was 111.8 kJ/mol for PET, which was smaller than 142.6 kJ/mol for cotton. This indicates that the decrease in the molecular weight of PET is more likely to occur than the change in the strength of cotton, suggesting the possibility of separating the materials from the kinetic analysis.
Collapse
Affiliation(s)
- Mei Matsumura
- Tsuruga
Films Technology Center, Toyobo Co., Ltd., 10-24 Toyo-cho, Tsuruga, Fukui 914-8550, Japan
| | - Jun Inagaki
- Frontier
Materials Technology Center, Toyobo Co.,
Ltd., 2-1-1 Katata, Otsu, Shiga 520-0292, Japan
| | - Ryo Yamada
- Graduate
School of Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Natsuko Tashiro
- Graduate
School of Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Katsuya Ito
- Innovation
Division, TOYOBO Co., Ltd., Osaka Umeda Twin Towers South,1-13-1
Umeda, Kita-ku, Osaka 530-0001, Japan
| | - Mitsuru Sasaki
- Institute
of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International
Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
7
|
Gao B, Yao C, Sun X, Yaras A, Mao L. Upcycling discarded polyethylene terephthalate plastics into superior tensile strength and impact resistance materials with a facile one-pot process. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133662. [PMID: 38309171 DOI: 10.1016/j.jhazmat.2024.133662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Discarding PET plastic (dPET) causes serious environmental pollution and enormous fossil resources waste. Processing techniques have mainly focused on the conversion of dPET into monomers, with minimal reports highlighting their transformation into high-value materials. This work intends to transform dPET into a high-performance material with potential alternative value in harsh production environments. The soft and hard segments of the thermoplastic polyester elastomeric (TPEE) molecular structure are reacted and cross-linked with dPET using a facile one-pot process, and two main polymers, (C8H4O4)n and ((C16H18O4)0.76·(C4H8O)0.24)n are generated after the reaction. Through chemical reactions between TPEE and dPET, new characteristic products and chemical bond-crossing structures are formed, while the resulting product particles or multiple TPEE particles are anchored by the high viscosity of dPET, which endows the material with superior tensile strength (34.21 MPa) and impact resistance. The glass transition temperature (Tg) of the material implies that neither the molecular chain nor the chain segments can move, while only the atoms or groups composing the molecule vibrate at their equilibrium positions. The development of this new treatment method may contribute to the reduction of environmental pollution and the improvement of the high-value conversion and utilization of dPET.
Collapse
Affiliation(s)
- Bingying Gao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Yao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xuzhang Sun
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ali Yaras
- Faculty of Engineering, Architecture and Design, Department of Metallurgy and Material Engineering, Bartın University, Bartin, Turkey
| | - Linqiang Mao
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
8
|
Fu Z, Zhang YS, Ji G, Li A. Experimental analysis on products distribution, characterization and mechanism of waste polypropylene (PP) and polyethylene terephthalate (PET) degradation in sub-/supercritical water. CHEMOSPHERE 2024; 350:141045. [PMID: 38154671 DOI: 10.1016/j.chemosphere.2023.141045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Supercritical water (SCW) treatment of plastics is a clean technology in the 'waste-to-energy' path. In this work, PP and PET plastics were processed by sub-/supercritical water. The results showed that temperature was the most important factor of the PP and PET degradation. The influence of factors on the degradation of plastics follows the following order: temperature > residence time > plastic/water ratio. These factors influenced the yield of gas products by promoting or inhibiting various reactions (such as reverse water gas shift reaction, methylation reaction, and Fischer-Tropsch synthesis reaction). Besides, the composition of liquid oil was also analyzed. The main composition of the liquid oil produced by PET was benzoic acid and acetaldehyde, which were generated from the decarboxylation of terephthalic acid (TPA) and dehydration reaction of ethylene glycol (EG). The liquid oil from PP was mainly long-chain olefins, long-chain alkanes, cycloalkanes, etc., which were formed by the interaction of various methyl, alkyl, hydroxyl, and other free radicals. This study could build fundamental theories of plastic mixture treatment.
Collapse
Affiliation(s)
- Zegang Fu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ye Shui Zhang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Guozhao Ji
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Aimin Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
9
|
Yabalak E, Aminzai MT, Gizir AM, Yang Y. A Review: Subcritical Water Extraction of Organic Pollutants from Environmental Matrices. Molecules 2024; 29:258. [PMID: 38202840 PMCID: PMC10780272 DOI: 10.3390/molecules29010258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343 Mersin, Türkiye
| | - Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul 1006, Afghanistan;
| | - Ahmet Murat Gizir
- Department of Chemistry, Faculty of Science, Mersin University, TR-33343 Mersin, Türkiye;
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
10
|
Yan M, Yang Y, Chen F, Hantoko D, Pariatamby A, Kanchanatip E. Development of reusable Ni/γ-Al 2O 3 catalyst for catalytic hydrolysis of waste PET bottles into terephthalic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102560-102573. [PMID: 37668784 DOI: 10.1007/s11356-023-29596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
In order to efficiently recycle waste polyethylene terephthalate (PET) bottles, this study aimed to enhance the hydrolysis process to convert PET bottle into valuable terephthalic acid (TPA) by developing effective and reusable Ni/γ-Al2O3 catalysts. A series of Ni/γ-Al2O3 catalyst was prepared by the impregnation method with different Ni loadings (5-15 wt%) and was characterized by various techniques including XRD, SEM-EDX, and N2 adsorption-desorption. The prepared catalysts were employed in the catalytic hydrolysis of PET under varied influencing factors, namely reaction temperature (220-280 °C), reaction time (20-60 min), and Ni loading. The response surface methodology (RSM) was used to optimize the operating condition to produce the maximum TPA yield, and the optimal values were determined as follows: reaction temperature = 267.07 °C, reaction time = 48.54 min, and Ni loading = 12.90 wt%, giving the highest TPA yield of 97.06%. The R2, F-value, and P-value of the analysis of variance (ANOVA) were 0.9982, 424.96, and <0.0001, respectively, indicating a good fit of the model. The results from XRD and FTIR measurement of the produced TPA indicated the high purity and comparable chemical structures to the TPA standard. In addition, the 12.9Ni/Al catalyst exhibited high catalytic activity in repeated cycles of hydrolysis process of PET and could be regenerated by calcination to restore its catalytic activity. This finding could be a promising alternative for an effective TPA recovery from waste plastic bottles.
Collapse
Affiliation(s)
- Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yayong Yang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Chen
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dwi Hantoko
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Agamuthu Pariatamby
- Jeffrey Sachs Center on Sustainable Development, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Malaysia
| | - Ekkachai Kanchanatip
- Department of Civil and Environmental Engineering, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
- Center of Excellence in Environmental Catalysis and Adsorption, Faculty of Engineering, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
11
|
Muszyński M, Nowicki J, Zygadło M, Dudek G. Comparsion of Catalyst Effectiveness in Different Chemical Depolymerization Methods of Poly(ethylene terephthalate). Molecules 2023; 28:6385. [PMID: 37687213 PMCID: PMC10489063 DOI: 10.3390/molecules28176385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
This paper presents an overview of the chemical recycling methods of polyethylene terephthalate (PET) described in the scientific literature in recent years. The review focused on methods of chemical recycling of PET including hydrolysis and broadly understood alcoholysis of polymer ester bonds including methanolysis, ethanolysis, glycolysis and reactions with higher alcohols. The depolymerization methods used in the literature are described, with particular emphasis on the use of homogeneous and heterogeneous catalysts and ionic liquids, as well as auxiliary substances such as solvents and cosolvents. Important process parameters such as temperature, reaction time, and pressure are compared. Detailed experimental results are presented focusing on reaction yields to allow for easy comparison of applied catalysts and for determination of the most favorable reaction conditions and methods.
Collapse
Affiliation(s)
- Marcin Muszyński
- Łukasiewicz Research Network, Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (M.M.); (J.N.)
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Janusz Nowicki
- Łukasiewicz Research Network, Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (M.M.); (J.N.)
| | - Mateusz Zygadło
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland;
| | - Gabiela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland;
| |
Collapse
|
12
|
Peng Y, Yang J, Deng C, Deng J, Shen L, Fu Y. Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study. Nat Commun 2023; 14:3249. [PMID: 37277365 DOI: 10.1038/s41467-023-38998-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
To reduce environmental pollution and reliance on fossil resources, polyethylene terephthalate as the most consumed synthetic polyester needs to be recycled effectively. However, the existing recycling methods cannot process colored or blended polyethylene terephthalate materials for upcycling. Here we report a new efficient method for acetolysis of waste polyethylene terephthalate into terephthalic acid and ethylene glycol diacetate in acetic acid. Since acetic acid can dissolve or decompose other components such as dyes, additives, blends, etc., Terephthalic acid can be crystallized out in a high-purity form. In addition, Ethylene glycol diacetate can be hydrolyzed to ethylene glycol or directly polymerized with terephthalic acid to form polyethylene terephthalate, completing the closed-loop recycling. Life cycle assessment shows that, compared with the existing commercialized chemical recycling methods, acetolysis offers a low-carbon pathway to achieve the full upcycling of waste polyethylene terephthalate.
Collapse
Affiliation(s)
- Yuantao Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jie Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chenqiang Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Li Shen
- Utrecht University, Copernicus Institute of Sustainable Development, Utrecht, The Netherlands.
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
13
|
Radadiya R, Shahabuddin S, Gaur R. A facile approach toward the synthesis of terephthalic acid via aminolytic depolymerization of
PET
waste and studies on the kinetics of depolymerization. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Rushik Radadiya
- Department of Chemistry, School of Technology Pandit Deendayal Energy University Gandhinagar India
| | - Syed Shahabuddin
- Department of Chemistry, School of Technology Pandit Deendayal Energy University Gandhinagar India
| | - Rama Gaur
- Department of Chemistry, School of Technology Pandit Deendayal Energy University Gandhinagar India
| |
Collapse
|
14
|
Aguado A, Becerra L, Martínez L. Glycolysis optimisation of different complex PET waste with recovery and reuse of ethylene glycol. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Su H, Li T, Wang S, Zhu L, Hu Y. Low-temperature upcycling of PET waste into high-purity H 2 fuel in a one-pot hydrothermal system with in situ CO 2 capture. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130120. [PMID: 36265384 DOI: 10.1016/j.jhazmat.2022.130120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The accumulation and improper disposal of a large amount of plastic waste have exacerbated the deterioration of the global ecosystem and environment. To simplify the complex management system and alleviate the environmental impact of plastic wastes, this study reports a novel one-pot hydrothermal conversion strategy for polyethylene terephthalate (PET), integrating three steps, namely depolymerization, subsequent in-situ aqueous phase reforming, and in-situ CO2 capture. Here, the PET waste was converted directly into the clean high-purity H2 fuel and the disodium terephthalate (Na2-TPA). A high yield of H2 at 23.7 mol/kgPET with ca. 99 % of H2 concentration was obtained at a temperature as low as 240 °C. The feasibility of this strategy in handling real-world PET plastic wastes was demonstrated through a series of tests on beverage bottles, food packaging, and polyester fabric waste. The Na2-TPA crystals produced from the proposed PET conversion system exhibited purity close to that of the standard sample, and thus had the potential to be directly used as an electrode material. Overall, this strategy provides an efficient way to transform PET waste into high-value products and improves the sustainability of the PET waste disposal process.
Collapse
Affiliation(s)
- Hongcai Su
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Tian Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Lingjun Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Yanjun Hu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Agostini I, Ciuffi B, Gallorini R, Rizzo AM, Chiaramonti D, Rosi L. Recovery of Terephthalic Acid from Densified Post-consumer Plastic Mix by HTL Process. Molecules 2022; 27:molecules27207112. [PMID: 36296705 PMCID: PMC9609039 DOI: 10.3390/molecules27207112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
In this study, we investigate the hydrothermal liquefaction (HTL) of PET separated from a densified postconsumer plastic mix, with the aim of recovering its monomer. This second raw material is made up of 90% polyolefin, while the remaining 10% is made up of PET, traces of metals, paper, and glass. After preliminary separation by density in water, two batch experiments were performed on the sunken fraction (composed mainly of PET) in a stainless steel autoclave at 345 °C for 30 and 20 min. Both trials resulted in similar yields of the three phases. In particular, the solid yield is around 76% by weight. After a purification step, this phase was analyzed by UV-Vis, 1H-NMR, and FTIR spectroscopy and resulted to be constituted by terephthalic acid (TPA), a product of considerable industrial interest. The study proved that the hydrothermal liquefaction process coupled with density separation in water is effective for obtaining TPA from a densified postconsumer plastic mix, which can be used for new PET synthesis.
Collapse
Affiliation(s)
- Ilaria Agostini
- Renewable Energy Consortium for R&D (RE-CORD) Viale J. F. Kennedy, 182, 50038 Scarperia e San Piero, Italy
| | - Benedetta Ciuffi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Riccardo Gallorini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Andrea Maria Rizzo
- Renewable Energy Consortium for R&D (RE-CORD) Viale J. F. Kennedy, 182, 50038 Scarperia e San Piero, Italy
| | - David Chiaramonti
- Renewable Energy Consortium for R&D (RE-CORD) Viale J. F. Kennedy, 182, 50038 Scarperia e San Piero, Italy
- “Galileo Ferraris” Energy Department, Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luca Rosi
- Renewable Energy Consortium for R&D (RE-CORD) Viale J. F. Kennedy, 182, 50038 Scarperia e San Piero, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
- Correspondence: ; Tel.: +055-4573458
| |
Collapse
|
17
|
Čolnik M, Kotnik P, Knez Ž, Škerget M. Chemical Recycling of Polyolefins Waste Materials Using Supercritical Water. Polymers (Basel) 2022; 14:polym14204415. [PMID: 36297994 PMCID: PMC9609547 DOI: 10.3390/polym14204415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022] Open
Abstract
In the following work, the hydrothermal degradation of polypropylene waste (PP) using supercritical water (SCW) has been studied. The procedure was carried out in a high-pressure, high-temperature batch reactor at 425 °C and 450 °C from 15 to 240 min. The results show a high yield of the oil (up to 95%) and gas (up to 20%) phases. The gained oil phase was composed of alkanes, alkenes, cycloalkanes, aromatic hydrocarbons, and alcohols. Alkanes and alcohols predominated at 425 °C and shorter reaction times, while the content of aromatic hydrocarbons sharply increased at higher temperatures and times. The higher heating values (HHVs) of oil phases were in the range of liquid fuel (diesel, gasoline, crude and fuel oil), and they were between 48 and 42 MJ/kg. The gas phase contained light hydrocarbons (C1–C6), where propane was the most represented component. The results for PP degradation obtained in the present work were compared to the results of SCW degradation of colored PE waste, and the potential degradation mechanism of polyolefins waste in SCW is proposed. The results allowed to conclude that SCW processing technology represents a promising and eco-friendly tool for the liquefaction of polyolefin (PE and PP) waste into oil with a high conversion rate.
Collapse
Affiliation(s)
- Maja Čolnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Petra Kotnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Department for Chemistry, Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Department for Chemistry, Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Mojca Škerget
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
18
|
Xu Z, Bai X. Microplastic Degradation in Sewage Sludge by Hydrothermal Carbonization: Efficiency and Mechanisms. CHEMOSPHERE 2022; 297:134203. [PMID: 35248590 DOI: 10.1016/j.chemosphere.2022.134203] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 05/09/2023]
Abstract
Sewage sludge is an important vehicle for the diffusion of microplastics (MPs) into the environment, and thus, efficient removal of MPs from sludge is in urgent need. In this study, hydrothermal carbonization (HTC) is proposed and its potential for the removal of MPs from sewage sludge is assessed. Optical microscopy and micro-FTIR analysis showed that the concentrations of MPs in sewage sludge decreased significantly, exhibiting a 79% reduction with a HTC temperature of 260 °C. The potential decomposition mechanism of condensation polymers and addition polymers were investigated through HTC experiments, using polyethylene terephthalate-microplastics (PET-MPs) and polypropylene-microplastics (PP-MPs). During the HTC process, the disintegration efficiency of PET-MPs was significantly higher than PP-MPs, due to the PET ester bond being easily monomerized by hydrolysis. Furthermore, analyses of physicochemical properties of the residual PP-MPs indicated that exposure to heat cause PP to undergo pyrolysis reaction, resulting in the random rupture of polymer molecular chains. Overall, these results provide the first insight into the critical role of HTC in the removal of MPs from sewage sludge, providing a novel solution for reducing the risk posed by MPs in sewage sludge in the future.
Collapse
Affiliation(s)
- Zhenjia Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
19
|
Liu J, Li Y, Jia X, Song K, Hou W, Zheng X, Zhou Q, Xu J, Lu X, Xu G. Catalytic Pyrolysis of Poly(ethylene terephthalate) with Molybdenum Oxides for the Production of Olefins and Terephthalic Acid. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junhong Liu
- Key Laboratory on Resources of Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Li
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Jia
- Key Laboratory on Resources of Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| | - Kuntong Song
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxia Hou
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Zheng
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Zhou
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junli Xu
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangwen Xu
- Key Laboratory on Resources of Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| |
Collapse
|
20
|
Chen Z, Zheng Z, He C, Chen H, Yang M, Xu Y. Precipitation of sodium sulfate and sodium carbonate during supercritical water oxidation/gasification of ethanol. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products. Processes (Basel) 2021. [DOI: 10.3390/pr10010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kinetics of hydrothermal degradation of colorless polyethylene terephthalate (PET) waste was studied at two temperatures (300 °C and 350 °C) and reaction times from 1 to 240 min. PET waste was decomposed in subcritical water (SubCW) by hydrolysis to terephthalic acid (TPA) and ethylene glycol (EG) as the main products. This was followed by further degradation of TPA to benzoic acid by decarboxylation and degradation of EG to acetaldehyde by a dehydration reaction. Furthermore, by-products such as isophthalic acid (IPA) and 1,4-dioxane were also detected in the reaction mixture. Taking into account these most represented products, a simplified kinetic model describing the degradation of PET has been developed, considering irreversible consecutive reactions that take place as parallel in reaction mixture. The reaction rate constants (k1–k6) for the individual reactions were calculated and it was observed that all reactions follow first-order kinetics.
Collapse
|
22
|
Beghetto V, Sole R, Buranello C, Al-Abkal M, Facchin M. Recent Advancements in Plastic Packaging Recycling: A Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4782. [PMID: 34500870 PMCID: PMC8432502 DOI: 10.3390/ma14174782] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023]
Abstract
Today, the scientific community is facing crucial challenges in delivering a healthier world for future generations. Among these, the quest for circular and sustainable approaches for plastic recycling is one of the most demanding for several reasons. Indeed, the massive use of plastic materials over the last century has generated large amounts of long-lasting waste, which, for much time, has not been object of adequate recovery and disposal politics. Most of this waste is generated by packaging materials. Nevertheless, in the last decade, a new trend imposed by environmental concerns brought this topic under the magnifying glass, as testified by the increasing number of related publications. Several methods have been proposed for the recycling of polymeric plastic materials based on chemical or mechanical methods. A panorama of the most promising studies related to the recycling of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS) is given within this review.
Collapse
Affiliation(s)
- Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
| | - Roberto Sole
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| | - Chiara Buranello
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| | - Marco Al-Abkal
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (R.S.); (C.B.); (M.A.-A.); (M.F.)
| |
Collapse
|
23
|
Ghasemi MH, Neekzad N, Ajdari FB, Kowsari E, Ramakrishna S. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43074-43101. [PMID: 34146328 DOI: 10.1007/s11356-021-14925-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Since plastic waste pollution is a severe environmental concern in modern life, the demand for recycling poly(ethylene terephthalate) (PET) has increased due to its versatile applications. Taking advantage of plastic recycling methods creates the chances of minimizing overall crude oil-based materials consumption, and as a result, greenhouse gasses, specifically CO2, will be decreased. Although many review articles have been published on plastic recycling methods from different aspects, a few review articles exist to investigate the organic reaction mechanism in plastic recycling. This review aims to describe other processes for recycling bottle waste of PET, considering the reaction mechanism. Understanding the reaction mechanism offers practical solutions toward protecting the environment against disadvantageous outgrowths rising from PET wastes. PET recycling aims to transform into a monomer/oligomer to produce new materials from plastic wastes. It is an application in various fields, including the food and beverage industry, packaging, and textile applications, to protect the environment from contamination and introduce a green demand for the near future. In this review, the chemical glycolysis process as an outstanding recycling technique for PET is also discussed, emphasizing the catalysts' performance, reaction conditions and methods, degradation agents, the kinetics of reactions, and reprocessing products. In general, a correct understanding of the PET recycling reaction mechanism leads to making the right decisions in waste management.
Collapse
Affiliation(s)
- Mohammad Hadi Ghasemi
- Applied Chemistry Research Group, ACECR-Tehran Organization, PO Box 13145-186, Tehran, Iran
| | - Nariman Neekzad
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran
| | | | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
24
|
Damayanti, Wu HS. Strategic Possibility Routes of Recycled PET. Polymers (Basel) 2021; 13:1475. [PMID: 34063330 PMCID: PMC8125656 DOI: 10.3390/polym13091475] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The polyethylene terephthalate (PET) application has many challenges and potential due to its sustainability. The conventional PET degradation was developed for several technologies to get higher yield products of ethylene glycol, bis(2-hydroxyethyl terephthalate) and terephthalic acid. The chemical recycling of PET is reviewed, such as pyrolysis, hydrolysis, methanolysis, glycolysis, ionic-liquid, phase-transfer catalysis and combination of glycolysis-hydrolysis, glycolysis-methanolysis and methanolysis-hydrolysis. Furthermore, the reaction kinetics and reaction conditions were investigated both theoretically and experimentally. The recycling of PET is to solve environmental problems and find another source of raw material for petrochemical products and energy.
Collapse
Affiliation(s)
- Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Lampung Selatan, Lampung 35365, Indonesia;
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan
| | - Ho-Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan
| |
Collapse
|