1
|
Endsley C, Ali S, Salhadar K, Woodward A, Garland S, Santelli J, Salimabad MZ, Ren L, Yokoo T, Rosado-Mendez IM, Fetzer DT, de Gracia Lux C. Lipid Microparticle-Based Phantoms Modeling Hepatic Steatosis for the Validation of Quantitative Imaging Techniques. SMALL METHODS 2025:e2500043. [PMID: 40277165 DOI: 10.1002/smtd.202500043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) typically presents as "macrovesicular steatosis", where each hepatocyte contains a large fat vacuole (30-50 µm), indicating a more indolent form. In about 20% of cases, "microvesicular steatosis" occurs, with smaller vacuoles (1-15 µm) linked to steatohepatitis, cirrhosis progression, and increased risk of liver cancer. Emerging quantitative ultrasound (QUS) liver fat quantification (QUS-LFQ) tools measure various acoustic properties, but few methods compare techniques and imaging modalities, and the impact of fat vacuole size remains unclear. This study introduces a methodology to create ultrasound (US) phantoms that replicate fat vesicle size in MASLD. While imaging phantoms validate quantitative tools, no model currently links QUS-LFQ measurements to steatosis severity. Existing homogeneous phantoms assessing properties like attenuation, backscatter, and speed of sound overlook the microstructure of steatosis, despite the known effect of particle size on acoustic interactions. Here, agar-based phantoms simulate fat accumulation in steatotic hepatocytes using stable peanut oil droplets as analogs for lipid vacuoles. Microscopy and sizing confirm stability at 4 °C, 23 °C, and 50 °C. Both microscopy and US imaging confirm uniform distribution, with QUS-LFQ measurements reflecting fat content. These phantoms hold promise for validating quantitative imaging methods, particularly for US-based MASLD screening tools.
Collapse
Affiliation(s)
- Connor Endsley
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shariq Ali
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Karim Salhadar
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adam Woodward
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shea Garland
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julien Santelli
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mehdi Zeighami Salimabad
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Liqiang Ren
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takeshi Yokoo
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ivan M Rosado-Mendez
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David T Fetzer
- Department of Radiology, Collaborative for Advanced Clinical Techniques in UltraSound (CACTUS) Lab, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Caroline de Gracia Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
2
|
Dag N, Sarici B, Igci G, Yagin FH, Yilmaz S, Kutlu R. Diagnostic Performance of Ultrasound-Based Liver Fat Quantification With Reference to Magnetic Resonance Imaging Proton Density Fat Fraction and Histology. JOURNAL OF CLINICAL ULTRASOUND : JCU 2025. [PMID: 40231394 DOI: 10.1002/jcu.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE To investigate the diagnostic performance of ultrasound attenuation imaging technology (USAT) in the evaluation of hepatic steatosis using magnetic resonance imaging proton density fat fraction (MRI PDFF) and histology as reference standards. METHODS In this single-center, prospective study, the liver fat content of 117 potential liver donor candidates was assessed by USAT and MRI PDFF between April and August 2024. Intraoperative liver biopsy was performed in 47 liver donors. Cut-off values of 6%, 17%, 22%, and 5%, 33%, 66% were used for mild, moderate, and severe steatosis in MRI PDFF and histology, respectively. The correlation between USAT and MRI PDFF was evaluated using Spearman's rho technique. Receiver operating characteristic (ROC) analysis was performed for the diagnostic performance of USAT, and optimal USAT cut-off values for different grades of hepatosteatosis were obtained. RESULTS There was a very strong correlation between USAT and MRI PDFF (rho = 0.933, p < 0.001). For MRI PDFF values greater than 6%, the area under the curve (AUC) was 0.97 [95% confidence interval (CI): 0.93-0.99] (p < 0.001). USAT cut-off values for differentiating between different grades of liver steatosis were 0.57, 0.68, and 0.76 dB/cm/MHz for mild, moderate, and severe steatosis, with sensitivities of 88.9%, 90.0%, and 86.7%, respectively. For histologically confirmed steatosis greater than 5%, the AUC was 0.94 (95% CI: 0.83-0.99) (p < 0.001), with a cut-off of 0.56 dB/cm/MHz for 84.6% sensitivity. CONCLUSION USAT demonstrates excellent diagnostic accuracy in both the quantification and grading of hepatic steatosis.
Collapse
Affiliation(s)
- Nurullah Dag
- Faculty of Medicine, Department of Radiology, Inonu University, Malatya, Türkiye
| | - Baris Sarici
- Faculty of Medicine, School of Medicine, Department of General Surgery and Liver Transplant Institute, Inonu University, Malatya, Türkiye
| | - Gulnur Igci
- Faculty of Medicine, Department of Radiology, Inonu University, Malatya, Türkiye
| | - Fatma Hilal Yagin
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Inonu University, Malatya, Türkiye
| | - Sezai Yilmaz
- Faculty of Medicine, School of Medicine, Department of General Surgery and Liver Transplant Institute, Inonu University, Malatya, Türkiye
| | - Ramazan Kutlu
- Faculty of Medicine, Department of Radiology, Inonu University, Malatya, Türkiye
| |
Collapse
|
3
|
Cannella R, Agnello F, Porrello G, Spinello AU, Infantino G, Pennisi G, Cabibi D, Petta S, Bartolotta TV. Performance of ultrasound-guided attenuation parameter and 2D shear wave elastography in patients with metabolic dysfunction-associated steatotic liver disease. Eur Radiol 2025; 35:2339-2350. [PMID: 39373742 PMCID: PMC11914239 DOI: 10.1007/s00330-024-11076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE To assess the performance and the reproducibility of ultrasound-guided attenuation parameter (UGAP) and two-dimensional shear wave elastography (2D-SWE) in patients with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS This study included consecutive adult patients with MASLD who underwent ultrasound with UGAP, 2D-SWE and percutaneous liver biopsy. The median values of 12 consecutive UGAP measurements were acquired by two independent radiologists (R1 and R2). Hepatic steatosis was graded by liver biopsy as: (0) < 5%; (1) 5-33%; (2) > 33-66%; (3) > 66%. Areas under the curve (AUCs) were calculated to determine the diagnostic performance. Inter- and intra-observer reliability was assessed with intraclass correlation coefficient (ICC). RESULTS A hundred patients (median age 55.0 years old) with MASLD were prospectively enrolled. At histopathology, 70 and 42 patients had grade ≥ 2 and 3 steatosis, respectively. Median UGAP was 0.78 dB/cm/MHz (IQR/Med: 5.55%). For the diagnosis of grade ≥ 2 steatosis, the AUCs of UGAP were 0.828 (95% CI: 0.739, 0.896) for R1 and 0.779 (95% CI: 0.685, 0.856) for R2. The inter- and intra-operator reliability of UGAP were excellent, with an ICC of 0.92 (95% CI: 0.87-0.95) and 0.95 (95% CI: 0.92-0.96), respectively. The median liver stiffness was 6.76 kPa (IQR/Med: 16.30%). For the diagnosis of advanced fibrosis, 2D-SWE had an AUC of 0.862 (95% CI: 0.757, 0.934), and the optimal cutoff value was > 6.75 kPa with a sensitivity of 80.6% and a specificity of 75.7%. CONCLUSION UGAP and 2D-SWE provide a good performance for the staging of steatosis and fibrosis in patients with MASLD with an excellent intra-operator reliability of UGAP. KEY POINTS Question How well do ultrasound-guided attenuation parameter (UGAP) and two-dimensional shear wave elastography (2D-SWE) perform for quantifying hepatic steatosis and fibrosis? Findings UGAP had a maximum AUC of 0.828 for the diagnosis of grade ≥ 2 steatosis, and 2D-SWE had an AUC of 0.862 for diagnosing advanced fibrosis. Clinical relevance UGAP and 2D-SWE allow rapid, reproducible, and accurate quantification of hepatic steatosis and fibrosis that can be used for the noninvasive assessment of patients with metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo, 90127, Italy.
| | - Francesco Agnello
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Giorgia Porrello
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Alessandro Umberto Spinello
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Grazia Pennisi
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Unit of Anatomic Pathology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| |
Collapse
|
4
|
Tada T, Kumada T, Gotoh T, Niwa F, Ogawa S, Yasuda S, Koshiyama Y, Akita T, Tanaka J, Kodama Y, Toyoda H. Validation of a B-mode ultrasonography scoring system for assessing liver steatosis: A comparison with MRI-Derived proton density fat fraction. Hepatol Res 2025. [PMID: 40318112 DOI: 10.1111/hepr.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
AIM Noninvasive detection of liver steatosis and monitoring its progression are essential for effective therapeutic management. We validated the diagnostic performance of an ultrasonography (US)-based steatotic liver scoring system, derived from the B-mode method and the hepatic steatosis index (HSI) for the detection of liver steatosis, as identified by proton density fat fraction (PDFF) measurements on magnetic resonance imaging (MRI). METHODS A total of 916 patients with chronic liver disease were included in the analysis. RESULTS The median MRI-PDFF value was 4.0% (interquartile range: 2.0-9.7). The distribution of scores (0/1/2/3/4/5/6) according to the US-based steatotic liver scoring system was as follows: 475, 36, 99, 78, 141, 66, and 21, respectively. The median HSI was 32.8 (28.9-37.4). A significant positive association between advancing scores of the US-based steatotic liver scoring system and increasing MRI-PDFF values was observed (p < 0.001). The diagnostic performance of the US-based steatotic liver scoring system and HSI for detecting steatosis grades ≥1, ≥2, and 3, as determined by MRI-PDFF, showed areas under the receiver operating characteristic curve of 0.940 and 0.842 (p < 0.001), 0.949 and 0.847 (p < 0.001), and 0.945 and 0.864 (p < 0.001), respectively. When the cutoff values of the scoring system were set at 2, 3, and 4 for steatosis grades ≥1, ≥2, and 3, the sensitivity and specificity were 90.6% and 90.5%, 92.9% and 83.0%, and 93.3% and 84.0%, respectively. CONCLUSION The B-mode US-based steatotic liver scoring system demonstrated robust diagnostic capability in detecting liver steatosis.
Collapse
Affiliation(s)
- Toshifumi Tada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Kumada
- Gifu Kyoritsu University, Ogaki, Japan
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Fumihiko Niwa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuichi Koshiyama
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tomoyuki Akita
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| |
Collapse
|
5
|
Ferraioli G, Barr RG. Ultrasound evaluation of chronic liver disease. Abdom Radiol (NY) 2025; 50:1158-1170. [PMID: 39292280 DOI: 10.1007/s00261-024-04568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Chronic liver disease is a world-wide epidemic. Any etiology that causes inflammation in the liver will lead to chronic liver disease. Presently, the most common inciting factor worldwide is steatotic liver disease. Recent advances in ultrasound imaging provide a multiparametric ultrasound methodology of diagnosing, staging, and monitoring treatment of chronic liver disease. Elastography has become a standard of care technique for the evaluation of liver fibrosis. Quantitative ultrasound allows for determination of the degree of fatty infiltration of the liver. Portal hypertension is the most important factor in determination of liver decompensation. B-mode findings combined with Doppler, and elastography techniques provide qualitative and quantitative methods of determining clinically significant portal hypertension. A newer method using contrast enhanced ultrasound may allow for a non-invasive quantitative estimation of the portal pressures. This paper reviews the use of multiparametric ultrasound in the evaluation of chronic liver disease including conventional B-mode ultrasound, Doppler, elastography and quantitative ultrasound for estimation of liver fat. The recent guidelines are presented and advised protocols reviewed.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Brambilla 74, 27100, Pavia, Italy.
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
- Southwoods Imaging, 7623 Market Street, Youngstown, OH, 44512, USA
| |
Collapse
|
6
|
Huang YL, Sun C, Wang Y, Cheng J, Wang SW, Wei L, Lu XY, Cheng R, Wang M, Fan JG, Dong Y. Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study. Ultrasonography 2025; 44:134-144. [PMID: 39935289 PMCID: PMC11938800 DOI: 10.14366/usg.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
PURPOSE This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard. METHODS Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated. RESULTS Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001). CONCLUSION Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
Collapse
Affiliation(s)
- Yun-Lin Huang
- Department of Ultrasound, Zhongshan Hospital Fudan University, Shanghai, China
| | - Chao Sun
- Center for Fatty Liver Disease, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Wen Wang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wei
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Wang
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Center for Fatty Liver Disease, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Yagobian SD, Dasyam N, Minervini M, Tublin M, Behari J, Furlan A. Accuracy of Ultrasound-Guided Attenuation Parameter for Diagnosing Hepatic Steatosis. Ultrasound Q 2025; 41:e00702. [PMID: 39715185 DOI: 10.1097/ruq.0000000000000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
ABSTRACT The purpose of this study is to investigate the diagnostic accuracy of a new noninvasive imaging technique, ultrasound-guided attenuation parameter (UGAP), in diagnosing hepatic steatosis. This single-center retrospective study included 81 UGAP studies performed to guide therapy between July 2022 and June 2023 at a large academic medical center. Patients with either liver biopsy or Magnetic resonance-based proton-density fat fraction (MRI-PDFF) within 12 months of US-UGAP imaging, irrespective of order, were included. Patient demographics, body mass index, liver function tests, UGAP values, MRI-PDFF values, and liver biopsy results were obtained from a review of the medical records. Presence of steatosis was defined as PDFF >5.2% or >5% of hepatocytes with steatosis at pathology. Area under the ROC curve (AUROC) was used to measure UGAP accuracy for the detection of hepatic steatosis with statistical significance P < 0.05. There was a significant positive correlation between UGAP and MRI-PDFF (r = 0.463; P < 0.001; confidence interval [CI]: 0.220;0.651). The AUROC to differentiate absence of steatosis (n = 21) from presence of steatosis (n = 32) for UGAP with MRI as the gold standard was 0.760 (P < 0.001; CI: 0.623;0.867). A UGAP value >0.66 had 78% sensitivity and 67% specificity to identify steatosis presence on MRI-PDFF. The AUROC to differentiate absence of steatosis (n = 11) from presence of steatosis (n = 21) for UGAP with pathology as the gold standard was 0.894 (P < 0.001; CI: 0.734;0.974). A UGAP value >0.57 had 100% sensitivity and 64% specificity to identify steatosis presence at pathology. UGAP is an accurate measure for detecting the presence of hepatic steatosis and may be a noninvasive method for metabolic dysfunction-associated steatotic liver disease diagnosis and follow-up.
Collapse
|
8
|
Fujiwara Y, Kuroda H, Abe T, Nagasawa T, Nakaya I, Ito A, Watanabe T, Yusa K, Sato H, Suzuki A, Endo K, Yoshida Y, Oikawa T, Kakisaka K, Sawara K, Tada T, Miyasaka A, Oguri T, Kamiyama N, Matsumoto T. Impact of shear wave elastography and attenuation imaging for predicting life-threatening event in patients with metabolic dysfunction-associated steatotic liver disease. Sci Rep 2025; 15:4547. [PMID: 39915518 PMCID: PMC11802924 DOI: 10.1038/s41598-025-87974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
We aimed to elucidate the value of ultrasound-based biomarkers for predicting the major life-threatening events in metabolic dysfunction-associated steatotic liver disease (MASLD). We established a prospective cohort of 279 patients who underwent two-dimensional shear wave elastography (2D-SWE), ultrasound-guided attenuation parameter (UGAP). An area under the curve analysis was performed to determine the cutoff values of liver stiffness measurements (LSM) by 2D-SWE and attenuation coefficient (AC) by UGAP for a moderate fibrosis and a moderate steatosis. We then classified the cohort into Groups A (low LSM and low AC), B (low LSM and high AC), C (high LSM and high AC), and D (high LSM and low AC). We compared the incidence of events between the groups, and estimated the hazard ratios (HRs) with 95% confidence intervals (CIs). The LSM and AC cut off values were 8.37 kPa and 0.62 dB/cm/MHz, respectively. The cumulative incidence rate in Groups A, B, C, and D were 11.2%, 12.2%, 29.5%, and 31.0%/5years, respectively (p < 0.05). LSM (HRs = 1.20, 95%CIs: 1.09-1.32, p < 0.01), and AC (HRs = 1.62, 95%CIs: 1.04-2.51, p = 0.03) were associated with life-threatening events. A combination of 2D-SWE and UGAP may help identify patients with MASLD at high risk for subsequent life-threatening events.
Collapse
Affiliation(s)
- Yudai Fujiwara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tamami Abe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tomoaki Nagasawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Ippeki Nakaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Asami Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Takuya Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kenji Yusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Akiko Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kei Endo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Yuichi Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Takayoshi Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Keisuke Kakisaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kei Sawara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Toshifumi Tada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Miyasaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Takuma Oguri
- Ultrasound General Imaging, GE HealthCare, Hino, Tokyo, Japan
| | | | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| |
Collapse
|
9
|
Gotoh T, Kumada T, Ogawa S, Niwa F, Toyoda H, Hirooka M, Koizumi Y, Hiasa Y, Akita T, Tanaka J, Shimizu M. Comparison Between Attenuation Measurement and the Controlled Attenuation Parameter for the Assessment of Hepatic Steatosis Based on MRI Images. Liver Int 2025; 45:e16210. [PMID: 39673700 DOI: 10.1111/liv.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS This study prospectively compared the diagnostic accuracies of the improved Attenuation Measurement (iATT) algorithm and the Controlled Attenuation Parameter (CAP) and assessed the interchangeability of iATT with magnetic resonance imaging-derived proton density fat fraction (MRI-derived PDFF). METHODS Patients with chronic liver disease were prospectively enrolled and underwent iATT, CAP and MRI-derived PDFF measurements for hepatic steatosis evaluation. According to MRI-derived PDFF values, steatosis grades were categorised as steatosis (S)0 (< 5.2%), S1 (≥ 5.2%, < 11.3%), S2 (≥ 11.3%, < 17.1%) and S3 (≥ 17.1%). Correlation coefficients (CCs) were determined, diagnostic performances were compared by the area under the receiver operating characteristic curve (AUROC) and agreement was evaluated using the calculated percentage error (PE) and expected limit of agreement (LOA). RESULTS A total of 414 patients (median age 64 years, 203 females) were evaluated. The CC between iATT and MRI-derived PDFF was 0.727 (95% confidence interval [CI] 0.678-0.770), which was higher than that between CAP and MRI-derived PDFF at 0.615 (95% CI 0.551-0.672) (p < 0.001). The AUROCs of iATT for ≥ S1, ≥ S2 and ≥ S3 were 0.901 (95% CI 0.870-0.931), 0.878 (95% CI 0.846-0.910) and 0.839 (95% CI 0.794-0.883), respectively. The diagnostic performances of iATT for ≥ S1 and ≥ S2 showed significantly higher AUROCs than those of CAP (p < 0.001, p = 0.036, respectively). The calculated PE and the expected LOA for CAP and iATT were 38.94% and 22.66% and 32.94% and 30.03%, respectively. CONCLUSIONS iATT was superior to CAP and comparable to MRI-derived PDFF in assessing hepatic steatosis. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN000047411).
Collapse
Affiliation(s)
- Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Fumihiko Niwa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
Gong P, Zhang J, Huang C, Lok UW, Tang S, Liu H, DeRuiter R, Peterson K, Knoll K, Robinson K, Watt K, Callstrom M, Chen S. Novel Quantitative Liver Steatosis Assessment Method With Ultrasound Harmonic Imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:77-85. [PMID: 39315751 PMCID: PMC11634646 DOI: 10.1002/jum.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disorder in Western countries, with approximately 20%-30% of the MASLD patients progressing to severe stages. There is an urgent need for noninvasive, cost-effective, widely accessible, and precise biomarkers to evaluate liver steatosis. This study aims to assess and compare the diagnostic performance of a novel reference frequency method-based ultrasound attenuation coefficient estimation (ACE) in both fundamental (RFM-ACE-FI) and harmonic (RFM-ACE-HI) imaging for detecting and grading liver steatosis. METHODS An Institutional Review Board-approved prospective study was carried out between December 2018 and October 2022. A total number of 130 subjects were enrolled in the study. The correlation between RFM-ACE-HI values and magnetic resonance imaging proton density fat fraction (MRI-PDFF), as well as between RFM-ACE-FI values and MRI-PDFF were calculated. The diagnostic performance of RFM-ACE-FI and RFM-ACE-HI was evaluated using receiver operating characteristic (ROC) curve analysis, as compared to MRI-PDFF. The reproducibility of RFM-ACE-HI was assessed by interobserver agreement between two sonographers. RESULTS A strong correlation was observed between RFM-ACE-HI and MRI-PDFF, with R = 0.88 (95% confidence interval [CI]: 0.83-0.92; P < .001), while the correlation between RFM-ACE-FI and MRI-PDFF was R = 0.65 (95% CI: 0.50-0.76; P < .001). The area under the ROC (AUROC) curve for RFM-ACE-HI in staging liver steatosis grades of S ≥ 1 and S ≥ 2 was 0.97 (95% CI: 0.91-0.99; P < .001) and 0.98 (95% CI: 0.93-1.00; P < .001), respectively, and 0.76 (95% CI: 0.65-0.85) and 0.80 (95% CI: 0.70-0.88) for RFM-ACE-FI, respectively. Great reproducibility was achieved for RFM-ACE-HI, with an interobserver agreement of R = 0.97 (95% CI: 0.94-0.99; P < .001). CONCLUSIONS The novel RFM-ACE-HI method offered high liver steatosis diagnostic accuracy and reproducibility, which has important clinical implications for early disease intervention and treatment evaluation.
Collapse
Affiliation(s)
- Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jingke Zhang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hui Liu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ryan DeRuiter
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendra Peterson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kate Knoll
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Kymberly Watt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Nakamura Y, Hirooka M, Koizumi Y, Yano R, Imai Y, Watanabe T, Yoshida O, Tokumoto Y, Abe M, Hiasa Y. Diagnostic accuracy of ultrasound-derived fat fraction for the detection and quantification of hepatic steatosis in patients with liver biopsy. J Med Ultrason (2001) 2025; 52:85-94. [PMID: 38918301 DOI: 10.1007/s10396-024-01472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE This retrospective study was conducted to investigate the diagnostic accuracy of ultrasound-derived fat fraction (UDFF) for grading hepatic steatosis using liver histology as the reference standard. METHODS Seventy-three patients with liver disease were assessed using UDFF and liver biopsy. Pearson's test and the Bland-Altman plot were used to assess the correlation between UDFF and histological fat content in liver sections. The UDFF cutoff values for histologically proven steatosis grades were determined using the area under the receiver operating characteristic curve (AUROC). RESULTS The median age of the patients was 66 (interquartile range 54-74) years, and 33 (45%) were females. The UDFF values showed a stepwise increase with increasing steatosis grade (p < .001) and were strongly correlated with the histological fat content (r = .7736, p < .001). The Bland-Altman plot revealed a mean bias of 2.384% (95% limit of agreement, - 6.582 to 11.351%) between them. Univariate regression analysis revealed no significant predictors of divergence. The AUROCs for distinguishing steatosis grades of ≥ 1, ≥2, and 3 were 0.956 (95% confidence interval [CI], 0.910-1.00), 0.926 (95% CI, 0.860-0.993), and 0.971 (95% CI, 0.929-1.000), respectively. The UDFF cutoff value of > 6% had a sensitivity and specificity of 94.8% and 82.3%, respectively, for diagnosing steatosis grade ≥ 1. There was no association between UDFF and the fibrosis stage. CONCLUSION UDFF shows strong agreement with the histological fat content and excellent diagnostic accuracy for grading steatosis. UDFF is a promising tool for detecting and quantifying hepatic steatosis in clinical practice.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan.
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Toon, Ehime, 791-0295, Japan
| |
Collapse
|
12
|
Barr RG. Multiparametric Ultrasound for Chronic Liver Disease. Radiol Clin North Am 2025; 63:13-28. [PMID: 39510657 DOI: 10.1016/j.rcl.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Diffuse liver disease is a substantial world-wide problem. With the combination of conventional ultrasound of the abdomen, fat quantification and elastography, appropriate staging of the patient can be assessed. This information allows for the diagnosis of steatosis and detection of fibrosis as well as prognosis, surveillance, and prioritization for treatment. With the potential for reversibility with appropriate treatment accurate assessment for the stage of chronic liver disease is critical.
Collapse
Affiliation(s)
- Richard G Barr
- Northeastern Ohio Medical University, Southwoods Imaging, 7623 Market Street, Youngstown, OH 44512, USA.
| |
Collapse
|
13
|
Marginean CM, Pirscoveanu D, Cazacu SM, Popescu MS, Marginean IC, Iacob GA, Popescu M. Non-Alcoholic Fatty Liver Disease, Awareness of a Diagnostic Challenge—A Clinician’s Perspective. GASTROENTEROLOGY INSIGHTS 2024; 15:1028-1053. [DOI: 10.3390/gastroent15040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease globally. NAFLD is a complex pathology, considered to be the hepatic expression of metabolic syndrome (MetS). It is supposed to become the main indication for liver transplantation in the coming years and is estimated to affect 57.5–74.0% of obese people, 22.5% of children and 52.8% of obese children, with 50% of individuals with type 2 diabetes being diagnosed with NAFLD. Recent research has proved that an increase in adipose tissue insulin resistance index is an important marker of liver injury in patients with NAFLD. Despite being the main underlying cause of incidental liver damage and a growing worldwide health problem, NAFLD is mostly under-appreciated. Currently, NAFLD is considered a multifactorial disease, with various factors contributing to its pathogenesis, associated with insulin resistance and diabetes mellitus, but also with cardiovascular, kidney and endocrine disorders (polycystic ovary syndrome, hypothyroidism, growth hormone deficiency). Hepatitis B and hepatitis C, sleep apnea, inflammatory bowel diseases, cystic fibrosis, viral infections, autoimmune liver diseases and malnutrition are some other conditions in which NAFLD can be found. The aim of this review is to emphasize that, from the clinician’s perspective, NAFLD is an actual and valuable key diagnosis factor for multiple conditions; thus, efforts need to be made in order to increase recognition of the disease and its consequences. Although there is no global consensus, physicians should consider screening people who are at risk of NAFLD. A large dissemination of current concepts on NAFLD and an extensive collaboration between physicians, such as gastroenterologists, internists, cardiologists, diabetologists, nutritionists and endocrinologists, is equally needed to ensure we have the knowledge and resources to address this public health challenge.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Denisa Pirscoveanu
- Neurology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sergiu Marian Cazacu
- Research Center of Gastroenterology and Hepatology, Gastroenterology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marian Sorin Popescu
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Endocrinology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
14
|
De Rosa L, Salvati A, Martini N, Chiappino D, Cappelli S, Mancini M, Demi L, Ghiadoni L, Bonino F, Brunetto MR, Faita F. An ultrasound multiparametric method to quantify liver fat using magnetic resonance as standard reference. Liver Int 2024; 44:3008-3019. [PMID: 39189634 DOI: 10.1111/liv.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND & AIMS There is an unmet need for a reliable and reproducible non-invasive measure of fatty liver content (FLC) for monitoring steatotic liver disease in clinical practice. Sonographic FLC assessment is qualitative and operator-dependent, and the dynamic quantification range of algorithms based on a single ultrasound (US) parameter is unsatisfactory. This study aims to develop and validate a new multiparametric algorithm based on B-mode images to quantify FLC using Magnetic Resonance (MR) values as standard reference. METHODS Patients with elevated liver enzymes and/or bright liver at US (N = 195) underwent FLC evaluation by MR and by US. Five US-derived quantitative features [attenuation rate(AR), hepatic renal-ratio(HR), diaphragm visualization(DV), hepatic-portal-vein-ratio(HPV), portal-vein-wall(PVW)] were combined by mixed linear/exponential regression in a multiparametric model (Steatoscore2.0). One hundred and thirty-four subjects were used for training and 61 for independent validations; score-computation underwent an inter-operator reproducibility analysis. RESULTS The model is based on a mixed linear/exponential combination of 3 US parameters (AR, HR, DV), modelled by 2 equations according to AR values. The computation of FLC by Steatoscore2.0 (mean ± std, 7.91% ± 8.69) and MR (mean ± std, 8.10% ± 10.31) is highly correlated with a low root mean square error in both training/validation cohorts, respectively (R = 0.92/0.86 and RMSE = 5.15/4.62, p < .001). Steatoscore2.0 identified patients with MR-FLC≥5%/≥10% with sensitivity = 93.2%/89.4%, specificity = 86.1%/95.8%, AUROC = 0.958/0.975, respectively and correlated with MR (R = 0.92) significantly (p < .001) better than CAP (R = 0.73). CONCLUSIONS Multiparametric Steatoscore2.0 measures FLC providing values highly comparable with MR. It is reliable, inexpensive, easy to use with any US equipment and qualifies to be tested in larger, prospective studies as new tool for the non-invasive screening and monitoring of FLC.
Collapse
Affiliation(s)
- Laura De Rosa
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | | | | | | | - Simone Cappelli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Lorenzo Ghiadoni
- Emergency Medicine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Maurizia R Brunetto
- Hepatology Unit, Pisa University Hospital, Pisa, Italy
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
15
|
Kakisaka K, Watanabe T, Yoshida Y, Abe H, Yusa K, Sasaki T, Fujiwara Y, Abe T, Suzuki A, Endo K, Oikawa T, Sawara K, Miyasaka A, Kuroda H, Matsumoto T. Body mass index of 23 or greater is relevant to hepatic steatosis and fibrosis in patients with harmful alcohol use. Hepatol Res 2024. [PMID: 39439017 DOI: 10.1111/hepr.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Steatotic liver disease, characterized by a combination of metabolic dysfunction, alcohol use, or specific etiologies, is a leading cause of chronic liver disease. However, the role of metabolic dysfunction in chronic liver disease with harmful alcohol use remains unclear. This study aimed to investigate factors associated with hepatic steatosis and fibrosis in patients with harmful alcohol use. METHODS Over a 2-year period, we registered patients with harmful alcohol use, defined by an Alcohol Use Disorders Identification Test score of 8 or higher. We retrospectively analyzed background information, blood test results, ultrasound-guided attenuation parameter (attenuation coefficient), and liver stiffness measurement. Hepatic steatosis was defined as attenuation coefficient ≥0.65 dB/cm/MHz, and fibrosis as liver stiffness measurement ≥7.5 kPa. RESULTS The study included 131 patients (82% men, median age 59 years). Linear regression analysis revealed significant associations with attenuation coefficient for body mass index ≥23 (0.08, p < 0.0001) and age (-0.002, p = 0.002). Liver stiffness measurement was associated with body mass index ≥23 (2.52, p = 0.001), aspartate aminotransferase (0.02, p = 0.0189), gamma-glutamyl transpeptidase (0.008, p < 0.0001), platelet count (-0.02, p = 0.001), and prothrombin international normalized ratio (26.40, p < 0.0001). Among the four groups classified by the presence or absence of steatosis and fibrosis, patients with fibrosis, but without steatosis, demonstrated the lowest liver reserve. In contrast, patients with both steatosis and fibrosis showed higher aspartate aminotransferase and gamma-glutamyl transpeptidase levels. CONCLUSIONS Body mass index is associated with both hepatic steatosis and fibrosis in patients with harmful alcohol use.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Takuya Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Yuichi Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Hiroaki Abe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Kenji Yusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Tokio Sasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Yudai Fujiwara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Tamami Abe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Akiko Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Kei Endo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Takayoshi Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Kei Sawara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Akio Miyasaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
16
|
Trelsgård AM, Mulabecirovic A, Leiva RA, Nordaas IK, Mjelle AB, Gilja OH, Havre RF. Multiparametric liver assessment in patients successfully treated for hepatitis C: a 4-year follow-up. Scand J Gastroenterol 2024; 59:1184-1191. [PMID: 39219192 DOI: 10.1080/00365521.2024.2388691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hepatitis C virus (HCV) is a major cause of chronic liver disease, in which liver stiffness increases. Liver stiffness measurements (LSM) are therefore essential in diagnosing liver diseases and predicting disease development. The study objective was to perform a comprehensive prospective assessment of the liver before, after and 4 years after treatment for HCV, including an assessment of the long-term outcome of fibrosis, steatosis and inflammation. METHODS AND FINDINGS Patients eligible for HCV treatment were included prospectively in 2018 (n = 47). Liver stiffness was measured using transient elastography and 2D shear-wave elastography (SWE). Blood tests, B-mode ultrasound (US) and SWE, were performed before, after (end of treatment [EOT]), 3 months after (EOT3) and 4 years after treatment (4Y). At the final visit, we added attenuation imaging and shear-wave dispersion slope (SWDS) measurements to assess steatosis and inflammation. Three months after treatment, the sustained virologic response rate was 93%. The median liver stiffness for baseline, EOT, EOT3 and 4Y was 8.1, 5.9, 5.6 and 6.3 kPa, respectively. There was a significant reduction in liver stiffness from baseline to EOT, and from EOT to EOT3. After 4 years, the mean attenuation coefficient (AC) was 0.58 dB/cm/MHz, and the mean SWDS value was 14.3 (m/s)/kHz. CONCLUSION The treatment for HCV was highly effective. Measurements of liver stiffness decreased significantly after treatment and remained low after 4 years. AC measurements indicated low levels of liver steatosis. Shear-wave dispersion values indicated inflammation of the liver, but the clinical implication is undetermined and should be explored in larger studies.Clinicaltrials.gov: NCT03434470. ABBREVIATIONS AC: attenuation coefficient; APRI: aspartate aminotransferase to platelet ratio index; ATI: attenuation imaging; cACLD: compensated advanced chronic liver disease; CAP: controlled attenuation parameter; FIB-4: Fibrosis-4 Index for liver fibrosis; HCC: hepatocellular carcinoma; LSM: liver stiffness measurement; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; SWDS: shear-wave dispersion slope; SWE: shear-wave elastography; US: ultrasound.
Collapse
Affiliation(s)
- Audun M Trelsgård
- Department of Medicine, National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anesa Mulabecirovic
- Department of Medicine, National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | | | - Ingrid K Nordaas
- Department of Medicine, National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders B Mjelle
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Anaesthesia, Stavanger University Hospital, Stavanger, Norway
| | - Odd Helge Gilja
- Department of Medicine, National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Roald F Havre
- Department of Medicine, National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Biris AI, Karamatzanis I, Biri D, Biris IA, Maravegias N. Non-Invasive Ultrasound Diagnostic Techniques for Steatotic Liver Disease and Focal Liver Lesions: 2D, Colour Doppler, 3D, Two-Dimensional Shear Wave Elastography (2D-SWE), and Ultrasound-Guided Attenuation Parameter (UGAP). Cureus 2024; 16:e72087. [PMID: 39440161 PMCID: PMC11494407 DOI: 10.7759/cureus.72087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
We conducted a comprehensive literature review to evaluate the efficacy of combining two-dimensional shear wave elastography (2D-SWE) and ultrasound-guided attenuation parameter (UGAP) in assessing the risk of progressive metabolic dysfunction-associated steatohepatitis (MASH). This narrative review explores the applications of liver ultrasound in diagnosing metabolic liver diseases, focusing on recent advancements in diagnostic techniques for steatotic liver disease (SLD). Liver ultrasound can detect a spectrum of SLD manifestations, from metabolic dysfunction-associated liver disease (MASLD) to fibrosis and cirrhosis. It is also possible to identify inflammation, hepatitis, hepatocellular carcinoma (HCC), and various other liver lesions. Innovative ultrasound applications, including elastography and UGAP, can significantly enhance the diagnostic capabilities of ultrasound in accurately interpreting liver diseases. Understanding the pathogenesis of liver diseases requires a thorough analysis of their etiology and progression in order to develop sound diagnostic and therapeutic approaches. Chronic liver diseases (CLD) vary in origin, with MASLD affecting approximately 20-25% of the general population. The insidious progression of CLD from inflammation to fibrosis and cirrhosis underscores the need for effective early detection methods. This review aims to highlight the evolving role of non-invasive ultrasound-based diagnostic tests in the early detection and staging of liver diseases. By synthesizing current evidence, we aim to provide an updated perspective on the utility of advanced ultrasound techniques in redefining the diagnostic landscape for metabolic liver diseases.
Collapse
Affiliation(s)
- Andreas I Biris
- Clinical Teaching Fellow, Southend University Hospital, Mid and South Essex National Health Service (NHS) Foundation Trust, Southend, GBR
| | | | - Despoina Biri
- Psychiatry, Royal Edinburgh Hospital, National Health Service (NHS), Lothian, GBR
| | | | | |
Collapse
|
18
|
Ferraioli G, Maiocchi L, Barr RG, Roccarina D. Assessing Quality of Ultrasound Attenuation Coefficient Results for Liver Fat Quantification. Diagnostics (Basel) 2024; 14:2171. [PMID: 39410575 PMCID: PMC11475129 DOI: 10.3390/diagnostics14192171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Algorithms for quantifying liver fat content based on the ultrasound attenuation coefficient (AC) are currently available; however, little is known about whether their accuracy increases by applying quality criteria such as the interquartile range-to-median ratio (IQR/M) or whether the median or average AC value should be used. METHODS AC measurements were performed with the Aplio i800 ultrasound system using the attenuation imaging (ATI) algorithm (Canon Medical Systems, Otawara, Tochigi, Japan). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) was the reference standard. The diagnostic performance of the AC median value of 5 measurements (AC-M) was compared to that of AC average value (AC-A) of 5 or 3 acquisitions and different levels of IQR/M for median values or standard deviation/average (SD/A) for average values were also analyzed. Concordance between AC-5M, AC-5A, and AC3A was evaluated with concordance correlation coefficient (CCC). RESULTS A total of 182 individuals (94 females; mean age, 51.2y [SD: 15]) were evaluated. A total of 77 (42.3%) individuals had S0 steatosis (MRI-PDFF < 6%), 75 (41.2%) S1 (MRI-PDFF 6-17%), 10 (5.5%) S2 (MRI-PDFF 17.1-22%), and 20 (11%) S3 (MRI-PDFF ≥ 22.1%). Concordance of AC-5A and AC-3A with AC-5M was excellent (CCC: 0.99 and 0.96, respectively). The correlation with MRI-PDFF was almost perfect. Diagnostic accuracy of AC-5M, AC-5A, and AC3A was not significantly affected by different levels of IQR/M or SD/A. CONCLUSIONS The accuracy of AC in quantifying liver fat content was not affected by reducing the number of acquisitions (from five to three), by using the mean instead of the median, or by reducing the IQR/M or SD/A to ≤5%.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
| | - Laura Maiocchi
- UOC Malattie Infettive, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Richard G. Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH 44272, USA;
- Southwoods Imaging, Youngstown, OH 44512, USA
| | - Davide Roccarina
- SOD Medicina Interna ed Epatologia, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
- Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
19
|
Zhang LX, Dioguardi B, Vilgrain V, Fang C, Sidhu PS, Cloutier G, Tang A. Quantitative Ultrasound and Ultrasound-Based Elastography for Chronic Liver Disease: Practical Guidance, From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024. [PMID: 39259009 DOI: 10.2214/ajr.24.31709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative ultrasound (QUS) and ultrasound-based elastography techniques are emerging as non-invasive effective methods for assessing chronic liver disease. They are more accurate than B-mode imaging alone and more accessible than MRI as alternatives to liver biopsy. Early detection and monitoring of diffuse liver processes such as steatosis, inflammation, and fibrosis play an important role in guiding patient management. The most widely available and validated techniques are attenuation-based QUS techniques and shear-wave elastography techniques that measure shear-wave speed. Other techniques are supported by a growing body of evidence and are increasingly commercialized. This review explains general physical concepts of QUS and ultrasound-based elastography techniques for evaluating chronic liver disease. The first section describes QUS techniques relying on attenuation, backscatter, and speed of sound. The second section discusses ultrasound-based elastography techniques analyzing shear-wave speed, shear-wave dispersion, and shear-wave attenuation. With an emphasis on clinical implementation, each technique's diagnostic performance along with thresholds for various clinical applications are summarized, to provide guidance on analysis and reporting for radiologists. Measurement methods, advantages, and limitations are also discussed. The third section explores developments in quantitative contrast-enhanced and vascular ultrasound that are relevant to chronic liver disease evaluation.
Collapse
Affiliation(s)
- Li Xin Zhang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
| | - Burgio Dioguardi
- Department of Radiology, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France
- Research Center on Inflammation, Université Paris Cité, Paris, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France
| | - Cheng Fang
- Department of Radiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
- Department of Imaging Sciences, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE17EH UK
| | - Paul S Sidhu
- Department of Radiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
- Department of Imaging Sciences, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE17EH UK
| | - Guy Cloutier
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - An Tang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| |
Collapse
|
20
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU, on behalf of The Korean Association for the Study of the Liver (KASL). KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Byenfeldt M. Reply to Letter to Editor: "Altered probe pressure and body position increase diagnostic accuracy for men and women in detecting hepatic steatosis using quantitative ultrasound". Eur Radiol 2024; 34:6002-6004. [PMID: 39112751 DOI: 10.1007/s00330-024-10917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Marie Byenfeldt
- Department of Radiology in Östersund, Östersund, Sweden.
- Department of Diagnostics and Intervention, Umeå university, Umeå, Sweden.
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| |
Collapse
|
22
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Yoshida Y, Yamahira M, Hirooka M, Koizumi Y, Hiasa Y, Tamai T, Kuromatsu R, Matsuzaki T, Suehiro T, Kamada Y, Sumida Y, Tanaka J, Shimizu M. Diagnostic performance of shear wave measurement in the detection of hepatic fibrosis: A multicenter prospective study. Hepatol Res 2024; 54:851-858. [PMID: 38349813 DOI: 10.1111/hepr.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
AIM This study aimed to establish the shear wave measurement (SWM) cut-off value for each fibrosis stage using magnetic resonance (MR) elastography values as a reference standard. METHODS We prospectively analyzed 594 patients with chronic liver disease who underwent SWM and MR elastography. Correlation coefficients (were analyzed, and the diagnostic value was evaluated by the area under the receiver operating characteristic curve. Liver stiffness was categorized by MR elastography as F0 (<2.61 kPa), F1 (≥2.61 kPa, <2.97 kPa, any fibrosis), F2 (≥2.97 kPa, <3.62 kPa, significant fibrosis), F3 (≥3.62 kPa, <4.62 kPa, advanced fibrosis), or F4 (≥4.62 kPa, cirrhosis). RESULTS The median SWM values increased significantly with increasing fibrosis stage (p < 0.001). The correlation coefficient between SWM and MR elastography values was 0.793 (95% confidence interval 0.761-0.821). The correlation coefficients between SWM and MR elastography values significantly decreased with increasing body mass index and skin-capsular distance; skin-capsular distance values were associated with significant differences in sensitivity, specificity, accuracy, or positive predictive value, whereas body mass index values were not. The best cut-off values for any fibrosis, significant fibrosis, advanced fibrosis, and cirrhosis were 6.18, 7.09, 8.05, and 10.89 kPa, respectively. CONCLUSIONS This multicenter study in a large number of patients established SWM cut-off values for different degrees of fibrosis in chronic liver diseases using MR elastography as a reference standard. It is expected that these cut-off values will be applied to liver diseases in the future.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Suita, Japan
| | - Masahiro Yamahira
- Department of Clinical Laboratory Medicine, Suita Municipal Hospital, Suita, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tsutomu Tamai
- Department of Gastroenterology, Kagoshima City Hospital, Kagoshima, Japan
| | - Ryoko Kuromatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshio Sumida
- Graduate School of Healthcare Management, International University of Health and Welfare, Minatoku, Tokyo, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
23
|
Byenfeldt M, Kihlberg J, Nasr P, Grönlund C, Lindam A, Bartholomä WC, Lundberg P, Ekstedt M. Altered probe pressure and body position increase diagnostic accuracy for men and women in detecting hepatic steatosis using quantitative ultrasound. Eur Radiol 2024; 34:5989-5999. [PMID: 38459346 PMCID: PMC11364715 DOI: 10.1007/s00330-024-10655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVES To evaluate the diagnostic performance of ultrasound guided attenuation parameter (UGAP) for evaluating liver fat content with different probe forces and body positions, in relation to sex, and compared with proton density fat fraction (PDFF). METHODS We prospectively enrolled a metabolic dysfunction-associated steatotic liver disease (MASLD) cohort that underwent UGAP and PDFF in the autumn of 2022. Mean UGAP values were obtained in supine and 30° left decubitus body position with normal 4 N and increased 30 N probe force. The diagnostic performance was evaluated by the area under the receiver operating characteristic curve (AUC). RESULTS Among 60 individuals (mean age 52.9 years, SD 12.9; 30 men), we found the best diagnostic performance with increased probe force in 30° left decubitus position (AUC 0.90; 95% CI 0.82-0.98) with a cut-off of 0.58 dB/cm/MHz. For men, the best performance was in supine (AUC 0.91; 95% CI 0.81-1.00) with a cut-off of 0.60 dB/cm/MHz, and for women, 30° left decubitus position (AUC 0.93; 95% CI 0.83-1.00), with a cut-off 0.56 dB/cm/MHz, and increased 30 N probe force for both genders. No difference was in the mean UGAP value when altering body position. UGAP showed good to excellent intra-reproducibility (Intra-class correlation 0.872; 95% CI 0.794-0.921). CONCLUSION UGAP provides excellent diagnostic performance to detect liver fat content in metabolic dysfunction-associated steatotic liver diseases, with good to excellent intra-reproducibility. Regardless of sex, the highest diagnostic accuracy is achieved with increased probe force with men in supine and women in 30° left decubitus position, yielding different cut-offs. CLINICAL RELEVANCE STATEMENT The ultrasound method ultrasound-guided attenuation parameter shows excellent diagnostic accuracy and performs with good to excellent reproducibility. There is a possibility to alter body position and increase probe pressure, and different performances for men and women should be considered for the highest accuracy. KEY POINTS • There is a possibility to alter body position when performing the ultrasound method ultrasound-guided attenuation parameter. • Increase probe pressure for the highest accuracy. • Different performances for men and women should be considered.
Collapse
Affiliation(s)
- Marie Byenfeldt
- Department of Radiology in Östersund, Östersund, Sweden.
- Department of Radiation Science, Umeå University, Umeå, Sweden.
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Johan Kihlberg
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology in Linköping, Linköping, Sweden
| | - Patrik Nasr
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Anna Lindam
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Wolf C Bartholomä
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology in Linköping, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiation Physics, Linköping University, Linköping, Sweden
- Department of Medical and Health Science in Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Ferraioli G, Barr RG, Berzigotti A, Sporea I, Wong VWS, Reiberger T, Karlas T, Thiele M, Cardoso AC, Ayonrinde OT, Castera L, Dietrich CF, Iijima H, Lee DH, Kemp W, Oliveira CP, Sarin SK. WFUMB Guidelines/Guidance on Liver Multiparametric Ultrasound. Part 2: Guidance on Liver Fat Quantification. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1088-1098. [PMID: 38658207 DOI: 10.1016/j.ultrasmedbio.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The World Federation for Ultrasound in Medicine and Biology (WFUMB) has promoted the development of this document on multiparametric ultrasound. Part 2 is a guidance on the use of the available tools for the quantification of liver fat content with ultrasound. These are attenuation coefficient, backscatter coefficient, and speed of sound. All of them use the raw data of the ultrasound beam to estimate liver fat content. This guidance has the aim of helping the reader in understanding how they work and interpret the results. Confounding factors are discussed and a standardized protocol for measurement acquisition is suggested to mitigate them. The recommendations were based on published studies and experts' opinion but were not formally graded because the body of evidence remained low at the time of drafting this document.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Richard Gary Barr
- Department of Radiology, Northeastern Ohio Medical University, Youngstown, OH, USA
| | - Annalisa Berzigotti
- Department for Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ioan Sporea
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Center for Advanced Research in Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Thomas Karlas
- Department of Medicine II, Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
| | - Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ana Carolina Cardoso
- Hepatology Division, School of Medicine, Federal University of Rio de Janeiro, Clementino, Fraga Filho Hospital, Rio de Janeiro, RJ, Brazil
| | - Oyekoya Taiwo Ayonrinde
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Crawley, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Laurent Castera
- Université Paris-Cité, Inserm UMR1149, Centre de Recherche sur l'Inflammation, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance-Publique Hôpitaux de Paris, Clichy, France
| | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permancence, Bern, Switzerland
| | - Hiroko Iijima
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Dong Ho Lee
- Department of Radiology, College of Medicine, Seoul National University Hospital, Seoul National University, Seoul, Republic of Korea
| | - William Kemp
- Department of Gastroenterology, Alfred Hospital, Melbourne, Australia; Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Claudia P Oliveira
- Gastroenterology Department, Laboratório de Investigação (LIM07), Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
25
|
Ogawa S, Kumada T, Gotoh T, Niwa F, Toyoda H, Tanaka J, Shimizu M. A comparative study of hepatic steatosis using two different qualitative ultrasound techniques measured based on magnetic resonance imaging-derived proton density fat fraction. Hepatol Res 2024; 54:638-654. [PMID: 38294946 DOI: 10.1111/hepr.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
AIM This study aimed to evaluate the diagnostic performance of attenuation measurement (ATT; dual-frequency method) and improved algorithm of ATT (iATT; reference method) for the assessment of hepatic steatosis using magnetic resonance imaging (MRI)-derived proton density fat fraction (PDFF) as the reference standard. METHODS We prospectively analyzed 427 patients with chronic liver disease who underwent ATT, iATT, or MRI-derived PDFF. Correlation coefficients were analyzed, and diagnostic values were evaluated by area under the receiver operating characteristic curve (AUROC). The steatosis grade was categorized as S0 (<5.2%), S1 (≥5.2%, <11.3%), S2 (≥11.3%, <17.1%), and S3 (≥17.1%) according to MRI-derived PDFF values. RESULTS The median ATT and iATT values were 0.61 dB/cm/MHz (interquartile range 0.55-0.67 dB/cm/MHz) and 0.66 dB/cm/MHz (interquartile range 0.57-0.77 dB/cm/MHz). ATT and iATT values increased significantly as the steatosis grade increased in the order S0, S1, S2, and S3 (p < 0.001). The correlation coefficients between ATT or iATT values and MRI-derived PDFF values were 0.533 (95% confidence interval [CI] 0.477-0.610) and 0.803 (95% CI 0.766-0.834), with a significant difference between them (p < 0.001). For the detection of hepatic steatosis of ≥S1, ≥S2, and ≥S3, iATT yielded AUROCs of 0.926 (95% CI 0.901-0.951), 0.913 (95% CI 0.885-0.941), and 0.902 (95% CI 0.869-0.935), with significantly higher AUROC values than for ATT (p < 0.001, p < 0.001, p = 0.001). CONCLUSION iATT showed excellent diagnostic performance for hepatic steatosis, and was strongly correlated with MRI-derived PDFF, with AUROCs of ≥0.900.
Collapse
Affiliation(s)
- Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Gifu, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Fumihiko Niwa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
26
|
Hirooka M, Ogawa S, Koizumi Y, Yoshida Y, Goto T, Yasuda S, Yamahira M, Tamai T, Kuromatsu R, Matsuzaki T, Suehiro T, Kamada Y, Sumida Y, Hiasa Y, Toyoda H, Kumada T. iATT liver fat quantification for steatosis grading by referring to MRI proton density fat fraction: a multicenter study. J Gastroenterol 2024; 59:504-514. [PMID: 38553657 PMCID: PMC11128405 DOI: 10.1007/s00535-024-02096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/03/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Several preliminary reports have suggested the utility of ultrasound attenuation coefficient measurements based on B-mode ultrasound, such as iATT, for diagnosing steatotic liver disease. Nonetheless, evidence supporting such utility is lacking. This prospective study aimed to investigate whether iATT is highly concordant with magnetic resonance imaging (MRI)-based proton density fat fraction (MRI-PDFF) and could well distinguish between steatosis grades. METHODS A cohort of 846 individuals underwent both iATT and MRI-PDFF assessments. Steatosis grade was defined as grade 0 with MRI-PDFF < 5.2%, grade 1 with 5.2% MRI-PDFF < 11.3%, grade 2 with 11.3% MRI-PDFF < 17.1%, and grade 3 with MRI-PDFF of 17.1%. The reproducibility of iATT and MRI-PDFF was evaluated using the Bland-Altman analysis and intraclass correlation coefficients, whereas the diagnostic performance of each steatosis grade was examined using receiver operating characteristic analysis. RESULTS The Bland-Altman analysis indicated excellent reproducibility with minimal fixed bias between iATT and MRI-PDFF. The area under the curve for distinguishing steatosis grades 1, 2, and 3 were 0.887, 0.882, and 0.867, respectively. A skin-to-capsula distance of ≥ 25 mm was identified as the only significant factor causing the discrepancy. No interaction between MRI-logPDFF and MRE-LSM on iATT values was observed. CONCLUSIONS Compared to MRI-PDFF, iATT showed excellent diagnostic accuracy in grading steatosis. iATT could be used as a diagnostic tool instead of MRI in clinical practice and trials. Trial registration This study was registered in the UMIN Clinical Trials Registry (UMIN000047411).
Collapse
Affiliation(s)
- Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Suita, Japan
| | - Tatsuya Goto
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Masahiro Yamahira
- Department of Clinical Laboratory Medicine, Suita Municipal Hospital, Suita, Japan
| | - Tsutomu Tamai
- Department of Gastroenterology, Kagoshima City Hospital, Kagoshima, Japan
| | - Ryoko Kuromatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toshihisa Matsuzaki
- Department of Gastroenterology, Sasebo City General Hospital, Sasebo, Nagasaki, Japan
| | - Tomoyuki Suehiro
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshio Sumida
- Graduate School of Healthcare Management, International University of Healthcare and Welfare, Tokyo, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| |
Collapse
|
27
|
Chen H, Shen H, Han J, Wang P, Song D, Shen H, Wei X, Yang B, Li J. Performance of ATT and UDFF in the diagnosis of non-alcoholic fatty liver: An animal experiment. Heliyon 2024; 10:e27993. [PMID: 38560108 PMCID: PMC10981026 DOI: 10.1016/j.heliyon.2024.e27993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To establish a Bama minipigs model with Non-Alcoholic Fatty Liver (NAFL) induced by a high-fat diet and investigate the application of attenuation coefficient (ATT) and ultrasound-derived fat fraction (UDFF) in the diagnosis of NAFL. Methods Six-month-old male Bama minipigs were randomly divided into normal control and high-fat groups (n = 3 pigs per group), and fed with a control diet and high-fat diet for 32 weeks. Weight and body length were measured every four weeks, followed by quantitative ultrasound imaging (ATT and UDFF), blood biochemical markers, and liver biopsies on the same day. Using the Non-Alcoholic Fatty Liver Disease (NAFLD) Activity Score (NAS) as a reference, we analyzed the correlation between ATT, UDFF, and their score results. Results Compared with the normal control group, the body weight, body mass index (BMI), and serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in the High-fat group were significantly different at Week 12 (P < 0.05). Spearman correlation analysis showed that the ATT value was significantly correlated with NAS score (r = 0.76, P < 0.001), and the UDFF value was significantly correlated with NAS score (r = 0.80, P < 0.001). The optimal cut-off value of ATT and UDFF were 0.59 dB/cm/MHz and 5.5%, respectively. These values are optimal for diagnosis of NAFL in Bama minipig model. Conclusion ATT and UDFF have a high correlation with steatosis, and can be used as a non-invasive method for early screening of hepatic steatosis, which can dynamically monitor the change of disease course.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Huiming Shen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jiahao Han
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Pingping Wang
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Danlei Song
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hongyuan Shen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaoying Wei
- Department of Pathology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Bingjie Yang
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jia Li
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| |
Collapse
|
28
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Suzuki Y, Imajo K, Sugimoto K, Kakegawa T, Kuroda H, Yasui Y, Tamaki N, Kurosaki M, Izumi N, Akita T, Tanaka J, Nakajima A. Advanced fibrosis leads to overestimation of steatosis with quantitative ultrasound in individuals without hepatic steatosis. Ultrasonography 2024; 43:121-131. [PMID: 38316132 PMCID: PMC10915114 DOI: 10.14366/usg.23194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
PURPOSE The effect of hepatic fibrosis stage on quantitative ultrasound based on the attenuation coefficient (AC) for liver lipid quantification is controversial. The objective of this study was to determine how the degree of fibrosis assessed by magnetic resonance (MR) elastography affects AC based on the ultrasound-guided attenuation parameter according to the grade of hepatic steatosis, using magnetic resonance imaging (MRI)-derived proton density fat fraction (MRIderived PDFF) as the reference standard. METHODS Between February 2020 and April 2021, 982 patients with chronic liver disease who underwent AC and MRI-derived PDFF measurement as well as MR elastography were enrolled. Multiple regression was used to investigate whether AC was affected by the degree of liver stiffness. RESULTS AC increased as liver stiffness progressed in 344 patients without hepatic steatosis (P=0.009). In multivariable analysis, AC was positively correlated with skin-capsule distance (P<0.001), MR elastography value (P=0.037), and MRI-derived PDFF (P<0.001) in patients without hepatic steatosis. In 52 of 982 patients (5%), the correlation between AC and MRIderived PDFF fell outside the 95% confidence interval for the regression line slope. Patients with MRI-derived PDFF lower than their AC (n=36) had higher fibrosis-4 scores, albumin-bilirubin scores, and MR elastography values than patients with MRI-derived PDFF greater than their AC (n=16; P=0.018, P=0.001, and P=0.011, respectively). CONCLUSION AC is affected by liver fibrosis (MR elastography value ≥6.7 kPa) only in patients without hepatic steatosis (MRI-derived PDFF <5.2%). These values should be interpreted with caution in patients with advanced liver fibrosis.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuaki Suzuki
- Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan
| | - Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Gastroenterology, Shin-yurigaoka General Hospital, Kawasaki, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
29
|
Zhang X, Luo L, Liu H, Liang S, Xu E. Reliability and stability of ultrasound-guided attenuation parameter in evaluating hepatic steatosis. J Ultrasound 2024; 27:145-152. [PMID: 38281291 PMCID: PMC10908761 DOI: 10.1007/s40477-023-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 01/30/2024] Open
Abstract
PURPOSE This study aimed to explore the reliability and stability of ultrasound-guided attenuation parameter (UGAP) values obtained by two measuring methods and different measuring times. METHODS Patients who underwent liver UGAP examinations in our hospital from September 2022 to December 2022 were retrospectively analyzed. The clinical data and UGAP measurements results were collected. Two different measuring methods: static single-frame multi-point measuring and dynamic multi-frame single-point measuring, were performed for each patient, and 10 UGAP values of each measuring method were recorded. The medians of the UGAP values of the 1st-3rd, 1st-5th, 1st-7th and 1st-10th by each measuring method were taken as the final UGAP values of measuring 3, 5, 7 and 10 times. The UGAP values obtained by the two different measuring methods and different measuring times (3, 5, 7 or 10 times) were compared. RESULTS 206 patients were included in this study. There was no statistical difference between UGAP values measured by static single-frame multi-point measuring and dynamic multi-frame single-point measuring (P = 0.689, P = 0.270, P = 0.298, P = 0.091), regardless of measuring times (3, 5, 7, 10 times). No significant difference between the UGAP values obtained by 3, 5, 7 and 10 measurements was found (P = 0.554, P = 0.916). CONCLUSION The UGAP values obtained by the two different measuring methods and different measuring times (3, 5, 7 and 10 times) are stable and reliable. Additionally, 3 times of UGAP measurements might be enough for each patient in clinical practice.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Liping Luo
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Huahui Liu
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Shuang Liang
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China
| | - Erjiao Xu
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025, Shennanzhong Road, Shenzhen, 518033, China.
| |
Collapse
|
30
|
Ujihara Y, Tamura K, Mori S, Tai DI, Tsui PH, Hirata S, Yoshida K, Maruyama H, Yamaguchi T. Modified multi-Rayleigh model-based statistical analysis of ultrasound envelope for quantification of liver steatosis and fibrosis. J Med Ultrason (2001) 2024; 51:5-16. [PMID: 37796397 PMCID: PMC10991033 DOI: 10.1007/s10396-023-01354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE Quantitative diagnosis of the degree of fibrosis progression is currently a focus of attention for fatty liver in nonalcoholic steatohepatitis (NASH). However, previous studies have focused on either lipid droplets or fibrotic tissue, and few have reported the evaluation of both in patients whose livers contain adipose and fibrous features. Our aim was to evaluate fibrosis tissue and lipid droplets in the liver. METHODS We used an analytical method combining the multi-Rayleigh (MRA) model and a healthy liver structure filter (HLSF) as a technique for statistical analysis of the amplitude envelope to estimate fat and fibrotic volumes in clinical datasets with different degrees of fat and fibrosis progression. RESULTS Fat mass was estimated based on the non-MRA fraction corresponding to the signal characteristics of aggregated lipid droplets. Non-MRA fraction has a positive correlation with fat mass and is effective for detecting moderate and severe fatty livers. Progression of fibrosis was estimated using MRA parameters in combination with the HLSF. The proposed method was used to extract non-healthy areas with characteristics of fibrotic tissue. Fibrosis in early fatty liver suggested the possibility of evaluation. On the other hand, fat was identified as a factor that reduced the accuracy of estimating fibrosis progression in moderate and severe fatty livers. CONCLUSION The proposed method was used to simultaneously evaluate fat mass and fibrosis progression in early fatty liver, suggesting the possibility of quantitative evaluation for discriminating between lipid droplets and fibrous tissue in the early fatty liver.
Collapse
Affiliation(s)
- Yuki Ujihara
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, 2638522, Japan
| | - Kazuki Tamura
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 4313192, Japan
| | - Shohei Mori
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 9808579, Japan
| | - Dar-In Tai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Po-Hsiang Tsui
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Shinnosuke Hirata
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, 2638522, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, 2638522, Japan
| | - Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, Bunkyo, Tokyo, 1138421, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, 2638522, Japan.
| |
Collapse
|
31
|
Yano R, Hirooka M, Koizumi Y, Nakamura Y, Imai Y, Morita M, Okazaki Y, Watanabe T, Yoshida O, Tokumoto Y, Abe M, Hiasa Y. Lymphatic drainage dysfunction via narrowing of the lumen of cisterna chyli and thoracic duct after luminal dilation. Hepatol Int 2023; 17:1557-1569. [PMID: 37500943 DOI: 10.1007/s12072-023-10563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The chronological pattern of extrahepatic lymphatic vessel progression in the course of chronic liver disease has not been clarified. This study aimed to clarify the chronological changes in lymphatic vessels with liver disease progression. METHODS This was a prospective cross-sectional study that enrolled a total of 199 patients. The maximum diameter of the cisterna chyli (CC) or terminal thoracic duct (tTD) was measured using computed tomography or ultrasonography, respectively. Changes in the maximum diameters of the CC and tTD were evaluated with patients with chronic liver disease as the pilot set (n = 138). Subsequently, we examined whether CC/tTD could be used to re-allocate unclassified patients by the Baveno-VII criteria to appropriately diagnose clinically significant portal hypertension (CSPH) in the pilot and validation sets. RESULTS In the pilot set, a scatter-plot showed that both CC and tTD were narrowed as terminal features in chronic liver disease after dilation. Because there was a significant correlation between the CC diameter and hepatic venous pressure gradient (r = 0.724) in unclassified patients, the diagnostic value of CC and tTD for CSPH was good (AUC: 0.961 and 0.913, respectively). After re-allocation, 68 and 27 unclassified patients were reduced to 4 and 5 in the pilot and validation sets, respectively. CONCLUSION Both the CC and tTD narrow in the course of liver disease after dilation. Moreover, the maximum diameter of the CC and tTD can be used to re-allocate patients who are unclassified according to the Baveno-VII criteria. CLINICAL TRIAL NUMBER UMIN trial no. 000044857.
Collapse
Affiliation(s)
- Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Makoto Morita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yuki Okazaki
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
32
|
Hirooka M, Koizumi Y, Nakamura Y, Yano R, Hirooka K, Morita M, Imai Y, Tokumoto Y, Abe M, Hiasa Y. B-mode shear wave elastography can be an alternative method to vibration-controlled transient elastography according to a moderate-scale population study. J Med Ultrason (2001) 2023; 50:473-483. [PMID: 37402022 DOI: 10.1007/s10396-023-01333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE We aimed to compare vibration-controlled transient elastography (VCTE) with shear wave elastography (SWE) without previous analysis and generate regression equations between VCTE and new point SWE using combination-elastography. METHODS Overall, 829 patients with chronic liver disease were enrolled in this study. Patients with a skin-liver capsule distance > 25 mm were excluded. The reproducibility of VCTE and SWE was confirmed in a phantom study and a clinical study. Considering that combination-elastography allows measurement based on strain elastography, a similar analysis was performed for the liver fibrosis index (LFI), which is a quantitative value for evaluation of liver fibrosis calculated using strain elastography image features. Regression equations between the VCTE and SWE values were obtained based on linear regression analysis. RESULTS In the phantom study and clinical study, there was a strong correlation between VCTE and SWE [r = 0.995 (p < 0.001) and r = 0.747 (p < 0.001), respectively). The regression equation between VCTE and SWE was VCTE (kPa) = 1.09 × point SWE (kPa) - 0.17. The Bland-Altman plots revealed no statistically significant bias. Meanwhile, there was no correlation between VCTE and LFI (r = 0.279). There was a statistically significant bias between VCTE and LFI in the Bland-Altman plots. The inter-operator reliability showed a good intraclass correlation coefficient of 0.760 (95% confidence interval: 0.720-0.779). CONCLUSION Liver stiffness measured using point SWE was comparable to that measured using VCTE.
Collapse
Affiliation(s)
- Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Kana Hirooka
- Department of Gastroenterology and Metabology, National Hospital Organization Ehime Medical Center, Toon, Japan
| | - Makoto Morita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
33
|
Kuroda H, Oguri T, Kamiyama N, Toyoda H, Yasuda S, Imajo K, Suzuki Y, Sugimoto K, Akita T, Tanaka J, Yasui Y, Kurosaki M, Izumi N, Nakajima A, Fujiwara Y, Abe T, Kakisaka K, Matsumoto T, Kumada T. Multivariable Quantitative US Parameters for Assessing Hepatic Steatosis. Radiology 2023; 309:e230341. [PMID: 37787670 DOI: 10.1148/radiol.230341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Because of the global increase in the incidence of nonalcoholic fatty liver disease, the development of noninvasive, widely available, and highly accurate methods for assessing hepatic steatosis is necessary. Purpose To evaluate the performance of models with different combinations of quantitative US parameters for their ability to predict at least 5% steatosis in patients with chronic liver disease (CLD) as defined using MRI proton density fat fraction (PDFF). Materials and Methods Patients with CLD were enrolled in this prospective multicenter study between February 2020 and April 2021. Integrated backscatter coefficient (IBSC), signal-to-noise ratio (SNR), and US-guided attenuation parameter (UGAP) were measured in all participants. Participant MRI PDFF value was used to define at least 5% steatosis. Four models based on different combinations of US parameters were created: model 1 (UGAP alone), model 2 (UGAP with IBSC), model 3 (UGAP with SNR), and model 4 (UGAP with IBSC and SNR). Diagnostic performance of all models was assessed using area under the receiver operating characteristic curve (AUC). The model was internally validated using 1000 bootstrap samples. Results A total of 582 participants were included in this study (median age, 64 years; IQR, 52-72 years; 274 female participants). There were 364 participants in the steatosis group and 218 in the nonsteatosis group. The AUC values for steatosis diagnosis in models 1-4 were 0.92, 0.93, 0.95, and 0.96, respectively. The C-indexes of models adjusted by the bootstrap method were 0.92, 0.93, 0.95, and 0.96, respectively. Compared with other models, models 3 and 4 demonstrated improved discrimination of at least 5% steatosis (P < .01). Conclusion A model built using the quantitative US parameters UGAP, IBSC, and SNR could accurately discriminate at least 5% steatosis in patients with CLD. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Han in this issue.
Collapse
Affiliation(s)
- Hidekatsu Kuroda
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Takuma Oguri
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Naohisa Kamiyama
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Hidenori Toyoda
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Satoshi Yasuda
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Kento Imajo
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Yasuaki Suzuki
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Katsutoshi Sugimoto
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Tomoyuki Akita
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Junko Tanaka
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Yutaka Yasui
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Masayuki Kurosaki
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Namiki Izumi
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Atsushi Nakajima
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Yudai Fujiwara
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Tamami Abe
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Keisuke Kakisaka
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Takayuki Matsumoto
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Takashi Kumada
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| |
Collapse
|
34
|
Xu Q, Feng M, Ren Y, Liu X, Gao H, Li Z, Su X, Wang Q, Wang Y. From NAFLD to HCC: Advances in noninvasive diagnosis. Biomed Pharmacother 2023; 165:115028. [PMID: 37331252 DOI: 10.1016/j.biopha.2023.115028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has gradually become one of the major liver health problems in the world. The dynamic course of the disease goes through steatosis, inflammation, fibrosis, and carcinoma. Before progressing to carcinoma, timely and effective intervention will make the condition better, which highlights the importance of early diagnosis. With the further study of the biological mechanism in the pathogenesis and progression of NAFLD, some potential biomarkers have been discovered, and the possibility of their clinical application is gradually being discussed. At the same time, the progress of imaging technology and the emergence of new materials and methods also provide more possibilities for the diagnosis of NAFLD. This article reviews the diagnostic markers and advanced diagnostic methods of NAFLD in recent years.
Collapse
Affiliation(s)
- Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
35
|
Jang W, Song JS. Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. Diagnostics (Basel) 2023; 13:diagnostics13111852. [PMID: 37296703 DOI: 10.3390/diagnostics13111852] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatic steatosis without specific causes (e.g., viral infection, alcohol abuse, etc.) is called non-alcoholic fatty liver disease (NAFLD), which ranges from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, and NASH-related cirrhosis. Despite the usefulness of the standard grading system, liver biopsy has several limitations. In addition, patient acceptability and intra- and inter-observer reproducibility are also concerns. Due to the prevalence of NAFLD and limitations of liver biopsies, non-invasive imaging methods such as ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) that can reliably diagnose hepatic steatosis have developed rapidly. US is widely available and radiation-free but cannot examine the entire liver. CT is readily available and helpful for detection and risk classification, significantly when analyzed using artificial intelligence; however, it exposes users to radiation. Although expensive and time-consuming, MRI can measure liver fat percentage with magnetic resonance imaging proton density fat fraction (MRI-PDFF). Specifically, chemical shift-encoded (CSE)-MRI is the best imaging indicator for early liver fat detection. The purpose of this review is to provide an overview of each imaging modality with an emphasis on the recent progress and current status of liver fat quantification.
Collapse
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| |
Collapse
|
36
|
Zeng KY, Bao WYG, Wang YH, Liao M, Yang J, Huang JY, Lu Q. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications. World J Gastroenterol 2023; 29:2534-2550. [PMID: 37213404 PMCID: PMC10198053 DOI: 10.3748/wjg.v29.i17.2534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
Collapse
Affiliation(s)
- Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Han Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
37
|
Small Intestinal Bacterial Overgrowth and Non-Alcoholic Fatty Liver Disease: What Do We Know in 2023? Nutrients 2023; 15:nu15061323. [PMID: 36986052 PMCID: PMC10052062 DOI: 10.3390/nu15061323] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with the pathological accumulation of lipids inside hepatocytes. Untreated NAFL can progress to non-alcoholic hepatitis (NASH), followed by fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The common denominator of the above-mentioned metabolic disorders seems to be insulin resistance, which occurs in NAFLD patients. Obesity is the greatest risk factor for lipid accumulation inside hepatocytes, but a part of the NAFLD patient population has a normal body weight according to the BMI index. Obese people with or without NAFLD have a higher incidence of small intestinal bacterial overgrowth (SIBO), and those suffering from NAFLD show increased intestinal permeability, including a more frequent presence of bacterial overgrowth in the small intestine (SIBO). The health consequences of SIBO are primarily malabsorption disorders (vitamin B12, iron, choline, fats, carbohydrates and proteins) and bile salt deconjugation. Undetected and untreated SIBO may lead to nutrient and/or energy malnutrition, thus directly impairing liver function (e.g., folic acid and choline deficiency). However, whether SIBO contributes to liver dysfunction, decreased intestinal barrier integrity, increased inflammation, endotoxemia and bacterial translocation is not yet clear. In this review, we focus on gut–liver axis and discuss critical points, novel insights and the role of nutrition, lifestyle, pre- and probiotics, medication and supplements in the therapy and prevention of both SIBO and NAFLD.
Collapse
|
38
|
Nogami A, Yoneda M, Iwaki M, Kobayashi T, Honda Y, Ogawa Y, Imajo K, Saito S, Nakajima A. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: present and future. Clin Mol Hepatol 2023; 29:S123-S135. [PMID: 36503207 PMCID: PMC10029939 DOI: 10.3350/cmh.2022.0357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is currently the most common chronic liver disease, affecting up to 25% of the global population. Simple fatty liver, in which fat is deposited in the liver without fibrosis, has been regarded as a benign disease in the past, but it is now known to be prognostic. In the future, more emphasis should be placed on the quantification of liver fat. Traditionally, fatty liver has been assessed by histological evaluation, which requires an invasive examination; however, technological innovations have made it possible to evaluate fatty liver by non-invasive imaging methods, such as ultrasonography, computed tomography, and magnetic resonance imaging. In addition, quantitative as well as qualitative measurements for the detection of fatty liver have become available. In this review, we summarize the currently used qualitative evaluations of fatty liver and discuss quantitative evaluations that are expected to further develop in the future.
Collapse
Affiliation(s)
- Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
- Department of Gastroenterology and Endoscopy, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| |
Collapse
|
39
|
Hirooka M, Koizumi Y, Nakamura Y, Yano R, Hirooka K, Morita M, Imai Y, Tokumoto Y, Abe M, Hiasa Y. Deep attenuation transducer to measure liver stiffness in obese patients with liver disease. J Med Ultrason (2001) 2023; 50:63-72. [PMID: 36525134 PMCID: PMC10899308 DOI: 10.1007/s10396-022-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Deep attenuation transducers (DAX) are capable of imaging at diagnostic depths of up to 40 cm. The feasibility of DAX for liver stiffness measurement (LSM) has not been reported clinically. We aimed to assess the feasibility and reliability of DAX for LSM. METHODS Overall, 219 patients with chronic liver disease were enrolled. The success rate (acquired after ≥ 10 valid measurements) and inadequate measurements (interquartile range/median ≥ 0.3) for DAX were compared with those of conventional convex (c-convex) probes and M and XL probes of vibration-controlled transient elastography. RESULTS LSM was successfully performed for all patients using DAX through all degrees of skin-to-liver capsular distance (SCD). Especially in patients with an SCD ≥ 30 mm, the difference in the rate of acquisition of 10 valid measurements was remarkable: M probe (8/33, 24.2%), XL probe (26/33, 78.8%), c-convex probe (33/43, 76.7%), and DAX (44/44, 100%). In patients with an SCD ≥ 30 mm, the inadequate measurement rate of M probe (1/8, 12.5%), XL probe (8/26, 30.8%), and c-convex probe (6/33, 18.2%) was higher than that of DAX (1/43, 2.3%). The areas under the curve for diagnosis of F4 with shear wave speed by c-convex and DAX were 0.916 and 0.918, respectively. Between DAX and c-convex probes, the intraclass correlation coefficient of 0.937 (95% CI 0.918-0.952) was excellent. Bland-Altman plots revealed that there was no statistically significant bias. CONCLUSION Liver stiffness measured by DAX is feasible and reliable for all patient populations, while the XL probe is limited to use in obese patients.
Collapse
Affiliation(s)
- Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Kana Hirooka
- Department of Gastroenterology, National Hospital Organization Ehime Medical Center, Yokogawara 366, Toon, Ehime, 791-0281, Japan
| | - Makoto Morita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
40
|
Hari A. Ultrasound-Based Diagnostic Methods: Possible Use in Fatty Liver Disease Area. Diagnostics (Basel) 2022; 12:diagnostics12112822. [PMID: 36428882 PMCID: PMC9689357 DOI: 10.3390/diagnostics12112822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Liver steatosis is a chronic liver disease that is becoming one of the most important global health problems, due to its direct connection with metabolic syndrome, its significant impact on patients' socioeconomic status and frailty, and the occurrence of advanced chronic liver disease. In recent years, there has been rapid technological progress in the ultrasound-based diagnostics field that can help us to quantitatively assess liver steatosis, including continuous attenuation parameters in A and B ultrasound modes, backscatter coefficients (e.g., speed of sound) and ultrasound envelope statistic parametric imaging. The methods used in this field are widely available, have favorable time and financial profiles, and are well accepted by patients. Less is known about their reliability in defining the presence and degree of liver steatosis. Numerous study reports have shown the methods' favorable negative and positive predictive values in comparison with reference investigations (liver biopsy and MRI). Important research has also evaluated the role of these methods in diagnosing and monitoring non-alcoholic fatty liver disease (NAFLD). Since NAFLD is becoming the dominant global cause of liver cirrhosis, and due to the close but complex interplay of liver steatosis with the coexistence of liver fibrosis, knowledge regarding NAFLD's influence on the progression of liver fibrosis is of crucial importance. Study findings, therefore, indicate the possibility of using these same diagnostic methods to evaluate the impact of NAFLD on the patient's liver fibrosis progression risk, metabolic risk factors, cardiovascular complications, and the occurrence of hepatocellular carcinoma. The mentioned areas are particularly important in light of the fact that most of the known chronic liver disease etiologies are increasingly intertwined with the simultaneous presence of NAFLD.
Collapse
Affiliation(s)
- Andrej Hari
- Oddelek za Bolezni Prebavil, Splošna Bolnišnica Celje, Oblakova Cesta 3, 3000 Celje, Slovenia
| |
Collapse
|
41
|
Bozic D, Podrug K, Mikolasevic I, Grgurevic I. Ultrasound Methods for the Assessment of Liver Steatosis: A Critical Appraisal. Diagnostics (Basel) 2022; 12:2287. [PMID: 36291976 PMCID: PMC9600709 DOI: 10.3390/diagnostics12102287] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 08/10/2023] Open
Abstract
The prevalence of the non-alcoholic fatty liver disease has reached major proportions, being estimated to affect one-quarter of the global population. The reference techniques, which include liver biopsy and the magnetic resonance imaging proton density fat fraction, have objective practical and financial limitations to their routine use in the detection and quantification of liver steatosis. Therefore, there has been a rising necessity for the development of new inexpensive, widely applicable and reliable non-invasive diagnostic tools. The controlled attenuation parameter has been considered the point-of-care technique for the assessment of liver steatosis for a long period of time. Recently, many ultrasound (US) system manufacturers have developed proprietary software solutions for the quantification of liver steatosis. Some of these methods have already been extensively tested with very good performance results reported, while others are still under evaluation. This manuscript reviews the currently available US-based methods for diagnosing and grading liver steatosis, including their classification and performance results, with an appraisal of the importance of this armamentarium in daily clinical practice.
Collapse
Affiliation(s)
- Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Kristian Podrug
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Center Rijeka, Krešimirova 42, 51 000 Rijeka, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| |
Collapse
|
42
|
Guan X, Chen YC, Xu HX. New horizon of ultrasound for screening and surveillance of non-alcoholic fatty liver disease spectrum. Eur J Radiol 2022; 154:110450. [PMID: 35917757 DOI: 10.1016/j.ejrad.2022.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects almost one quarter of adults worldwide, and its progressive subtype, non-alcoholic steatohepatitis can progress to advanced fibrosis/cirrhosis and even hepatocellular carcinoma. It is critical to screen and grade NAFLD patients for management decisions to rationalize the utilization of medical resources. Conventional ultrasound is widely applied for NAFLD screening, however, some inherent weaknesses hinder its utility. This limitation has spurred the development of acoustic parameters-based quantitative ultrasound techniques that allow a more accurate evaluation of the histological features of NAFLD (e.g. steatosis, necroinflammation, fibrosis/cirrhosis). Herein, this paper reviews the research advances in emerging ultrasound techniques for screening and surveillance across NAFLD spectrum and summarize their principles, feasibility, accuracy, reproducibility, and limitations of each technique. The challenges and future directions are also discussed to advance clinical practice.
Collapse
Affiliation(s)
- Xin Guan
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai 200032, China
| | - Yun-Chao Chen
- Department of Medical Ultrasound, Xiang'An Hospital of Xiamen University, Xiamen University Medical Center, Xiamen 361101, China; Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai 200072, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai 200072, China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Tamaki N, Kurosaki M, Huang DQ, Loomba R. Noninvasive assessment of liver fibrosis and its clinical significance in nonalcoholic fatty liver disease. Hepatol Res 2022; 52:497-507. [PMID: 35352460 PMCID: PMC9718363 DOI: 10.1111/hepr.13764] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/26/2023]
Abstract
Liver fibrosis is the most important prognostic factor in patients with nonalcoholic fatty liver disease (NAFLD). Several noninvasive markers for fibrosis, including blood-based markers and imaging based-markers have been developed. Indirect fibrosis markers (e.g., fibrosis-4 index and NAFLD fibrosis score) consist of standard laboratory data and clinical parameters. Given its availability and high negative predictive value for advanced fibrosis, these markers are suitable for screening at primary care. Blood-based fibrogenesis markers (enhanced liver fibrosis and N-terminal propeptide of type 3 collagen), ultrasound-based modalities (vibration-controlled transient elastography, point shear wave elastography [SWE], and two-dimensional SWE), and magnetic resonance elastography have high diagnostic accuracy for liver fibrosis and are suitable for diagnosing liver fibrosis at secondary care centers. Sequential use of these markers can increase diagnostic accuracy and reduce health care costs. Furthermore, combining noninvasive makers may assist in identifying candidates for pharmacological trials and reducing screening failure. Emerging data suggest that these noninvasive markers are associated with liver-related events (hepatocellular carcinoma and decompensation) and mortality. Furthermore, delta change in noninvasive markers over time is also associated with time-course change in fibrosis, liver-related event risk, and mortality risk. However, the association between liver fibrosis and cardiovascular disease (CVD) risk is still controversial. CVD risk may decrease in patients with decompensated liver disease and noninvasive markers may be useful for assessing CVD risk in these patients. Therefore, noninvasive markers may be utilized as measures of fibrosis as well as real-time prognostic tools, in place of liver biopsy.
Collapse
Affiliation(s)
- Nobuharu Tamaki
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
44
|
Reproducibility of ultrasound-guided attenuation parameter (UGAP) to the noninvasive evaluation of hepatic steatosis. Sci Rep 2022; 12:2876. [PMID: 35190618 PMCID: PMC8861045 DOI: 10.1038/s41598-022-06879-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to identify the applicability of an ultrasound-guided attenuation parameter (UGAP) for the noninvasive assessment of hepatic steatosis in clinical practice and to compare its correlation with B-mode ultrasound (US). From May to July 2021, 63 subjects with different body mass index (BMI) grades were included in the prospective study. All of them performed UGAP measurements, under different breathing manipulations, positions, diet statuses, and operators. After that, the UGAP values were compared with the visual grades of hepatic steatosis on B-mode US using a 4-point scale method. The intraclass correlation (ICC) of the UGAP values between the two radiologists was 0.862 (p < 0.001), and the ICCs of the UGAP values on the same day and different days by radiologist A were 0.899 (p < 0.001) and 0.910 (p < 0.001), respectively. There were no significant differences in UGAP values under different breathing manipulations (p > 0.05), positions (p > 0.05), or diet statuses (p = 0.300). The UGAP values in the fasting (supine position, segment V, 1) condition among the lean (BMI < 24 kg/m2), overweight (24 kg/m2 ≤ BMI < 28 kg/m2) and obese groups (BMI ≥ 28 kg/m2) were 0.60 ± 0.12, 0.66 ± 0.14, and 0.71 ± 0.11 dB/cm/MHz, respectively, with a significant difference (p = 0.006). The correlation coefficients (Rho) between the UGAP values and the visual grades of hepatic steatosis by the two reviewers were 0.845 (p < 0.001) and 0.850 (p < 0.001), corresponding to a strong relationship. Steatosis grades by reviewer 1 (p = 0.036) and reviewer 2 (p = 0.003) were significant factors determining the UGAP values according to the multivariate linear regression analysis. UGAP demonstrated excellent intraobserver and interobserver reproducibility in the assessment of hepatic steatosis. UGAP may be a promising tool in clinical practice to predict hepatic steatosis.
Collapse
|